Skip to main content

Cell Growth and Differentiation Under Microgravity

  • Chapter
  • First Online:

Part of the book series: Research for Development ((REDE))

Abstract

The mechano-biological coupling mechanism of cell response to altered gravity is crucial to understand physiological changes of astronauts in space microgravity environment and to develop relevant countermeasures. To address this issue, a novel space cell culture hardware mainly consisting of precisely controlled flow chamber and gas exchange unit is developed as an experimental payload in SJ-10 recoverable microgravity experimental satellite. Endothelial cells (ECs) and mesenchymal stem cells (MSCs) are cultured in the hardware during the SJ-10 mission, and recovered samples are analysed elaboratively. The results indicate that microgravity can suppress cellular metabolism. MSCs cultured with hepatic inducing medium are preferential in hepatic differentiation at long-term duration under microgravity. Both ECs and MSCs are regulated by microgravity and respond differentially in initiating cytoskeletal remodeling, or dysregulating signaling pathways relevant to cell adhesion, or directing hepatic differentiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ALB:

Albumin

ANOVA:

Analysis of variance

CCD:

Charge-coupled device

CCL5:

C-C motif chemokine ligand 5

CYP450:

Cytochrome P450

ECM:

Extracellular matrix

ECs:

Endothelial cells

eNOS:

Endothelial nitric oxide synthase

F-actin:

Actin filaments

HUVEC:

Human umbilical vein endothelial cells

ICAM-1:

Intercellular adhesion molecule-1

IF:

Immunofluorescence

IGFBP-2:

Insulin-like growth factor binding protein 2

IL-1 R4:

Interleukin 1 receptor 4

IL-8:

Interleukin 8

mAbs:

Monoclonal antibodies

MCP-1:

Monocyte chemotactic protein 1

PDGF-AA:

Platelet-derived growth factor AA

p-FAK:

Phospho-focal adhesion kinase

PI3K:

Phosphoinositide 3-kinase

rBMSCs:

Rat bone marrow mesenchymal stem cells

SCCS:

Space cell culture system

VCAM-1:

Vascular cell adhesion molecule-1

References

  • Aldridge V, Garg A, Davies N et al (2012) Human mesenchymal stem cells are recruited to injured liver in a β1-integrin and CD44 dependent manner. Hepatology 3:1063–1073

    Google Scholar 

  • Aleshcheva G, Sahana J, Ma X et al (2013) Changes in morphology, gene expression and protein content in chondrocytes cultured on a random positioning machine. PLoS ONE 8:e79057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aleshcheva G, Wehland M, Sahana J et al (2015) Moderate alterations of the cytoskeleton in human chondrocytes after short-term microgravity produced by parabolic flight maneuvers could be prevented by up-regulation of BMP-2 and SOX-9. FASEB J 6:2303–2314

    Google Scholar 

  • Ayatollahi M, Kabir Salmani M, Soleimani M et al (2010) Expansion of human marrow derived mesenchymal stem cells and their transdifferentiation potential. Iran Red Crescent Med J 12(4):446–452

    Google Scholar 

  • Bi H, Ming L, Cheng R et al (2017) Liver extracellular matrix promotes BM-MSCs hepatic differentiation and reversal of liver fibrosis through activation of integrin pathway. J Tissue Eng Regen Med 10:2685–2698

    Google Scholar 

  • Bizzarri M, Cucina A, Palombo A et al (2014) Gravity sensing by cells: mechanisms and theoretical grounds. Rend Fis Acc Lincei 25(Suppl 1):S29–S38

    Google Scholar 

  • Bizzarri M, Monici M, van Loon JJWA (2015) How Microgravity affects the biology of living systems. BioMed Res Int 2015(9):1–4

    Google Scholar 

  • Bourguignon LY, Gilad E, Brightman A et al (2006) Hyaluronan-CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase C epsilon-Ca2+ signaling, and cytoskeleton modification in head and neck squamous cell carcinoma cells. J Biol Chem 281:14026–14040

    CAS  PubMed  Google Scholar 

  • Buravkova LB (2010) Problems of the gravitational physiology of a cell. Hum Physiol 36(7):746–753

    Google Scholar 

  • Buravkova LB, Rudimov EG, Andreeva ER et al (2018) The ICAM-1 expression level determines the susceptibility of human endothelial cells to simulated microgravity. J Cell Biochem 119:2875–2885

    CAS  PubMed  Google Scholar 

  • Burger EH, Klein-Nulend J (1998) Microgravity and bone cell mechanosensitivity. Bone 22:127S–130S

    CAS  PubMed  Google Scholar 

  • Byfield FJ, Reen RK, Shentu TP et al (2009) Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D. J Biomech 42:1114–1119

    PubMed  PubMed Central  Google Scholar 

  • Carlsson SI, Bertilaccio MT, Ballabio E et al (2003) Endothelial stress by gravitational unloading: effects on cell growth and cytoskeletal organization. Biochim Biophys Acta 1642:173–179

    CAS  PubMed  Google Scholar 

  • Chakraborty N, Cheema A, Gautam A et al (2018) Gene-metabolite profile integration to understand the cause of spaceflight induced immunodeficiency. NPJ Microgravity 4:4

    PubMed  PubMed Central  Google Scholar 

  • Chancellor TJ, Lee J, Thodeti CK et al (2010) Actomyosin tension exerted on the nucleus through nesprin-1 connections influences endothelial cell adhesion, migration, and cyclic strain-induced reorientation. Biophys J 99:115–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Luo Q, Lin CC et al (2016) Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation. Sci Rep 6:30322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SA, Choi HS, Kim KJ et al (2013) Isolation of canine mesenchymal stem cells from amniotic fluid and differentiation into hepatocyte-like cells. Vitro Cell Dev Biol Anim 1:42–51

    Google Scholar 

  • Ebnerasuly F, Hajebrahimi Z, Tabaie SM et al (2017) Effect of simulated microgravity conditions on differentiation of adipose derived stem cells towards fibroblasts using connective tissue growth factor. Iran J Biotechnol 4:241–251

    Google Scholar 

  • Everding B, Wilhelm S, Averesch S et al (2000) IFN-gamma-induced change in microtubule organization and alpha-tubulin expression during growth inhibition of lung squamous carcinoma cells. J Interferon Cytokine Res 20:983–990

    CAS  PubMed  Google Scholar 

  • Freed LE, Vunjak-Novakovic G (2002) Spaceflight bioreactor studies of cells and tissues. Adv Space Biol Med 8:177–195

    CAS  PubMed  Google Scholar 

  • Grenon SM, Jeanne M, Aguado-Zuniga J et al (2013) Effects of gravitational mechanical unloading in endothelial cells: association between caveolins, inflammation and adhesionmolecules. Sci Rep 3:1494

    PubMed  PubMed Central  Google Scholar 

  • Griffoni C, Di Molfetta S, Fantozzi L et al (2011) Modification of proteins secreted by endothelial cells during modeled low gravity exposure. J Cell Biochem 112:265–272

    CAS  PubMed  Google Scholar 

  • Grimm D, Infanger M, Westphal K et al (2009) A delayed type of three-dimensional growth of human endothelial cells under simulated weightlessness. Tissue Eng Part A 15:2267–2275

    CAS  PubMed  Google Scholar 

  • Grimm D, Bauer J, Ulbrich C et al (2010) Different responsiveness of endothelial cells to vascular endothelial growth factor and basic fibroblast growth factor added to culture media under gravity and simulated microgravity. Tissue Eng Part A 16:1559–1573

    CAS  PubMed  Google Scholar 

  • Grosse J, Wehland M, Pietsch J et al (2012) Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids. FASEB J 26:5124–5140

    CAS  PubMed  Google Scholar 

  • Harada-Sukeno A, Kohno S, Nakao R et al (2009) “Myo Lab”: a JAXA cell biology experiment in “Kibo (JEM)” of the international space station. Biol Sci Space 23(4):189–193

    Google Scholar 

  • Hu WR, Zhao JF, Long M et al (2014) Space program SJ-10 of microgravity research. Microgravity Sci Technol 26:159–169

    Google Scholar 

  • Hung RJ, Terman JR (2011) Extracellular inhibitors, repellents, and semaphorin/plexin/MICAL-mediated actin filament disassembly. Cytoskeleton (Hoboken) 68:415–433

    CAS  Google Scholar 

  • Hyder CL, Kemppainen K, Isoniemi KO et al (2015) Sphingolipids inhibit vimentin-dependent cell migration. J Cell Sci 128:2057–2069

    Google Scholar 

  • Infanger M, Kossmehl P, Shakibaei M et al (2006) Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells. Cell Tissue Res 324:267–277

    CAS  PubMed  Google Scholar 

  • Infanger M, Ulbrich C, Baatout S et al (2007) Modeled gravitational unloading induced downregulation of endothelin-1 in human endothelial cells. J Cell Biochem 101:1439–1455

    CAS  PubMed  Google Scholar 

  • Kapitonova MY, Muid S, Froemming GRA et al (2012) Real space flight travel is associated with ultrastructural changes, cytoskeletal disruption and premature senescence of HUVEC. Malays J Pathol 34(2):103–113

    CAS  PubMed  Google Scholar 

  • Kapitonova MY, Kuznetsov SL, Froemming GRA et al (2013) Effects of space mission factors on the morphology and function of endothelial cells. Bull Exp Biol Med 154(6):796–801

    PubMed  Google Scholar 

  • Kim YK, Park SH, Lee JH et al (2015) Design and performance of an automated bioreactor for cell culture experiments in a microgravity environment. J Astron Space Sci 32(1):81–89

    Google Scholar 

  • Krikorian AD (1996) Strategies for “minimal growth maintenance” of cell cultures: a perspective on management for extended duration experimentation in the microgravity environment of a space station. Botanl Rev 62(1):41–108

    CAS  Google Scholar 

  • Lee JW, Kim YH, Park KD (2004) Importance of integrin beta1-mediated cell adhesion on biodegradable polymers under serum depletion in mesenchymal stem cells and chondrocytes. Biomaterials 10:1901–1909

    Google Scholar 

  • Li Z, Gong YX, Sun SJ et al (2013) Differential regulation of stiffness, topography, and dimension of substrates in rat mesenchymal stem cells. Biomaterials 34(31):7616–7625

    CAS  PubMed  Google Scholar 

  • Li N, Wang CZ, Sun SJ et al (2018) Microgravity-induced alterations of inflammation-related mechanotransduction in endothelial cells on board SJ-10 satellite. Front Physiol 9:1025

    PubMed  PubMed Central  Google Scholar 

  • Long M, Sun SJ, Huo B et al (2009) Chapter 12: Biomechanics on cell responses to microgravity. In: Hu WR (ed) Advances in microgravity sciences. Transworld Research Network, Kerala, pp 215–233

    Google Scholar 

  • Long M, Wang YR, Zheng HQ et al (2015) Mechano-biological coupling of cellular responses to microgravity. Microgravity Sci Technol 27:505–514

    Google Scholar 

  • Lü DY, Sun SJ, Zhang F et al (2019) Microgravity-induced hepatogenic differentiation of rBMSCs on board SJ-10 satellite. FASEB J 33(3):4273–4286

    Google Scholar 

  • Ma X, Sickmann A, Pietsch J et al (2014) Proteomic differences between microvascular endothelial cells and the EA.hy926 cell line forming three-dimensional structures. Proteomics 14:689–698

    CAS  PubMed  Google Scholar 

  • Maier JAM, Cialdai F, Monici M et al (2015) The impact of microgravity and hypergravity on endothelial cells. Bio Med Res Int 2015(9):434803

    Google Scholar 

  • Meyers VE, Zayzafoon M, Gonda SR et al (2004) Modeled microgravity disrupts collagen I/integrin signaling during osteoblastic differentiation of human mesenchymal stem cells. J Cell Biochem 4:697–707

    Google Scholar 

  • Murray ME, Mendez MG, Janmey PA (2014) Substrate stiffness regulates solubility of cellular vimentin. Mol Biol Cell 25:87–94

    PubMed  PubMed Central  Google Scholar 

  • Ode A, Kopf J, Kurtz A et al (2011) CD73 and CD29 concurrently mediate the mechanically induced decrease of migratory capacity of mesenchymal stromal cells. Eur Cell Mater 22:26–42

    CAS  PubMed  Google Scholar 

  • Popov C, Radic T, Haasters F et al (2011) Integrins α2β1 and α11β1 regulate the survival of mesenchymal stem cells on collagen I. Cell Death Dis 2:e186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Provenzano PP, Keely PJ (2011) Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci 124:1195–1205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savani RC, Cao G, Pooler PM et al (2001) Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis. J Biol Chem 276:36770–36778

    CAS  PubMed  Google Scholar 

  • Song K, Huang M, Shi Q et al (2014) Cultivation and identification of rat bone marrow-derived mesenchymal stem cells. Mol Med Rep 2:755–760

    Google Scholar 

  • Speicher T, Siegenthaler B, Bogorad RL et al (2014) Knockdown and knockout of β1-integrin in hepatocytes impairs liver regeneration through inhibition of growth factor signalling. Nat Commun 5:3862

    CAS  PubMed  Google Scholar 

  • Sun SJ, Gao YX, Shu NJ et al (2008) A novel counter sheet-flow sandwich cell culture system to mammalian cell growth in space. Microgravity Sci Technol 20:115–120

    CAS  Google Scholar 

  • Sun SJ, Wang CZ, Bi YZ et al (2019) An integration design of gas exchange, bubble separation, and flow control in a space cell culture system on board the SJ-10 satellite. Rev Sci Instrum. https://doi.org/10.1063/1.5087770

  • Ulbrich C, Wehland M, Pietsch J et al (2014) The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. BioMed Res Int 2014(9):928507

    Google Scholar 

  • van Loon JJWA (2009) Mechanomics and physicomics in gravisensing. Microgravity Sci Technol 21:159–167

    Google Scholar 

  • Vandendriesche D, Parrish J, Kirven-Brooks M et al (2004) Space station biological research project (SSBRP) cell culture unit (CCU) and incubator for international space station (ISS) cell culture experiments. J Gravit Physiol 11(1):93–103

    PubMed  Google Scholar 

  • Versari S, Villa A, Bradamante S et al (2007) Alterations of the actin cytoskeleton and increased nitric oxide synthesis are common features in human primary endothelial cell response to changes in gravity. Biochim Biophys Acta 1773(11):1645–1652

    CAS  PubMed  Google Scholar 

  • Versari S, Longinotti G, Barenghi L et al (2013) The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment. FASEB J 27:4466–4475

    CAS  PubMed  Google Scholar 

  • Vorselen D, Roos WH, MacKintosh FC et al (2014) The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB J 28(2):536–547

    CAS  PubMed  Google Scholar 

  • Wang JW, Lü DY, Mao DB et al (2014) Mechanomics: an emerging field between biology and biomechanics. Protein Cell 5(7):518–531

    PubMed  PubMed Central  Google Scholar 

  • Wang CZ, Li N, Zhang C et al (2015) Effects of simulated microgravity on functions of neutrophil-like HL-60 cells. Microgravity Sci Technol 27:515–527

    CAS  Google Scholar 

  • Zhang C, Zhou LW, Zhang F et al (2017) Mechanical remodeling of normally-sized mammalian cells under a gravity vector. FASEB J 31:802–813

    CAS  PubMed  Google Scholar 

  • Zhou LW, Zhang C, Zhang F et al (2018) Theoretical modeling of mechanical homeostasis of a mammalian cell under gravity-directed vector. Biomech Model Mechan 17:191–203

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Lei Zhang, Jianquan Zhang, Zhongfang Deng, Xiang Li, Teng Xie, and Namei Du from Technology and Engineering Center for Space Utilization (CSU) of CAS for their helps in developing hardware and software. The authors also thank to Juan Chen and Yuxin Gao for their technical support, to Chen Zhang, Chunhua Luo, Fan Zhang and Lu Zheng for their assistance in biological tests, and to Shenbao Chen, Lüwen Zhou, Xiao Zhang, Yuzhen Bi, Bing Shangguan, Fan Zhang, and Hao Yang for their contributions to implement the space mission.

We are grateful to the staff members from National Space Science Center (NSSC) of CAS, China Academy of Space Technology (CAST), and China Aerospace Science and Technology Corporation (CASC) for their respective contributions to organization and administration for the payload system and for the satellite system of SJ-10 mission. We also thank the teams of other five systems of SJ-10 mission for their cooperation and support.

This work is supported by National Natural Science Foundation of China grants U1738115 and 31661143044, and Strategic Priority Research Program of CAS grants XDA04020202-17, XDA04020202-19, XDA04020416, XDA04073800, and QYZDJ-SSW-JSC018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mian Long .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, S., Wang, C., Li, N., Lü, D., Chen, Q., Long, M. (2019). Cell Growth and Differentiation Under Microgravity. In: Duan, E., Long, M. (eds) Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite. Research for Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6325-2_7

Download citation

Publish with us

Policies and ethics