Skip to main content

Microbe-based Inoculants: Role in Next Green Revolution

  • Chapter
  • First Online:
Environmental Concerns and Sustainable Development

Abstract

Increasing food demand, with growing population, has been a major concern throughout the globe. The aim can only be achieved with the onset of next green revolution being much defined by sustainable approaches. The past green revolution had its negative impact due to excessive use of agrochemicals contaminating the environment and further challenging the food security. Henceforth, designing the blueprint of next green revolution requires the application of effective and sustainable approaches which enhance the yield of plants while still maintaining the decorum of sustainability. In this regard, microbes have been concluded as the best players finding their roles in plant growth promotion and also stress management. Currently, there are several bacterial-, fungal-based inoculants available in the market along with genetically modified organisms, forming the base of upcoming green revolution. Thus, the future of sustainable agriculture is related to the efficiency and action of these microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, El-Enany AWE, Nafady NA, Khalaf DM, Morsy FM (2014) Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol Res 169:49–58

    Article  CAS  Google Scholar 

  • Abhilash PC, Dubey RK, Tripathi V, Gupta VK, Singh HB (2016) Plant growth-promoting microorganisms for environmental sustainability. Trends Biotechnol 34(11):847–850

    Article  CAS  Google Scholar 

  • Abou-el-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea Maize) under calcareous soil conditions. Saudi J Biol Sci 19(1):55–63

    Article  CAS  Google Scholar 

  • Achal V, Savant VV, Sudhakara Reddy M (2007) Phosphate solubilization by wide type strain and UV-induced mutants of Aspergillus tubingensis. Soil Biol Biochem 39(2):695–699

    Article  CAS  Google Scholar 

  • Adak A, Prasanna R, Babu S, Bidyarani N, Verma S, Pal M, Shivay YS, Nain L (2016) Micronutrient enrichment mediated by plant-microbe interactions and rice cultivation practices. J Plant Nutr 39(9):1216–1232

    Article  CAS  Google Scholar 

  • Adams DG, Duggan PS (2008) Cyanobacteria-bryophytes symbioses. J Exp Bot 59:1047–1058

    Article  CAS  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  Google Scholar 

  • Adesemoye AO, Yuen GY, Watts DB (2017) Microbial inoculants for optimized plant nutrient use in integrated pest and input management systems. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore

    Google Scholar 

  • Adnan M, Shah Z, Fahad S, Arif M, Alam M, Khan IA, Mian IA, Basir A, Ullah H, Arshad MS, Rehman I, Saud S, Ihsan MZ, Jamal Y, Amanullah Hammad HM, Nasim W (2017) Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils. Sci Rep 7:16131

    Article  CAS  Google Scholar 

  • Aeron A, Kumar S, Pandey P, Maheshwari DK (2011) Emerging role of plant growth promoting rhizobacteria in agrobiology. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin/Heidelberg, pp 1–36

    Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saudi Univ Sci 26:1–20

    Article  Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313

    Chapter  Google Scholar 

  • Ahmed E, Holmström SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7(3):196–208

    Article  CAS  Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology. Wiley, New York, AseA, P. E. A, pp 33–399

    Google Scholar 

  • Ali MP, Huang D, Nachman G, Ahmed N, Begum MA, Rabbi MF (2014) Will climate change affect outbreak patterns of planthoppers in Bangladesh? PLoS ONE 9(3):e91678

    Article  CAS  Google Scholar 

  • Alloway BJ (2004) Zinc in soils and crop nutrition. IZA Publications, International Zinc Association, Brussels, pp 1–116

    Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  Google Scholar 

  • Amarger N (2002) Genetically modified bacteria in agriculture. Biochimie 84:1061–1072

    Article  CAS  Google Scholar 

  • Ambika R, Senthilkumar G, Panneerselvam A, Sengottaian N (2015) Determination of gibberellic acid from Rhizobium (maize) by thin layer chromatography. World J Pharm Res 4(6):967–973

    CAS  Google Scholar 

  • Anitha D, Vijaya T, Reddy NV et al (2013) Microbial endophytes and their potential for improved bioremediation and biotransformation: a review. Indo Am J Pharm Res 3:6408–6417

    Google Scholar 

  • Arora NK (2018a) Agricultural sustainability and food security. Environ Sustain 1(3):217–219

    Article  Google Scholar 

  • Arora NK (2018b) Biodiversity conservation for sustainable future. Environ Sustain 1(2):109–111

    Article  Google Scholar 

  • Arora NK, Mishra J (2016) Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Appl Soil Ecol 107:405–407

    Article  Google Scholar 

  • Arora N, Kang S, Maheshwari D (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81(6):673–677

    Google Scholar 

  • Arora NK, Singhal V, Maheshwari DK (2006) Salinity-induced accumulation of poly-β-hydroxybutyrate in rhizobia indicating its role in cell protection. World J Microbiol Biotechnol 22(6):603–606

    Article  CAS  Google Scholar 

  • Arora NK, Kim MJ, Kang SC, Maheshwari DK (2007) Role of chitinase and β-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can J Microbiol 53(2):2017–2212

    Article  Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari D (ed) Plant growth and health promoting bacteria, Microbiology monographs, vol 18. Springer, Berlin/Heidelberg, pp 97–116

    Chapter  Google Scholar 

  • Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK (2012) PGPR for protection of plant health under saline conditions. In: Maheshwari D (ed) Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg

    Google Scholar 

  • Arora NK, Verma M, Mishra J (2017) Rhizobial bioformulations: past, present and future. In: Mehnaz S (ed) Rhizotrophs: plant growth promotion to bioremediation, Microorganisms for sustainability, vol 2. Springer, Singapore, pp 69–99

    Chapter  Google Scholar 

  • Arora NK, Fatima T, Mishra I, Verma M, Mishra J, Mishra V (2018) Environmental sustainability: challenges and viable solutions. Environ Sustain 1(4):309–350

    Article  Google Scholar 

  • Arst HN, Peñalva MA (2003) pH regulation in Aspergillus and parallels with higher eukaryotic regulatory systems. Trends Genet 19:224–231

    Article  CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  CAS  Google Scholar 

  • Ayala S, Rao EVS (2002) Perspectives of soil fertility management with a focus on fertilizer use for crop productivity. Curr Sci 82(7):797–807

    Google Scholar 

  • Bae H, Morrison E, Chanton JP, Ogram A (2018) Methanogens are major contributors to nitrogen fixation in soils of the Florida everglades. Appl Environ Microbiol 84:7

    Article  Google Scholar 

  • Baez-Rogelio A, Morales-García YE, Quintero-Hernández V, Muñoz-Rojas J (2017) Next generation of microbial inoculants for agriculture and bioremediation. Microb Biotechnol 10(1):19–21

    Article  Google Scholar 

  • Bailey KL, Boyetchko SM, Längle T (2010) Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52:221–229

    Article  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  Google Scholar 

  • Bansal RK, Dahiya RS, Lakshminarayana K, Suneja S, Anand RC, Narula N (1999) Effect of rhizospheric bacteria on plant growth of wheat infected with Heterodera avenae. Nematol Mediterr 27:311–314

    Google Scholar 

  • Barker R, Herdt RW, Rose B (1985) The rice economy of Asia: Resources for the Future. Johns Hopkins University Press, Washington, DC, p 324

    Google Scholar 

  • Barria C, Malecki M, Arraiano CM (2013) Bacterial adaptation to cold. Microbiology 159:2437–2443

    Article  CAS  Google Scholar 

  • Becerra-Castro C, Monterroso C, Prieto-Fernández A, Rodríguez-Lamas L, Loureiro-Viñas M, Acea MJ, Kidd PS (2012) Pseudometallophytes colonising Pb/Zn mine tailings: a description of the plant-microorganism-rhizosphere soil system and isolation of metal-tolerant bacteria. J Hazard Mater 217:350–359

    Article  CAS  Google Scholar 

  • Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6(3):206–212

    Article  CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  CAS  Google Scholar 

  • Berti AD, Greve NJ, Christensen QH, Thomas MG (2007) Identification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of Pseudomonas syringae pv. tomato DC3000. J Bacteriol 189:6312–6323

    Article  CAS  Google Scholar 

  • Bhardwaj G, Cameotra S, Chopra H (2013) Biosurfactants from fungi: a review. J Pet Environ Biotechnol 4:6

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Biermann BJ, Linderman RG (1983) Use of vesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytol 95:97–105

    Article  Google Scholar 

  • Biopesticide Registration Action Document (BRAD) (2008) Bacillus thuringiensis Cry1A.105 and Cry2Ab2 insecticidal proteins and the genetic material necessary for their production in corn [PC Codes 006515 (Cry2Ab2), 006514 (Cry1A.105)] U.S. Environmental Protection Agency. Available: https://www3.epa.gov/pesticides/chem_search/reg_actions/pip/mon-89034-brad.pdf

  • Biopesticides Registration Action Document (BRAD) (2010) Trichoderma gamsii strain ICC 080 PC Code: 119207. U.S. Environmental Protection Agency Office of Pesticide Programs Biopesticides and Pollution Prevention Division. Available: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-119207_4-Mar-10.pdf

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  Google Scholar 

  • Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69:3280–3287

    Article  CAS  Google Scholar 

  • Bolduc RA, Hijri M (2011) The use of mycorrhizae to enhance phosphorus uptake: a way out the phosphorus crisis. J Biofertil Biopestic 2:104

    Google Scholar 

  • Bossuyt H, Denef K, Six J, Frey SD, Merckx R, Paustian K (2001) Influence of microbial populations and residue quality on aggregate stability. Appl Soil Ecol 16:195–208

    Article  Google Scholar 

  • Bouguyon E, Brun F, Meynard D et al (2015) Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nat Plants 1:15015

    Article  CAS  Google Scholar 

  • Boyer LR, Brain P, Xu XM, Jeffries P (2015) Inoculation of drought-stressed strawberry with a mixed inoculums of two arbuscular mycorrhizal fungi: effects of population dynamics of fungi species in roots and consequential plant tolerance to water deficiency. Mycorrhiza 25:215–227

    Article  CAS  Google Scholar 

  • Brookes G, Barfoot P (2015) Environmental impacts of GM crop use 1996–2013: impacts on pesticide use and carbon emissions. GM Crops Food 6(2):103–133

    Article  Google Scholar 

  • Çalgan D, Sivaci-Güner S (1993) Effects of 2, 4-D and methylparathion on growth and nitrogen fixation in cyanobacterium Gloeocapsa. Int J Environ Stud 43:307–311

    Article  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Calvo-Polanco M, Molina S, Zamarreño AM, García-Mina JM, Aroca R (2014) The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants. Plant Cell Physiol 55:1017–1029

    Article  CAS  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Article  Google Scholar 

  • Carvajal-Muñoz CJS, Carmona-Garcia CE (2012) Benefits and limitations of biofertilization in agricultural practice. Livest Res Rural Dev 24(3), Article #43

    Google Scholar 

  • Carvalho F (2017) Pesticides, environment and food safety. Food Energy Secur 6(2):48–60

    Article  Google Scholar 

  • Castagnola A, Jurat-Fuentes JL (2012) Bt crops: past and future. In: Sansinenea E (ed) Bacillus thuringiensis biotechnology, vol 392. Springer, New York, pp 283–304

    Chapter  Google Scholar 

  • Cely MVT, De Oliveira AG, de Freitas VF, de Luca MB, Barazetti AR, Santos IMO, Andrade G (2016) Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus) increase yield of soybean and cotton under field conditions. Front Microbiol 7:720

    Article  Google Scholar 

  • Chakravarty P, Sidhu SS (1987) Effect of glyphosate, hexazinone and triclopyr on in vitro growth of five species of ectomycorrhizal fungi. Eur J Forest Pathol 17:204–210

    Article  CAS  Google Scholar 

  • Chang HB, Lin CW, Huang HJ (2005) Zinc induced cell death in rice (Oryza sativa L.) roots. Plant Growth Regul 46:261–266

    Article  CAS  Google Scholar 

  • Chaurasia B, Pandey A, Palni LMS, Trivedi P, Kumar B, Colvin N (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160(1):75–81

    Article  CAS  Google Scholar 

  • Chen XH, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter AW, Gottschalk G, Sussmuth RD, Borriss R (2006) Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol 188:4024–4036

    Article  CAS  Google Scholar 

  • Chen W, Kuo TY, Hsieh FC, Chen PY, Wang CS, Shih YL et al (2016) Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis. Sci Rep 8:32950

    Article  CAS  Google Scholar 

  • Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, Ahammed GJ (2017) Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol 8:2516

    Article  Google Scholar 

  • Cheng G, Dai M, Ahmed S, Hao H, Wang X, Yuan Z (2016) Antimicrobial drugs in fighting against antimicrobial resistance. Front Microbiol 7:470

    Google Scholar 

  • Chern WS (2006) Genetically Modified Organisms (GMOs) and Sustainability in Agriculture. Paper presented at the International Association of Agricultural Economists Conference, Gold Coast, Australia

    Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Van Der Bij AJ, Van Der Drift KMGM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, Tichy HV, De Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant-Microbe Interact 11:1069–1077

    Article  CAS  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  Google Scholar 

  • Corbell N, Loper JE (1995) A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J Bacteriol 177:6230–6236

    Article  CAS  Google Scholar 

  • D’aes J, De Maeyer K, Pauwelyn E, Höfte M (2010) Biosurfactants in plant-Pseudomonas interactions and their importance to biocontrol. Environ Microbiol Rep 2(3):359–372

    Article  CAS  Google Scholar 

  • Dalrymple DG et al (1974) Development and spread of high-yielding varieties of wheat and rice in the less developed nations. Tech rep, United States, Department of Agriculture, Economic Research Service

    Google Scholar 

  • Damalas C, Koutroubas SD (2018) Current status and recent developments in biopesticide use. Agriculture 8(1):13

    Article  CAS  Google Scholar 

  • Das B (2017) Green Revolution and its impact on Indian agriculture. Imp J Interdiscip Res 3(9):535–537

    Google Scholar 

  • Das D, Mandal M (2015) Advanced Technology of Fertilizer Uses for crop production. In: Sinha S, Pant KK, Bajpai S (eds) Fertilizer technology-I synthesis. Studium Press, LLC, USA, pp 101–150

    Google Scholar 

  • David P, Raj RS, Linda R, Rhema SB (2014) Molecular characterization of phosphate solubilizing bacteria (PSB) and plant growth promoting rhizobacteria (PGPR) from pristine soils. Int J Innov Sci Eng Technol 1:317–324

    Google Scholar 

  • Daviére JM, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151

    Article  CAS  Google Scholar 

  • Davis J, Haglund C (1999) Life cycle inventory (LCI) of fertiliser production. Fertiliser products used in Sweden and Western Europe. SIK-Report No. 654. Masters thesis, Chalmers University of Technology

    Google Scholar 

  • Dawson TL (2008) It must be green: meeting society’s environmental concerns. Color Technol 124:67–78

    Article  CAS  Google Scholar 

  • Dawwam GE, Elbeltagy A, Emara HM, Abbas IH, Hassan MM (2013) Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann Agric Sci 58(2):195–201

    Article  Google Scholar 

  • de Souza R, Meyer J, Schoenfeld R, da Costa PB, Passaglia LM (2015) Characterization of plant growth-promoting bacteria associated with rice cropped in iron stressed soils. Ann Microbiol 65:951–964

    Article  CAS  Google Scholar 

  • de Vries FT, Hoffland E, van Eekeren N, Brussaard L, Bloem J (2006) Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol Biochem 38:2092–2103

    Article  CAS  Google Scholar 

  • Debode J, De Maeyer K, Perneel M, Pannecoucque J, De Backer G, Höfte M (2007) Biosurfactants are involved in the biological control of Verticillium microsclerotia by Pseudomonas spp. J Appl Microbiol 103:1184–1196

    Article  CAS  Google Scholar 

  • Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS (2001) phzO, a gene for biosynthesis of 2-hydroxylate phenazine compounds in Pseudomonas aureofaciens 30-84. J Bacteriol 183(1):318–327

    Article  CAS  Google Scholar 

  • Desai SA (2017) Isolation and characterization of gibberellic acid (GA3) producing rhizobacteria from sugarcane roots. Biosci Discov 8(3):488–494

    Google Scholar 

  • Dolatabadian A, Sanavy S, Ghanati F, Gresshoff PM (2012) Morphological and physiological response of soybean treated with the microsymbiont Bradyrhizobium japonicum pre-incubated with genistein. S Afr J Bot 79:9

    Article  Google Scholar 

  • Dolatabadian A, Sanavy S, Ghanati F, Gresshoff PM (2013) Agrobacterium rhizogenes transformed soybean roots differ in their nodulation and nitrogen fixation response to genistein and salt stress. World J Microbiol Biotechnol 29:1327–1339

    Article  CAS  Google Scholar 

  • Drew MC, Hole PC, Picchioni GA (1990) Inhibition by NaCl of net CO2 fixation and yield of cucumber. J Am Soc Hortic Sci 115:472–477

    Article  CAS  Google Scholar 

  • Dutta SK, Hollowell GP, Hashem FM, Kuykendall LD (2003) Enhanced bioremediation of soil containing 2,4-dinitrotoluene by a genetically modified Sinorhizobium meliloti. Soil Biol Biochem 35:667–675

    Article  CAS  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    Article  CAS  Google Scholar 

  • Egamberdieva D, Hua M, Reckling M, Wirth S, Bellingrath-Kimura SD (2018) Potential effects of biochar-based microbial inoculants in agriculture. Environ Sustain 1(1):19–24

    Article  Google Scholar 

  • Erayya, Jagdish J, Sajeesh PK, Vinod U (2013) Nuclear polyhedrosis virus (NPV), a potential biopesticide: a review. J Agric Sci 1(8):30–33

    Google Scholar 

  • Etesami H, Emami S, Alikhani HA (2017) Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects – a review. J Soil Sci Plant Nutr 17(4):897–911

    Article  Google Scholar 

  • Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300:758–762

    Article  CAS  Google Scholar 

  • Ezezika OC, Singer PA (2010) Genetically engineered oil-eating microbes for bioremediation: prospects and regulatory challenges. Technol Soc 32:331–335

    Article  Google Scholar 

  • Fageria NK (2009) The use of nutrients in crop plants. CRC Press, Boca Raton

    Google Scholar 

  • Fageria NK, Baligar VC, Li YC (2009) Differential soil acidity tolerance of tropical legume cover crops. Commun Soil Sci Plant Anal 40:1148–1160

    Article  CAS  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  Google Scholar 

  • Fankem H, Nwaga D, Deube A, Dieng L, Merbach W, Etoa FX (2006) Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaeis guineensis) rhizosphere in Cameroon. Afr J Biotechnol 5:2450–2460

    CAS  Google Scholar 

  • FAO (1998) Carbohydrates in human nutrition. Report of a Joint FAO/WHO Expert, Rome, Italy, vol 66, pp 1–140

    Google Scholar 

  • FAO (2015) DWFI. Yield gap analysis of field crops—methods and case studies, by Sadras VO, Cassman KGG, Grassini P, Hall AJ, Bastiaanssen WGM, Laborte AG, Milne AE, Sileshi G, Steduto P. Rome, Italy: P. FAO Water Reports No. 41

    Google Scholar 

  • FAO (2017) Aquaculture regional reviews. FAO Fisheries and Aquaculture Department [online]. Rome. Available: http://www.fao.org/faostat/en/#home

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213:1–6

    Article  CAS  Google Scholar 

  • Faten D, Datta R, Wusirika R (2016) Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil. Chemosphere 157:33–41

    Article  CAS  Google Scholar 

  • Fernandez-Aunión C, Ben-Hamouda T, Iglesias-Guerra F, Argandona M, Reina-Bueno M, Nieto JJ, Aouani ME, Vargas C (2010) Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields. BMC Microbiol 10(192):3–16

    Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Zaks DPM et al (2011) Solutions for a cultivated planet. Nature 478(7369):337–342

    Article  CAS  Google Scholar 

  • Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage-mediated control of plant pathogens. Int J Microbiol 2012:326452

    Article  Google Scholar 

  • Frankowski J, Lorito M, Scala F, Schmid R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176(6):421–426

    Article  CAS  Google Scholar 

  • Friello DA, Mylroie JR, Chakrabarty AM (2001) Use of genetically engineered multi-plasmid microorganisms for rapid degradation of fuel hydrocarbons. Int Biodeterior Biodegrad 48(1–4):233–242

    Article  CAS  Google Scholar 

  • Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K et al (2000) Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot 60(4):1319–1332

    Article  CAS  Google Scholar 

  • Gagné-Bourque F, Mayer BF, Charron J-B, Vali H, Bertrand A, Jabaji S (2015) Accelerated growth rate and increased drought stress resilience of the model grass Brachypodium distachyon colonized by Bacillus subtilis B26. PLoS ONE 10(6):e0130456

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  Google Scholar 

  • Gao H, Qi G, Yin R, Zhang H, Li C, Zhao X (2016) Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Sci Rep 6:28756

    Article  CAS  Google Scholar 

  • García-Fraile P et al (2017) Bacterial probiotics: a truly Green Revolution. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore

    Google Scholar 

  • Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Arora P (2018) Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr 5:12

    Article  Google Scholar 

  • Geng S, Chen Z, Han S, Wang F, Zhang J (2017) Rainfall reduction amplifies the stimulatory effect of nitrogen addition on N2O emissions from a temperate forest soil. Sci Rep 7:43329

    Article  Google Scholar 

  • Giorgio A, De Stradis A, Lo Cantore P, Iacobellis NS (2015) Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum. Front Microbiol 6:1056

    Article  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 4:1109–1114

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica, Article ID 963401

    Google Scholar 

  • Goldstein AH (2000) Bioprocessing of rock phosphate ore: essential technical considerations for the development of a successful commercial technology. In: Proceedings of the 4th international fertilizer association technical conference (Paris: IFA), p 220

    Google Scholar 

  • Gothwal R, Nigam V, Mohan M, Sasmal D, Ghosh P (2009) Screening of nitrogen fixers from rhizospehric bacterial isolates associated with important desert plants. Appl Ecol Environ Res 6:101–109

    Article  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  Google Scholar 

  • Grinter R, Milner J, Walker D (2012) Ferredoxin containing bacteriocins suggest a novel mechanism of iron uptake in Pectobacterium spp. PLoS ONE 7(3):e33033

    Article  CAS  Google Scholar 

  • Groudev SN (1987) Use of heterotrophic micro-organisms in mineral biotechnology. Acta Biotechnol 7:299–306

    Article  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Venkateswarlu B (2011) Role of microorganisms in adaptation of agricultural crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Ha TN (2010) Using Trichoderma species for biological control of plant pathogens in Viet Nam. J ISSAAS 16(1):17–21

    Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  CAS  Google Scholar 

  • Haggag W (2010) The role of biofilm exopolysaccharides on biocontrol of plant diseases. In: Elnashar M (ed) Biopolymers. Sciyo, Rijeka, pp 271–284

    Google Scholar 

  • Haggag WM, Abouziena HF, Abd-El-Kreem F, Habbasha S (2015) Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. J Chem Pharm 7(10):882–889

    Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London, p 483

    Google Scholar 

  • Harman GE (2011) Trichoderma – not just as biocontrol anymore. Phytoparasitica 39(2):103–108

    Article  Google Scholar 

  • Harrison RL, Hoover K (2012) Baculoviruses and other occluded insect viruses. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic Press, London, pp 73–131

    Chapter  Google Scholar 

  • Hartman WH, Richardson CJ (2013) Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2): is there a biological stoichiometry of soil microbes? PLoS ONE 8(3):e57127

    Article  CAS  Google Scholar 

  • Harvey PR, Warren RA, Wakelin S (2009) Potential to improve root access to phosphorus: the role of non-symbiotic microbial inoculants in the rhizosphere. Crop Pasture Sci 60:144–151

    Article  CAS  Google Scholar 

  • Helliwell KE, Scaife MA, Sasso S, Ulian Araujo A, Purton S, Smith AG (2014) Unravelling vitamin B12-responsive gene regulation in algae. Plant Physiol 165:388–397

    Article  CAS  Google Scholar 

  • Helman Y, Burdman S, Okon Y (2011) Plant growth promotion by rhizosphere bacteria through direct effects. In: Rosenberg E, Gophna U (eds) Beneficial microorganisms in multicellular life forms. Springer, Berlin, pp 89–103

    Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25

    Article  CAS  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    CAS  Google Scholar 

  • Hubbard M, Hynes RK, Erlandson M, Bailey KL (2014) The biochemistry behind biopesticide efficacy. Sustain Chem Process 2:18

    Google Scholar 

  • Hunter P (2016) Plant microbiomes and sustainable agriculture: deciphering the plant microbiome and its role in nutrient supply and plant immunity has great potential to reduce the use of fertilizers and biocides in agriculture. EMBO Rep 17(12):1696–1699

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1996) Revised IPCC guidelines for national greenhouse gas inventories: workbook, vol 2. IPCC, London

    Google Scholar 

  • Investing News Network (2015) What is potash? From types of potash to potash stocks. Available online https://investingnews.com/daily/resource-investing/agriculture-investing/2013-top-potash-p

  • Istina IN, Widiastuti H, Joy B, Antralina M (2015) Phosphate-solubilizing microbe from Saprists peat soil and their potency to enhance oil palm growth and P uptake. Procedia Food Sci 3:426–435

    Article  Google Scholar 

  • Jadhav HP, Sayyed RZ (2016) Hydrolytic enzymes of rhizospheric microbes in crop protection. MOJ Cell Sci Rep 3(5):135–136

    Google Scholar 

  • Jain HK (2010) Green Revolution: history, impact and future. Studium Press, Housten

    Google Scholar 

  • Jaivel N, Sivakumar U, Marimuthu P (2017) Characterization of zinc solubilization and organic acid detection in Pseudomonas sp. RZ1 from rice phyllosphere. Int J Chem 5(6):272–277

    CAS  Google Scholar 

  • James C (1999) Preview—global review of commercialized transgenic crops: 1999, ISAAA briefs no. 12. ISAAA, Ithaca

    Google Scholar 

  • James C (2011) Global status of commercialized biotech/GM crops: 2011, ISAAA brief, vol 43. ISAAA, Ithaca

    Google Scholar 

  • Janaih A, Outsuka K, Hossain M (2005) Is the productivity impact of the Green Revolution in rice vanishing: empirical evidence from TPT analysis. Econ Polit Wkly 40(53):5596–5600

    Google Scholar 

  • Jia Q, Liu N, Xie K, Dai Y, Han S, Zhao X, Qian L, Wang Y, Zhao J, Gorovits R, Xie D, Hong Y, Liu Y (2016) CLCuMuB βc1 subverts ubiquitination by interacting with NbSKP1s to enhance Geminivirus infection in Nicotiana benthamiana. PLoS Pathog 12:e1005668

    Article  CAS  Google Scholar 

  • Jin CW, Ye YQ, Zheng SJ (2014) An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. Ann Bot 113(1):7–18

    Article  CAS  Google Scholar 

  • Jing K, Zongping P, Min D, Gan S, Xin Z (2014) Effects of arbuscular mycorrhizal fungi on the drought resistance of the mining area repair plant sainfoin. Int J Min Sci Technol 24:485–489

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257

    Article  CAS  Google Scholar 

  • Junaid JM, Dar NA, Bhat TA, Bhat AH, Bhat MA (2013) Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. Int J Mod Plant Anim Sci 1(2):39–57

    Google Scholar 

  • Kadempir M, Galeshi S, Soltani A, Ghaderifar F (2014) The effect of flooding and nutrition levels on reproductive growth stages of aerenchyma formation and ethylene production in soybean (Glycine max L). Int J Adv Biol Biomed Res 2(2):487–495

    CAS  Google Scholar 

  • Kalawate A (2014) Microbial viral insecticides. In: Sahayaraj K (ed) Basic and applied aspects of biopesticides. Springer, New Delhi, pp 47–68

    Google Scholar 

  • Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S (2017) Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front Microbiol 8:2593

    Article  Google Scholar 

  • Karadeniz A, TopcuoÄŸlu ÅžF, Ä°nan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22:1061–1064

    Article  CAS  Google Scholar 

  • Karimi N, Mohammad Javad Zarea MJ, Mehnaz S (2018) Endophytic Azospirillum for enhancement of growth and yield of wheat. Environ Sustain 1(2):149–158

    Article  Google Scholar 

  • Kawaguchi A, Inoue K (2012) New antagonistic strains of non-pathogenic Agrobacterium vitis to control grapevine crown gall. J Phytopathol 160:509–518

    Article  Google Scholar 

  • Kaya C, Ashraf M, Dikilitas M, Tuna AL (2013) Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients. Aust J Crop Sci 7:249–254

    CAS  Google Scholar 

  • Khan M, Zaidi A, Wani P (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khare E, Arora NK (2010) Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Curr Microbiol 61(1):64–68

    Article  CAS  Google Scholar 

  • Khare E, Singh S, Maheshwari DK, Arora NK (2011) Suppression of charcoal rot of chickpea by fluorescent pseudomonas under saline stress condition. Curr Microbiol 62:1548–1553

    Article  CAS  Google Scholar 

  • Kim SK, Kim YC, Lee S, Kim JC, Yun MY, Kim IS (2011) Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). J Agric Food Chem 59:934–938

    Article  CAS  Google Scholar 

  • Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ (2014) Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Mol Cell 37:109–117

    Article  CAS  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    Article  CAS  Google Scholar 

  • Kongshaug G (1998) Energy consumption and greenhouse gas emissions in fertilizer production. IFA technical conference, Marrakech, Morocco, p 18

    Google Scholar 

  • Kruger M, Kruger C, Walker C, Stockinger H, Schussler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  Google Scholar 

  • Kuan KB, Othman R, Abdul Rahim K, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE 11(3):e0152478

    Article  CAS  Google Scholar 

  • Kumar S, Singh A (2015) Biopesticides: present status and the future prospects. J Biofertil Biopestic 6:e129

    Article  Google Scholar 

  • Lampel JS, Canter GL, Dimock MB, Kelly JL, Anderson JJ, Uratani BB, Foulke JS et al (1994) Integrative cloning, expression, and stability of the cryIA(c) gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. Cynodontis. Appl Environ Microbiol 60(2):501–508

    CAS  Google Scholar 

  • LaSalle T, Hepperly P (2008) Regenerative organic farming: a solution to global warming. The Rodale Institute, Kutztown

    Google Scholar 

  • Lenoir I, Lounes-Hadj Sahraoui A, Fontaine J (2016) Arbuscular mycorrhizal fungal-assisted phytoremediation of soil contaminated with persistent organic pollutants: a review. Eur J Soil Sci 67:624–640

    Article  Google Scholar 

  • Li L, Ye Y, Pan L, Zhu Y, Zheng S, Lin Y (2009) The induction of trehalose and glycerol in Saccharomyces cerevisiae in response to various stresses. Biochem Biophys Res Commun 387:778–783

    Article  CAS  Google Scholar 

  • Liang J et al (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354:aaf895

    Article  CAS  Google Scholar 

  • Liao CT, Lin CH (1994) Effect of flooding stress on photosynthetic activities of Momordica charantia. Plant Physiol Biochem 32:479–485

    Google Scholar 

  • Lindow SE, Panopoulos NJ (1988) Field tests of recombinant Ice-Pseudomonas syringae for biological frost control in potato. In: Sussman M, Collins CH, Skinner FA, Stewart-Tull DE (eds) Release of genetically-engineered micro-organisms. Academic Press, San Diego

    Google Scholar 

  • Lindsay WL (1972) Inorganic phase equilibria of micronutrients in soils. In: Mortvedt JJ, Giordano PM, Lindsay WL (eds) Micronutrients in agriculture. Soil Science Society of America, Madison, pp 41–57

    Google Scholar 

  • Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin producing, plant growth promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97:9155–9164

    Article  CAS  Google Scholar 

  • Long SR (1996) Rhizobium symbiosis: nod factors in perspective. Plant Cell 8:1885–1898

    Article  CAS  Google Scholar 

  • Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens PF-5. Eur J Plant Pathol 119:265–278

    Article  CAS  Google Scholar 

  • López-Arredondo DL, Leyva-González MA, Alatorre-Cobos F, Herrera-Estrella L (2013) Biotechnology of nutrient uptake and assimilation in plants. Int J Dev Biol 57:595–610

    Article  CAS  Google Scholar 

  • López-Pazos SA, Cortazar JE, Cerón J (2009) Cry1B and Cry3A are active against Hypothenemus hampei Ferrari (coleoptera: scolytidae). J Invertebr Pathol 101:242–245

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • MacLean AM, Finan TM, Sadowsky MJ (2007) Genomes of the symbiotic nitrogen-fixing bacteria of legumes. Plant Physiol 144:615–622

    Article  CAS  Google Scholar 

  • Mahapatra S, Banerjee D (2013) Fungal exopolysaccharide: production, composition and applications. Microbiol Insights 6:1–16

    Article  CAS  Google Scholar 

  • Maksimov IV, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Appl Biochem Microbiol 47:333–345

    Article  CAS  Google Scholar 

  • Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012:491206

    Article  Google Scholar 

  • Manaa M, Kim KD (2018) Effect of temperature and relative humidity on growth of Aspergillus and Penicillium spp. and biocontrol activity of Pseudomonas protegens AS15 against aflatoxigenic Aspergillus flavus in stored rice grains. Mycobiology 46(3):1–9

    Google Scholar 

  • Market Data Forecast (2018) Microbial Soil Inoculants Market By Type (Plant Growth Promoting Microorganisms (PGPMs), Bio-control Agents, And Plant-resistance Stimulants), By Crop Type (Cereals & Grains, Oilseeds & Pulses, Fruits & Vegetables, And Other Crops), By Source (Bacterial, Fungal, And Others), By Region - Global Industry Analysis, Size, Share, Growth, Trends, And Forecasts (2018-2023). ID 5373: 175  

    Google Scholar 

  • Maróti G, Kondorosi E (2014) Nitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis? Front Microbiol 5:326

    Google Scholar 

  • Mavrodi DV, Mavrodi OV, Parejko JA, Bonsall RF, Kwak YS, Paulitz TC, Weller DM (2012) Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. Appl Environ Microbiol 78(3):804–812

    Article  CAS  Google Scholar 

  • McCoy CW (1990) Entomogenous fungi as microbial pesticides. In: Baker RR, Dunn PE (eds) New directions in biological control: alternatives for suppressing agricultural pests and diseases (UCLA symposia on molecular and cell biology). Wiley Liss, New York, pp 139–159

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2015) Potassium solubilization by bacterial strain in waste mica. J Bot 43:235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Meena RS (2016) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi

    Book  Google Scholar 

  • Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 47:110–117

    Article  CAS  Google Scholar 

  • Millaleo R, Reyes-Díaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10:476–494

    Article  Google Scholar 

  • Millner PD, Wright SF (2002) Tools for support of ecological research on arbuscular mycorrhizal fungi. Symbiosis 33:101–123

    Google Scholar 

  • Mishra S, Arora NK (2012) Management of black rot in cabbage by rhizospheric Pseudomonas species and analysis of 2,4-diacetylphloroglucinol by qRT-PCR. Biol Control 61(1):32–39

    Article  CAS  Google Scholar 

  • Mishra J, Arora NK (2016) Bioformulations for plant growth promotion and combating phytopathogens: a sustainable approach. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 3–33

    Google Scholar 

  • Mishra J, Tewari S, Singh S, Arora NK (2015) Biopesticides: where we stand? Plant microbes symbiosis: applied facets. In: Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 37–75

    Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706

    Article  Google Scholar 

  • Mishra J, Fatima T, Arora NK (2018) Role of secondary metabolites from plant growth-promoting rhizobacteria in combating salinity stress. In: Plant microbiome: stress response. Springer, Singapore, pp 127–163

    Chapter  Google Scholar 

  • Mohammed AF (2018) Effectiveness of exopolysaccharides and biofilm forming plant growth promoting rhizobacteria on salinity tolerance of faba bean (Vicia faba L.). Afr J Microbiol Res 12(17):399–404

    Article  CAS  Google Scholar 

  • Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr 13(3):638–649

    Google Scholar 

  • Moldes AB, Paradelo R, Rubinos D, Devesa-Rey R, Cruz JM, Barral MT (2011) Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus. J Agric Food Chem 59:9443–9447

    Article  CAS  Google Scholar 

  • Monti MR, Smania AM, Fabro G, Alvarez ME, Argaraña CE (2005) Engineering Pseudomonas fluorescens for biodegradation of 2,4-dinitrotoluene. Appl Environ Microbiol 71(12):8864–8872

    Article  CAS  Google Scholar 

  • Moorman TB (1989) A review of pesticide effects on microorganisms and microbial processes related to soil fertility. J Prod Agric 2:14–23

    Article  Google Scholar 

  • Morel MA, Branã V, Castro-Sowinski S (2012) Legume crops, importance and use of bacterial inoculation to increase the production. In: Goyal A (ed) Crop plant. InTech Open, London, pp 217–240

    Google Scholar 

  • Morel MA, Cagide C, Minteguiaga MA, Dardanelli MS, Castro-Sowinski S (2015) The pattern of secreted molecules during the co-inoculation of alfalfa plants with Sinorhizobium meliloti and Delftia sp. strain JD2: an interaction that improves plant yield. Mol Plant-Microbe Interact 28:134–142

    Article  CAS  Google Scholar 

  • Morel MA, Cagide C, Castro-Sowinski S (2016) The contribution of secondary metabolites in the success of bioformulations. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 235–250

    Google Scholar 

  • Moreno-Sarmiento N, Moreno-Rodriguez LF, Uribe D (2007) Biofertilizantes para la agricultura en Colombia. In: Izaguirre-Mayoral ML, Labandera C, Sanjuan J (eds) Biofertilizantes en Iberoamerica: Visionté cnica, cientificay empresarial. Denad Internacional, Montevideo, pp 8–45

    Google Scholar 

  • Mouloud G, Daoud H, Bassem J, Atef IL, Hani B (2013) New bacteriocin from Bacillus clausii strain GM17: purification, characterization, and biological activity. Appl Biochem Biotechnol 171:2186–2200

    Article  CAS  Google Scholar 

  • Mukhija B, Khanna V (2018) Isolation, characterization and crystal morphology study of Bacillus thuringiensis isolates from soils of Punjab. J Pure Appl Microbiol 12:189–193

    Article  CAS  Google Scholar 

  • Müller RD, Seton M, Zahirovic S, Williams SE, Matthews KJ, Wright NM, Shephard GE, Maloney KT, Barnett-Moore N, Hosseinpour M, Bower DJ, Cannon J (2016) Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu Rev Earth Planet Sci 44:107–138

    Article  CAS  Google Scholar 

  • Mulqueen P (2003) Recent advances in agrochemical formulations. Adv Colloid Interf Sci 106:83–107

    Article  CAS  Google Scholar 

  • Münchbach M, Nocker A, Narberhaus F (1999) Multiple small heat shock proteins in rhizobia. J Bacteriol 181:83–90

    Google Scholar 

  • Mus F, Crook MB, Garcia K, Garcia Costas A, Geddes BA, Kouri ED et al (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82(13):3698–3710

    Article  CAS  Google Scholar 

  • Mycogen (1998) Mycogen Corporation: company perspectives. http://www.fundinguniverse.com/company-histories/Mycogen-Corporation-company-History.html

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119(1):1–11

    Article  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  Google Scholar 

  • Ngumbi E, Kloepper J (2014) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125

    Article  Google Scholar 

  • Nihorimbere V, Marc Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15:327–337

    Google Scholar 

  • Nikolic M, Römheld V (1999) Mechanism of Fe uptake by the leaf symplast: Is Fe inactivation in leaf a cause of Fe deficiency chlorosis? Plant Soil 215:229

    Article  CAS  Google Scholar 

  • Nitschke M, Costa SG, Contiero J (2005) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21:1593–1600

    Article  CAS  Google Scholar 

  • Niu X, Song L, Xiao Y, Ge W (2017) Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580

    Article  Google Scholar 

  • Nobbe F, Hiltner L (1896) U.S. Patent 570 813. Inoculation of the soil for cultivating leguminous plants

    Google Scholar 

  • Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, Al-Harrasi A (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32

    Article  CAS  Google Scholar 

  • O’Callaghan M (2016) Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl Microbiol Biotechnol 100:5729–5746

    Article  CAS  Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197

    Article  CAS  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  Google Scholar 

  • Omara AA, Hauka F, El-Din MN, Kassem M (2017) The role of some PGPR strains to biocontrol Rhizoctonia solani in soybean and enhancement the growth dynamics and seed yield. Environ Biodivers Soil Secur 1:47–59

    Google Scholar 

  • Omer MA (2010) Bioformulations of Bacillus spores for using as biofertilizer. Life Sci J 7:4

    Google Scholar 

  • Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorous acquisition. Appl Soil Ecol 86:41–54

    Article  Google Scholar 

  • Pal KK, McSpadden BG (2006) Biological control of plant pathogens. Plant Health Instruct. https://doi.org/10.1094/PHI-A-2006-1117-02

  • Pal S, Singh HB, Farooqui A, Rakshit A (2015) Fungal biofertilizers in Indian agriculture: perception, demand and promotion. J Ecofriendly Agric 10(2):101–113

    Google Scholar 

  • Palma L, Muñoz D, Berry C, Murillo J, Caballero P (2014) Bacillus thuringiensis Toxins: an overview of their biocidal activity. Toxins 6(12):3296–3325

    Article  CAS  Google Scholar 

  • Pandey N, Jain R, Pandey A, Tamta S (2018) Optimisation and characterisation of the orange pigment produced by a cold adapted strain of Penicillium sp. (GBPI_P155) isolated from mountain ecosystem. Mycology 9(2):81–92

    Article  CAS  Google Scholar 

  • Pandya ND, Desai PV (2014) Screening and characterization of GA3 producing Pseudomonas monteilii and its impact on plant growth promotion. Int J Curr Microbiol Appl Sci 3:110–115

    CAS  Google Scholar 

  • Pardis, Devakumar AS (2014) Green house gas emission of major agriculture crops of southern India. 2nd international conference on sustainable environment and agriculture. IPCBEE 76:94–98

    CAS  Google Scholar 

  • Passari AK, Mishra VK, Leo VV, Gupta VK, Singh BP (2016) Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp. Microbiol Res 193:57–73

    Article  CAS  Google Scholar 

  • Patel T, Saraf M (2017) Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. J Plant Interact 12(1):480–487

    Article  CAS  Google Scholar 

  • Pathak D, Lone R, Koul KK (2017) Arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) association in potato (Solanum tuberosum L.): a brief review. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 401–420

    Chapter  Google Scholar 

  • Patidar M, Mali AI (2004) Effect of farmyard manure, fertilizer level on growth, yield and quality of rice. Indian J Agron 19(1):117–120

    Google Scholar 

  • Pellegrino E, Bedini S (2014) Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol Biochem 68:429–439

    Article  CAS  Google Scholar 

  • Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves JR, Urquiaga S, Boddey RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C, Rerkasem B, Khan DF, Hauggard-Nielsen H, Jensen ES (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48(1–3):1–17

    Article  CAS  Google Scholar 

  • Perrot-Rechenmann C (2010) Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol 2(5):a001446

    Article  CAS  Google Scholar 

  • Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6(2):125–136

    CAS  Google Scholar 

  • Phillips T (2008) Genetically modified organisms (GMOs): transgenic crops and recombinant DNA technology. Nat Educ 1(1):213

    Google Scholar 

  • Pingali PL (2012) Green Revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci U S A 109(31):12302–12308

    Article  CAS  Google Scholar 

  • Pingali P, Raney T (2005) From the green revolution to the gene revolution: how will the poor fare? Agricultural and development economics division. The Food and Agriculture Organization of the United Nations (FAO-ESA), Working papers

    Google Scholar 

  • Pinstrup-Andersen P, Hazell PBR (1985) The impact of the green revolution and prospects for the future. Food Rev Int 1(1):1–25

    Article  Google Scholar 

  • PMRA – Pest Management Regulatory Agency (2006) Cost recovery initiative evaluation management response action plan. Available: http://publications.gc.ca/collections/collection_2016/sc-hc/H14-208-2006-eng.pdf

  • Postgate JR (1982) The fundamentals of nitrogen fixation. Cambridge University Press, New York

    Google Scholar 

  • Postma JA, Lynch JP (2010) Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Ann Bot 107:829–841

    Article  CAS  Google Scholar 

  • Prasad N, Dasgupta S, Chakraborty M, Gupta S (2018) Isolation and characterization of biosurfactant producing bacteria for the application in enhanced oil recovery IOP conference series: earth and environmental science, volume 78, conference 1

    Google Scholar 

  • Prashar P, Shah S (2016) Impact of fertilizers and pesticides on soil microflora in agriculture. In: Lichtfouse E (ed) Bambara groundnut for food security in the changing African climate, vol 19. Springer, New Delhi, pp 331–362

    Google Scholar 

  • Probanza A, Lucas JA, Acero N, Gutierrez-Manero FJ (1996) The influence of native rhizobacteria on European alder (Alnus glutinosa [L.] Gaertn.) growth I. Characterization of growth promoting and growth inhibiting bacterial strains. Plant Soil 182:59–66

    Article  CAS  Google Scholar 

  • Qadir M, Quillerou E, Nangia V (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum 38:282–295

    Article  Google Scholar 

  • Qiao J, Yu X, Liang X, Liu Y, Borriss R, Liu Y (2017) Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC Microbiol 17:131

    Article  CAS  Google Scholar 

  • Raaijmakers JM, de Bruijn I, de Kock MJ (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant-Microbe Interact 19:699–710

    Article  CAS  Google Scholar 

  • Rabie GH (2005) Role of arbuscular mycorrhizal fungi in phytoremediation of soil rhizosphere spiked with poly aromatic hydrocarbons. Mycobiology 33:41–45

    Article  Google Scholar 

  • Rajesh M, Samundeeswari M, Archana B (2017) Isolation of biosurfactant producing bacteria from garbage soil. J Appl Environ Microbiol 5(2):74–78

    Article  CAS  Google Scholar 

  • Ramesh A, Sharma SK, Sharmaa MP, Yadava N, Joshi OP (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in vertisols of central India. Appl Soil Ecol 73:87–96

    Article  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay Y, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Rao GVR, Kumar CS, Sireesha K, Kumar PL (2015) Role of nucleopolyhedrovirus (NPVs) in the management of pests in Asia. In: Sree KS, Varma A (eds) biocontrol of lepidopteran pests, Soil biology, vol 43. Springer, Cham, pp 11–52

    Google Scholar 

  • Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IM, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    Article  CAS  Google Scholar 

  • Rawal P, Sharma P, Singh ND, Joshi A (2013) Evaluation of fungicides, neem bio-formulations and biocontrol agent for the management of root rot of safedmusli caused by Rhizoctonia solani. J Mycol Plant Pathol 43(30):297

    CAS  Google Scholar 

  • Rawat AK, Rao DLN, Sahu RK (2013) Effect of soybean inoculation with Bradyrhizobium and wheat inoculation with Azotobacter on their productivity and N turnover in a vertisol. Arch Agron Soil Sci 11:1559–1571

    Article  Google Scholar 

  • Reddy CA, Saravanan RS (2013) Polymicrobial multi-functional approach for enhancement of crop productivity. Adv Appl Microbiol 82:53–11

    Article  CAS  Google Scholar 

  • Rehm G, Schmitt M (2002) Potassium for crop production. Retrieved from Regents of the University of Minnesota website: http://www.extension.umn.edu/distribution/cropsystems/dc6794.html

  • Rena R (2004) Green Revolution: Indian agricultural experience – a paradigm for Eritrea. Eritrean Stud Rev 4(1):103–130

    Google Scholar 

  • Rengel Z (2014) Availability of Mn, Zn and Fe in the rhizosphere. J Soil Sci Plant Nutr 15(2):397–409

    Google Scholar 

  • Renninger N, Knopp R, Nitsche H, Clark DS, Keasling JD (2004) Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Appl Environ Microbiol 70(12):7404–7412

    Article  CAS  Google Scholar 

  • Review M (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302(1):1–17

    Google Scholar 

  • Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol 7:1785

    Article  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  Google Scholar 

  • Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    Article  CAS  Google Scholar 

  • Ripp S, Nivens DE, Ahn Y, Werner C, Jarrell J, Easter J et al (2000) Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 34(5):846–853

    Article  CAS  Google Scholar 

  • Rodríguez HJ, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    Article  CAS  Google Scholar 

  • Roossinck MJ (2013) Plant virus ecology. PLoS Pathog 9:e1003304. https://doi.org/10.1371/journal.ppat.1003304

    Article  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    Article  CAS  Google Scholar 

  • Rostas M, Blassmann K (2009) Insects had it first: Surfactants as a defense against predators. Proc R Soc B 276:633–638

    Article  CAS  Google Scholar 

  • Rubio-Infante N, Moreno-Fierros L (2016) An overview of the safety and biological effects of Bacillus thuringiensis cry toxins in mammals. J Appl Toxicol 36(5):630–634

    Article  CAS  Google Scholar 

  • Rubiya (2006) Co-aggregated diazotrophic cultures – a novel delivery system of bioinocula for lowland rice (Oryza sativa L.). Dissertation, Annamalai University

    Google Scholar 

  • Russo A, Carrozza GP, Lorenzo V, Cristiana F, Fabrizio C, Annita T (2012) Plant beneficial microbes and their application in plant biotechnology. In: Agbo EC (ed) Innovations in biotechnology, Kindle edition. InTech, Rijeka, pp 57–72

    Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97(3):1005–1016

    Article  CAS  Google Scholar 

  • Sacherer P, Defago G, Hass D (1994) Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116(2):155–160

    Article  CAS  Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016a) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic plains of India. Biocatal Agric Biotechnol 7:202–209

    Article  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma B, Bhattacharjee S, Tribedi P (2016b) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23(5):3984–3999

    Article  CAS  Google Scholar 

  • Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014) Phenotypic and molecular characterization of efficient native Azospirillum strains from rice fields for crop improvement. Protoplasma 1(4):943–953

    Article  CAS  Google Scholar 

  • Sakano K (2001) Metabolic regulation of pH in plant cells: role of cytoplasmic pH in defense reaction and secondary metabolism. Int Rev Cytol 206:1–44

    Article  CAS  Google Scholar 

  • Salazar-Cerezo S, Martinez-Montiel N, Cruz-Lopez MC, Martinez-Contreras RD (2018) Fungal diversity and community composition of culturable fungi in Stanhopea trigrina cast gibberellin producers. Front Microbiol 9:612

    Article  Google Scholar 

  • Saleem AR, Brunetti C, Khalid A, Della Rocca G, Raio A, Emiliani G et al (2018) Drought response of Mucuna pruriens (L.) DC inoculated with ACC deaminase and IAA producing rhizobacteria. PLoS ONE 13(2):e0191218

    Article  CAS  Google Scholar 

  • Sanchez L, Weidmann S, Arnould C, Bernard AR, Gianinazzi S, GianinazziPearson V (2005) Pseudomonas fluorescens and Glomus mosseae trigger DMI3- dependent activation of genes related to a signal transduction pathway in roots of Medicago truncatula. Plant Physiol 139:1065–1077

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Sangeetha D (2012) Survival of plant growth promoting bacterial inoculants in different carrier materials. Int J Pharm Biol Arch 3(1):170–178

    Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767

    Article  CAS  Google Scholar 

  • Santos A, Flores M (1995) Effects of glyphosate on nitrogen fixation of free-living heterotrophic bacteria. Lett Appl Microbiol 20:349–352

    Article  CAS  Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169(1):18–29

    Article  CAS  Google Scholar 

  • Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33

    Article  CAS  Google Scholar 

  • Sarwar A, Brader G, Corretto E, Aleti G, Abaidullah M, Sessitsch A, Hafeez FY (2018) Qualitative analysis of biosurfactants from Bacillus species exhibiting antifungal activity. PLoS ONE 13(6):e0198107

    Article  CAS  Google Scholar 

  • Saxena AK, Yadav AN, Kaushik R, Tyagi SP, Shukla L (2015) Biotechnological applications of microbes isolated from cold environments in agriculture and allied sectors. In: International conference on “low temperature science and biotechnological advances, p 104

    Google Scholar 

  • Schalk IJ, Guillon L (2013) Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. Environ Microbiol 15:1661–1673

    Article  CAS  Google Scholar 

  • Schofield D, Sharp N, Westwater C (2012) Phage-based platforms for the clinical detection of human bacterial pathogens. Bacteriophage 2:105–121

    Article  Google Scholar 

  • Schünemann R, Knaak N, Fiuza LM (2014) Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiol, Article ID 135675, 12 pages. https://doi.org/10.1155/2014/135675

    Article  Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    Article  Google Scholar 

  • Sebby K (2010) The green revolution of the 1960’s and its impact on small farmers in India. environmental studies undergraduate student theses, 10. http://digitalcommons.unl.edu/envstudtheses/10

  • Selbmann L, Stingele F, Petruccioli M (2003) Exopolysaccharide production by filamentous fungi: the example of Botryosphaeria rhodina. Antonie Van Leeuwenhoek 84:135–145

    Article  CAS  Google Scholar 

  • Sena HH, Sanches MA, Rocha DFS, Segundo WOPF, de Souza ES, de Souza JVB (2018) Production of biosurfactants by soil fungi isolated from the Amazon forest. Int J Microbiol, Article ID 5684261, 8 pages

    Google Scholar 

  • Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32

    Article  CAS  Google Scholar 

  • Setiawati TC, Mutmainnah L (2016) Solubilization of potassium containing mineral by microorganisms from sugarcane rhizosphere. Agric Agric Sci Procedia 9:108–117

    Google Scholar 

  • Shaikh SS, Saraf MS (2017) Optimization of growth conditions for zinc solubilizing plant growth associated bacteria and fungi. J Adv Res Biotechnol 2(1):1–9

    Article  Google Scholar 

  • Shand H (1989) Bacillus thuringiensis: industry frenzy and a host of issues. J Pestic Reform 9:18–21

    Google Scholar 

  • Shanware AS, Kalkar SA, Trivedi MM (2014) Potassium solubilisers: occurrence, mechanism and their role as competent biofertilisers. Int J Curr Microbiol App Sci 3(9):622–629

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587

    Article  CAS  Google Scholar 

  • Shi SL, Wang DF, Yan Y, Zhang F, Wang H, Gu M et al (2013) Function of phosphate transporter OsPHT2;1 in improving phosphate utilization in rice. Chin J Rice Sci 27:457–465

    CAS  Google Scholar 

  • Shiva V (1993) The violence of the Green Revolution: third world agriculture, ecology and politics, 2nd edn. Zed Books, London

    Google Scholar 

  • Singh R, Arora NK (2016) Bacterial formulations and delivery systems against pests in sustainable agro-food production. Elsevier, Amsterdam, pp 1–11

    Google Scholar 

  • Singh AL, Singh PL (1989) Nitrogen fixation in Indian rice fields (Azolla and Blue-green Algae). Agro-Botanical Publishers, Bikaner

    Google Scholar 

  • Singh S, Gupta G, Khare E, Behal KK, Arora N (2014) Effect of enrichment material on the shelf life and field efficiency of bioformulation of Rhizobium sp. and P-solubilizing Pseudomonas fluorescens. Sci Res Rep 4:44–50

    Google Scholar 

  • Singh Z, Kaur J, Kaur R, Hundal SS (2016) Toxic effects of organochlorine pesticides: a review. Am J Biosci 4:11–11

    Article  CAS  Google Scholar 

  • Sirrenberg A, Göbel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, Santos P, Feussner I, Pawlowski K (2007) Piriformospora indica affects plant growth by auxin production. Physiol Plant 131:581–589

    Article  CAS  Google Scholar 

  • Sivasakthi S, Kanchana D, Usharani G, Saranraj P (2013) Production of plant growth promoting substance by Pseudomonas fluorescens and Bacillus subtilis isolated from paddy rhizosphere soil of Cuddalore district, Tamil Nadu, India. Int J Microbiol Res 4(3):227–233

    CAS  Google Scholar 

  • Smith FL Jr (1997) Prometheus bound: cloning bears identical reactions. Regulation 20(2). http://www.cato.org/pubs/regulation/regv20n2/reg20n2j.html

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Read DJ (2008) Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. In: Smith SE, Read D (eds) Mycorrhizal symbiosis, 3rd edn. Academic Press, New York, pp 145–187

    Chapter  Google Scholar 

  • Smitha S, Bhat S (2013) Thermostable bacteriocin BL8 from Bacillus licheniformis isolated from marine sediment. J Appl Microbiol 114:688–694

    Article  CAS  Google Scholar 

  • SOLAW (2011) The state of the world’s land and water resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):a001438

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture. ASA, CSSA and SSSA, Madison, pp 201–265

    Google Scholar 

  • Srinivasan R, Yandigeri MS, Kashyap S, Alagawadi AR (2012) Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils. Saudi J Biol Sci 19(4):427–434

    Article  CAS  Google Scholar 

  • Stamenković S, BeÅ¡koski V, Karabegović I, Lazić M, Nikolić N (2018) Microbial fertilizers: a comprehensive review of current findings and future perspectives. Span J Agric Res 16(1):e09R01

    Article  Google Scholar 

  • Steinwand B (2008) Personal communication. US Environmental Protection Agency, Biopesticide Ombudsman, Washington, DC

    Google Scholar 

  • Subramanian S, Smith DL (2015) Bacteriocins from the rhizosphere microbiome – from an agriculture perspective. Front Plant Sci 6:909

    Google Scholar 

  • Sulieman S, Tran L-SP (2014) Symbiotic nitrogen fixation in legume nodules: metabolism and regulatory mechanisms. Int J Mol Sci 15(11):19389–19393

    Article  CAS  Google Scholar 

  • Sun W, Weingarten RA, Xu M, Southall N, Dai S, Shinn P, Zheng W (2016) Rapid antimicrobial susceptibility test for identification of new therapeutics and drug combinations against multidrug-resistant bacteria. Emerging Microbes Infect 5(11):e116

    CAS  Google Scholar 

  • Tajini F, Trabelsi M, Drevon JJ (2012) Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi J Biol Sci 19:157–163

    Article  CAS  Google Scholar 

  • Tejesvi MV, Ruotsalainen AL, Markkola AM, Pirttilä AM (2010) Root endophytes along a primary succession gradient in northern Finland. Fungal Divers 41:125–134

    Article  Google Scholar 

  • Terrazas RA, Giles C, Paterson E, Robertson-Albertyn A, Cesco S, Mimmo T et al (2016) Plant-microbiota interactions as a driver of the mineral turnover in the rhizosphere. Adv Appl Microbiol 95:1–67

    Article  Google Scholar 

  • Tewari S, Arora NK (2013) Transactions among microorganisms and plant in the composite rhizosphere habitat. In: Arora N (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 1–50

    Google Scholar 

  • Tewari S, Arora NK (2014a) Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr Microbiol 69(4):484–494

    Article  CAS  Google Scholar 

  • Tewari S, Arora NK (2014b) Ameliorating the growth of sunflower using stress-tolerant Pseudomonas aeruginosa PF23. Clim Change Environ Sustain 2(2):116–121

    Article  Google Scholar 

  • Tewari S, Arora NK (2016) Fluorescent Pseudomonas sp. PF17 as an efficient plant growth regulator and biocontrol agent for sunflower crop under saline conditions. Symbiosis 1(3):99–108

    Article  CAS  Google Scholar 

  • Tewari S, Arora NK (2018) Role of salicylic acid from Pseudomonas aeruginosa PF23EPS+ in growth promotion of sunflower in saline soils infested with phytopathogen Macrophomina phaseolina. Environ Sust 1:49–59

    Google Scholar 

  • Thavasi R, Subramanyam Nambaru VRM, Jayalakshmi S, Balasubramanian T, Banat IM (2011) Biosurfactant production by Pseudomonas aeruginosa from renewable resources. Indian J Microbiol 51(1):30–36

    Article  CAS  Google Scholar 

  • Tian B, Yang J, Zhang KQ (2007) Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 61(2):197–213

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  Google Scholar 

  • Timms-Wilson TM, Bryant K, Bailey MJ (2001) Strain characterization and 16S-23S probe development for differentiating geographically dispersed isolates of the phytopathogen Ralstonia solanacearum. Environ Microbiol 3:785–797

    Article  CAS  Google Scholar 

  • Torbaghan ME, Lakzian A, Astaraei AR, Fotovat A, Besharati H (2017) Salt and alkali stresses reduction in wheat by plant growth promoting haloalkaliphilic bacteria. J Soil Sci Plant Nutr 17(4):1058–1073

    Article  Google Scholar 

  • Torsvik V, Goksøyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    CAS  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res 11:863240

    Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Netrusov A (2005) Auxin production by bacteria associated with orchid roots. Mikrobiologiia 74:55–62

    CAS  Google Scholar 

  • Turner (2011) Global energy management and the art of human capital. Available: https://www.cobrt.com/archived-blog/2011/10/global-energy-management

  • Turner JT, Lampell JS, Stearmen RS, Sundin GW, Gunyuzlu UP, Anderson JJ (1991) Stability of the d-endotoxin gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl Environ Microbiol 57:3522–3528

    CAS  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide plant growth promoting rhizobacteria under salinity condition. Pedosphere 21(2):214–222

    Article  CAS  Google Scholar 

  • Van Agtmaal M, Van Os G, Hol G, Hundscheid M, Runia W, Hordijk C et al (2015) Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles. Front Microbiol 6:701

    Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137

    Article  CAS  Google Scholar 

  • Vendan RT, Thangaraju M (2006) Development and standardization of liquid formulation for Azospirillum bioinoculant. Indian J Microbiol 46:379–387

    CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Vidaver AK, Tolin SA, Post AR (2013) The status, promise and potential perils of commercially available genetically modified microorganisms in agriculture and the environment. Papers Plant Pathol 260:95–102

    Google Scholar 

  • Viebahn M, Doornbos R, Wernars K, Van Loon LC, Smit E, Bakker P (2005) Ascomycete communities in the rhizosphere of field- grown wheat are not affected by introductions of genetically modified Pseudomonas putida WCS358r. Environ Microbiol l7:1775–1785

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti LE, Marra R, Woo LS, Lorito M (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Viscardi S, Ventorino V, Duran P, Maggio A, de Pascale S, Mora ML, Pepe O (2016) Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. J Soil Sci Plant Nutr 16(3):848–863

    CAS  Google Scholar 

  • Vorachek-Warren MK, Ramirez S, Cotter RJ, Raetz CR (2002) A triple mutant of Escherichia coli lacking secondary acyl chains on lipid. J Biol Chem 277:14194–14205

    Article  CAS  Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:1–15

    Article  CAS  Google Scholar 

  • Wakatsuki T (1995) Metal oxidoreduction by microbial cells. J Ind Microbiol 14:169–177

    Article  CAS  Google Scholar 

  • Wang Y, Huang Y, Qiu Q, Xin G, Yang Z, Shi S (2011) Flooding greatly affects the diversity of arbuscular mycorrhizal fungi communities in the roots of wetland plants. PLoS ONE 6(9):e24512

    Article  CAS  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12(6):787–796

    Article  CAS  Google Scholar 

  • Wang G, Mishra B, Lau K, Lushnikova T, Golla R, Wang X (2015) Antimicrobial peptides in 2014. Pharmaceuticals 8:123–150

    Article  CAS  Google Scholar 

  • Wang G, Li X, Wang Z (2016a) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44(1):1087–1093

    Article  CAS  Google Scholar 

  • Wang L, Li W, Ma L, Chen J, Lu H, Jian T (2016b) Salt stress changes chemical composition in Limonium bicolor (Bag.) Kuntze, a medicinal halophytic plant. Ind Crop Prod 84:248–253

    Article  CAS  Google Scholar 

  • Wei CY, Lin L, Luo LJ, Xing YX, Hu CJ et al (2014) Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth. Biol Fertil Soils 50(4):657–666

    Article  CAS  Google Scholar 

  • Whalon ME, Wingerd BA (2003) Bt: mode of action and use. Arch Insect Biochem Physiol 54:200–211

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortifi cation of crops with seven mineral elements often lacking in human diets— Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  Google Scholar 

  • WHO (1999) Microbial pest control agent Bacillus thuringiensis. Report of UNEP/ILO/WHO (ECH, 217). WHO, Geneva. http://www.scribd.com/doc/33350982/Microbial-Pest-Control-Agent-Bacillus-Thuringiensis

  • Winding A, Binnerup SJ, Pritchard H (2004) Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiol Ecol 47:129–141

    Article  CAS  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8:71–126

    Article  Google Scholar 

  • Wood SW, Cowie A (2004) A review of greenhouse gas emission factors for fertiliser production. IEA Bioenergy Task 38(1):1–20

    Google Scholar 

  • Wright SF, Anderson RL (2000) Aggregate stability and glomalin in alternative crop rotations for the central great plains. Biol Fertil Soils 31:249–253

    Article  CAS  Google Scholar 

  • Wu H, Sparks CA, Jones HD (2006) Characterisation of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation. Mol Breed 18:195–208

    Article  CAS  Google Scholar 

  • Wu QS, Zou YN, Huang YM (2013) The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings. Fungal Ecol 6:37–43

    Article  Google Scholar 

  • Xiang N, Lawrence KS, Kloepper JW, Donald PA, McInroy JA (2017) Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean. PLoS ONE 12(7):e0181201

    Article  CAS  Google Scholar 

  • Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ (2008) Virus infection improves drought tolerance. New Phytol 180:911–921

    Article  Google Scholar 

  • Xu T, Dai N, Chen J, Nagawa S, Cao M, Li H, Zhou Z, Chen X, De Rycke R, Rakusová H et al (2014) Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343:1025–1028

    Article  CAS  Google Scholar 

  • Yang QQ, Zhang CQ, Chan MI et al (2016) Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance. J Exp Bot 67:4258–4296

    Google Scholar 

  • Yano-Melo AM, Saggin OJ, Maia LC (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric Ecosyst Environ 95:343–348

    Article  Google Scholar 

  • Yao Z, Peng Y, Chen X, Bi J, Li Y, Ye X et al (2015) Healthcare associated infections of methicillin-resistant Staphylococcus aureus: a case-control-control study. PLoS ONE 10:1–9

    Google Scholar 

  • Yaseen M, Ahmed W, Shahbaz M (2013) Role of foliar feeding of micronutrients in yield maximization of cotton in Punjab. Turkish J Agric For 37:420–426

    CAS  Google Scholar 

  • Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34(7):955–963

    Article  CAS  Google Scholar 

  • Yu B, Lydiate DJ, Young LW, Schafer UA, Hannoufa A (2008) Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Res 17(4):573–585

    Article  CAS  Google Scholar 

  • Yuan B, Shao M, de Gouw J, Parrish D, Lu SH, Wang M, Zeng LM, Zhang Q, Song Y, Zhang JB, Hu M (2012) Volatile organic compounds (VOCs) in urban air: how chemistry affects the interpretation of positive matrix factorization (PMF) analysis. J Geophys Res 117:24302

    Google Scholar 

  • Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010) Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20:1288–1294

    Article  CAS  Google Scholar 

  • Zahn SH, Ward MH (1998) Pesticides and childhood cancer. Environ Health Perspect 106:893–908

    Google Scholar 

  • Zanden J (1991) The first green revolution: the growth of production and productivity in European agriculture 1870–1914. Econ Hist Rev 44(2):215–239

    Article  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhao K, Penttinen P, Zhang X, Ao X, Liu M, Yu X et al (2014) Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiol Res 169:76–82

    Article  CAS  Google Scholar 

  • Zhou Y, Cai H, Xiao J, Li X, Zhang Q, Lian X (2009) Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theor Appl Genet 118:1381–1390

    Article  CAS  Google Scholar 

  • Zhou B, Wang C, Zhao Q, Wang Y, Huo M, Wang J et al (2016) Prevalence and dissemination of antibiotic resistance genes and coselection of heavy metals in Chinese dairy farms. J Hazard Mater 320:10–17

    Article  CAS  Google Scholar 

  • Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from daqiao saltern on the coast of yellow sea of China. J Evid Based Complementary Altern Med, Article ID 615032, 6 pages. https://doi.org/10.1155/2011/615032

    Google Scholar 

  • Zhu RF, Tang FL, Liu JL, Liu FQ, Deng XY, Chen JS (2016) Co-inoculation of arbuscular mycorrhizae and nitrogen fixing bacteria enhance alfalfa yield under saline conditions. Pak J Bot 48(2):763–769

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arora, N.K., Fatima, T., Mishra, I., Verma, S. (2020). Microbe-based Inoculants: Role in Next Green Revolution. In: Shukla, V., Kumar, N. (eds) Environmental Concerns and Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6358-0_9

Download citation

Publish with us

Policies and ethics