Skip to main content

Effects of the Space Environment on Silkworm Development Time

  • Chapter
  • First Online:
Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite

Part of the book series: Research for Development ((REDE))

Abstract

As aviation technology has developed, there has been more emphasis on exploitation and utilization of the space frontier. The lepidopteran insect Bombyx mori has advantages, including small body size, light weight, short life cycle, and well-characterized genetics, when used as a model for biological investigations in space compared with other animals. In preparation for experiments in space, we carried out a simulation experiment, and the number of embryos and the culture temperature and humidity were optimized. The silkworm incubator was launched with China’s SJ-10 recoverable microgravity experimental satellite and was in orbit for 12 days and 15 h in 2016. The embryos were cultured in space. Images of the silkworm embryos were obtained during flight. The embryos cultured in space hatched properly after returning to the ground, but silkworm larva obtained from cultures grown on the SJ-10 satellite grew more rapidly than the ground control group. Analyses of subsequent generations and genome, transcriptome, and proteome analyses are ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BmNPV:

B. mori nuclear polyhedrosis virus

cDNA:

Coding DNA

CRISPR:

Clustered regularly interspaced short palindromic repeats

ISS:

International Space Station

mRNA:

Messenger RNA

RNAi:

RNA interference

TALENs:

Transcription activator-like effector nucleases

ZFNs:

Zinc finger nucleases

ZFP:

Zinc finger proteins

References

  • Ansorge WJ (2009) Next-generation DNA sequencing techniques. Nat Biotechnol 25:195–203

    CAS  Google Scholar 

  • Arunkumar KP, Tomar A et al (2008) WildSilkbase: an EST database of wild silkmoths. BMC Genom 9:338

    CAS  Google Scholar 

  • Arunkumar KP, Mita K et al (2009) The silkworm Z chromosome is enriched in testis-specific genes. Genetics 182:493–501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carla V, Goulart SW et al (2004) Performance of the STARS life sciences habitats in space flight and ground controls. In: 34th international conference on environmental systems (ICES)

    Google Scholar 

  • Costa V, Angelini C et al (2010) Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol 2010:853916

    PubMed  PubMed Central  Google Scholar 

  • Daimon T, Kiuchi T et al (2014) Recent progress in genome engineering techniques in the silkworm, Bombyx mori. Dev Growth Differ 56:14–25

    CAS  PubMed  Google Scholar 

  • Daimon T, Uchibori M et al (2015) Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle. Proc Natl Acad Sci USA 112:E4226–4235

    CAS  PubMed  Google Scholar 

  • Deng D, Xu H et al (2013) The promoter of Bmlp3 gene can direct fat body-specific expression in the transgenic silkworm, Bombyx mori. Transgenic Res 22:1055–1063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong ZQ, Chen TT et al (2016) Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells. Antiviral Res 130:50–57

    CAS  PubMed  Google Scholar 

  • Duan J, Li R et al (2010) SilkDB v2.0: a platform for silkworm (Bombyx mori) genome biology. Nucleic Acids Res 38:D453–456

    CAS  PubMed  Google Scholar 

  • Furusawa T, Shikata M et al (1982) Temperature dependent sorbitol utilization in diapaus eggs of the silkworm. J Comp Physiol B Biochem Syst Environ 147:21–26

    CAS  Google Scholar 

  • Furusawa T, Kotani E et al (2001) Embryonic development in the eggs of the silkworm, Bombyx mori, exposed to the space environment. Biol Sci Space 15(Suppl):S177–182

    PubMed  Google Scholar 

  • Gantz VM, Jasinskiene N et al (2015) Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci USA 112:E6736–6743

    CAS  PubMed  Google Scholar 

  • Gui ZZ et al (2001) Research status of Bombyx mori carrying. Jiangsu Seric 1:11–18

    Google Scholar 

  • Hammond A, Galizi R et al (2016) A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol 34:78–83

    CAS  PubMed  Google Scholar 

  • Henneberry TJ, Sullivan WN (1963) Effect of gamma-radiation on eggs of the silkworm. Nature 200:1121–1122

    CAS  PubMed  Google Scholar 

  • Hou C, Qin G et al (2014) Transcriptome analysis of silkworm, Bombyx mori, during early response to Beauveria bassiana challenges. PLoS ONE 9:e91189

    PubMed  PubMed Central  Google Scholar 

  • International Silkworm Genome C (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38:1036–1045

    Google Scholar 

  • Ito K, Kidokoro K et al (2008) Deletion of a gene encoding an amino acid transporter in the midgut membrane causes resistance to a Bombyx parvo-like virus. Proc Natl Acad Sci USA 105:7523–7527

    CAS  PubMed  Google Scholar 

  • Kawamoto M, Koga H et al (2015) Sexually biased transcripts at early embryonic stages of the silkworm depend on the sex chromosome constitution. Gene 560:50–56

    CAS  PubMed  Google Scholar 

  • Kellner K, Seal JN et al (2013) Sex at the margins: parthenogenesis vs. facultative and obligate sex in a Neotropical ant. J Evol Biol 26:108–117

    CAS  PubMed  Google Scholar 

  • Kimoto M, Tsubota T et al (2014) Hox transcription factor Antp regulates sericin-1 gene expression in the terminal differentiated silk gland of Bombyx mori. Dev Biol 386:64–71

    CAS  PubMed  Google Scholar 

  • Kiuchi T, Koga H et al (2014) A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 509–633

    Google Scholar 

  • Kobayashi I, Kojima K et al (2011) An efficient binary system for gene expression in the silkworm, Bombyx mori, using GAL4 variants. Arch Insect Biochem Physiol 76:195–210

    Google Scholar 

  • Kotani E, Furusawa T et al (2002) Somatic mutation in larvae of the silkworm, Bombyx mori, induced by heavy ion irradiation to diapause eggs. J Radiat Res 43(Suppl):S193–198

    PubMed  Google Scholar 

  • Li Y, Wang G et al (2012) Transcriptome analysis of the silkworm (Bombyx mori) by high-throughput RNA sequencing. PLoS ONE 7:e43713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, You L et al (2015) Ectopic expression of ecdysone oxidase impairs tissue degeneration in Bombyx mori. Proc Biol Sci/R Soc 282:20150513

    Google Scholar 

  • Ling L, Ge X et al (2015) MiR-2 family targets awd and fng to regulate wing morphogenesis in Bombyx mori. RNA Biol 12:742–748

    PubMed  PubMed Central  Google Scholar 

  • Liu S, Li D et al (2010) MicroRNAs of Bombyx mori identified by Solexa sequencing. BMC Genom 11:148

    Google Scholar 

  • Liu Y, Ma S et al (2014) Highly efficient multiplex targeted mutagenesis and genomic structure variation in Bombyx mori cells using CRISPR/Cas9. Insect Biochem Mol Biol 49:35–42

    CAS  PubMed  Google Scholar 

  • Liu P, Wang Y et al (2015) Transcriptome analysis of thermal parthenogenesis of the domesticated silkworm. PLoS ONE 10:e0135215

    PubMed  PubMed Central  Google Scholar 

  • Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405:827–836

    CAS  PubMed  Google Scholar 

  • Lockhart DJ, Dong H et al (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675–1680

    CAS  PubMed  Google Scholar 

  • Long DP, Zhao AC et al (2012) FLP recombinase-mediated site-specific recombination in silkworm, Bombyx mori. PloS ONE 7:e40150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long D, Zhao A et al (2013) In vivo site-specific integration of transgene in silkworm via PhiC31 integrase-mediated cassette exchange. Insect Biochem Mol Biol 43:997–1008

    CAS  PubMed  Google Scholar 

  • Ma S, Zhang S et al (2012) Highly efficient and specific genome editing in silkworm using custom TALENs. PLoS ONE 7:e45035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma S, Wang X et al (2013) Genetic marking of sex using a W chromosome-linked transgene. Insect Biochem Mol Biol 43:1079–1086

    CAS  PubMed  Google Scholar 

  • Ma S, Chang J et al (2014a) CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori. Sci Rep 4:4489

    PubMed  PubMed Central  Google Scholar 

  • Ma S, Shi R et al (2014b) Genome editing of BmFib-H gene provides an empty Bombyx mori silk gland for a highly efficient bioreactor. Sci Rep 4:6867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mita K, Kasahara M et al (2004) The genome sequence of silkworm, Bombyx mori. DNA Res Int J Rapid Publ Rep Genes Genomes 11:27–35

    CAS  Google Scholar 

  • Nakade S, Tsubota T et al (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5:5560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nie H, Liu C et al (2014) Transcriptome analysis of neonatal larvae after hyperthermia-induced seizures in the contractile silkworm, Bombyx mori. PLoS One 9:e113214

    PubMed  PubMed Central  Google Scholar 

  • Ogata N, Yokoyama T et al (2012) Transcriptome responses of insect fat body cells to tissue culture environment. PLoS ONE 7:e34940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi T (2016) Life science experiments performed in space in the ISS/Kibo facility and future research plans. J Radiat Res 57(Suppl 1):i41–i46

    PubMed  PubMed Central  Google Scholar 

  • Prasad MD, Muthulakshmi M et al (2005) SilkSatDb: a microsatellite database of the silkworm, Bombyx mori. Nucleic Acids Res 33:D403–406

    Google Scholar 

  • Rusk N, Kiermer V (2008) Primer: sequencing—the next generation. Nat Methods 5:15

    CAS  PubMed  Google Scholar 

  • Sajwan S, Takasu Y et al (2013) Efficient disruption of endogenous Bombyx gene by TAL effector nucleases. Insect Biochem Mol Biol 43:17–23

    CAS  PubMed  Google Scholar 

  • Sakai H, Sumitani M et al (2016) Transgenic expression of the piRNA-resistant masculinizer gene induces female-specific lethality and partial female-to-male sex reversal in the silkworm, Bombyx mori. PLoS Genet 12:e1006203

    PubMed  PubMed Central  Google Scholar 

  • Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18

    CAS  PubMed  Google Scholar 

  • Shao W, Zhao QY et al (2012) Alternative splicing and trans-splicing events revealed by analysis of the Bombyx mori transcriptome. RNA 18:1395–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi ZZ, Zhuang ZD et al (1994) Experimental studies of silkworm eggs onboard recoverable satellite. Space Med Med Eng 7 Suppl:s23–s28

    Google Scholar 

  • Shi ZZ, Zhuang ZD et al (1995) Flight experiment of silkworm onboard russian biosatellite. Space Med Med Eng 8:220–224

    Google Scholar 

  • Shi ZZ, Zhuang D et al (1998) Space flight experiment on Chinese silkworm on board the Russian 10th Biosatellite. Adv Space Res 21:1145–1150

    CAS  PubMed  Google Scholar 

  • Shimada T, Ebinuma H et al (1986) Expression of homeotic genes in Bombyx mori estimated from asymmetry of dorsal closure in mutantnormal mossics. J Exp Zool 240:335–342

    Google Scholar 

  • Shimomura M, Minami H et al (2009) KAIKObase: an integrated silkworm genome database and data mining tool. BMC Genom 10:486

    Google Scholar 

  • Subbaiah EV, Royer C et al (2013) Engineering silkworms for resistance to baculovirus through multigene RNA interference. Genetics 193:63–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suetsugu Y, Futahashi R et al (2013) Large scale full-length cDNA sequencing reveals a unique genomic landscape in a lepidopteran model insect, Bombyx mori. Genes Genomes Genet 3:1481–1492

    Google Scholar 

  • Takasu Y, Kobayashi I et al (2010) Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochem Mol Biol 40:759–765

    CAS  PubMed  Google Scholar 

  • Takasu Y, Sajwan S et al (2013) Efficient TALEN construction for Bombyx mori gene targeting. PLoS ONE 8:e73458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takasu Y, Kobayashi I et al (2016a) Precise genome editing in the silkworm Bombyx mori using TALENs and ds- and ssDNA donors—a practical approach. Insect Biochem Mol Biol 78:29–38

    CAS  PubMed  Google Scholar 

  • Takasu Y, Tamura T et al (2016b) Targeted Mutagenesis in Bombyx mori using TALENs. Methods Mol Biol 1338:127–142

    CAS  PubMed  Google Scholar 

  • Tamura T, Thibert C et al (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84

    CAS  PubMed  Google Scholar 

  • Tan A, Tanaka H et al (2005) Precocious metamorphosis in transgenic silkworms overexpressing juvenile hormone esterase. Proc Natl Acad Sci USA 102:11751–11756

    CAS  PubMed  Google Scholar 

  • Tan AJ, Fu GL et al (2013) Transgene-based, female-specific lethality system for genetic sexing of the silkworm, Bombyx mori. Proc Natl Acad Sci USA 110:6766–6770

    CAS  PubMed  Google Scholar 

  • Tatematsu K, Kobayashi I et al (2010) Construction of a binary transgenic gene expression system for recombinant protein production in the middle silk gland of the silkworm Bombyx mori. Transgenic Res 19:473–487

    CAS  PubMed  Google Scholar 

  • Toshiharu Furusawa KN, Ichida Masatoshi, Nagaoka Sumiharu et al (2009) Introduction to the proposed Space Experiments Aboard the ISS using the silkworm, Bombyx mori. Biol Sci Space 23:61–69

    Google Scholar 

  • Tsubota T, Uchino K et al (2014) Establishment of transgenic silkworms expressing GAL4 specifically in the haemocyte oenocytoid cells. Insect Mol Biol 23:165–174

    CAS  PubMed  Google Scholar 

  • Uchino K, Imamura M et al (2007) Germ line transformation of the silkworm, Bombyx mori, using the transposable element Minos. Mol Genet Genomics MGG 277:213–220

    CAS  PubMed  Google Scholar 

  • Uchino K, Sezutsu H et al (2008) Construction of a piggyBac-based enhancer trap system for the analysis of gene function in silkworm Bombyx mori. Insect Biochem Mol Biol 38:1165–1173

    CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L et al (1995) Serial analysis of gene expression. Science 270:484–487

    CAS  PubMed  Google Scholar 

  • Wang J, Xia Q et al (2005) SilkDB: a knowledgebase for silkworm biology and genomics. Nucleic Acids Res 33:D399–402

    CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M et al (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Xu H et al (2013a) An optimized sericin-1 expression system for mass-producing recombinant proteins in the middle silk glands of transgenic silkworms. Transgenic Res 22:925–938

    CAS  PubMed  Google Scholar 

  • Wang Y, Li Z et al (2013b) The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori. Cell Res 23:1414–1416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Fang Y et al (2014a) Transcriptome analysis of the Bombyx mori fat body after constant high temperature treatment shows differences between the sexes. Mol Biol Rep 41:6039–6049

    CAS  PubMed  Google Scholar 

  • Wang Y, Tan A et al (2014b) Site-specific, TALENs-mediated transformation of Bombyx mori. Insect Biochem Mol Biol 55:26–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Zhang J et al (2015) Transcriptome analysis of the brain of the silkworm Bombyx mori infected with Bombyx mori nucleopolyhedrovirus: a new insight into the molecular mechanism of enhanced locomotor activity induced by viral infection. J Invertebr Pathol 128:37–43

    CAS  PubMed  Google Scholar 

  • Wei W, Xin H et al (2014) Heritable genome editing with CRISPR/Cas9 in the silkworm, Bombyx mori. PloS ONE 9:e101210

    PubMed  PubMed Central  Google Scholar 

  • Wolf JB (2013) Principles of transcriptome analysis and gene expression quantification: an RNA-seq tutorial. Mol Ecol Resour 13:559–572

    CAS  PubMed  Google Scholar 

  • Wu FQ et al (2005) Growth and development of later generation silkworm after the eggs carrying by satellite. In: Summary of the national crop biotechnology and mutagenesis technology symposium, p 222

    Google Scholar 

  • Xia Q, Zhou Z et al (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306:1937–1940

    PubMed  Google Scholar 

  • Xia Q, Guo Y et al (2009) Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 326:433–436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Q, Li S et al (2014) Advances in silkworm studies accelerated by the genome sequencing of Bombyx mori. Annu Rev Entomol 59:513–536

    CAS  PubMed  Google Scholar 

  • Xiang H, Zhu J et al (2010) Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat Biotechnol 28:516–520

    CAS  PubMed  Google Scholar 

  • Xu J, Wang Y et al (2014) Transcription activator-like effector nuclease (TALEN)-mediated female-specific sterility in the silkworm, Bombyx mori. Insect Mol Biol 23:800–807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Bi H et al (2015) Transgenic characterization of two testis-specific promoters in the silkworm, Bombyx mori. Insect Mol Biol 24:183–190

    CAS  PubMed  Google Scholar 

  • Xu J, Zhan S et al (2016) Sexually dimorphic traits in the silkworm, Bombyx mori, are regulated by doublesex. Insect Biochem Mol Biol 80:42–51

    PubMed  Google Scholar 

  • Yoda S, Yamaguchi J et al (2014) The transcription factor Apontic-like controls diverse colouration pattern in caterpillars. Nat Commun 5:4936

    CAS  PubMed  Google Scholar 

  • Zeng B, Zhan S et al (2016) Expansion of CRISPR targeting sites in Bombyx mori. Insect Biochem Mol Biol 72:31–40

    CAS  PubMed  Google Scholar 

  • Zhang P, Wang J et al (2014) Resistance of transgenic silkworm to BmNPV could be improved by silencing ie-1 and lef-1 genes. Gene Ther 21:81–88

    CAS  PubMed  Google Scholar 

  • Zhang Z, Aslam AF et al (2015) Functional analysis of Bombyx Wnt1 during embryogenesis using the CRISPR/Cas9 system. J Insect Physiol 79:73–79

    CAS  PubMed  Google Scholar 

  • Zhao Q, Zhu Z et al (2013) Segmental duplications in the silkworm genome. BMC Genom 14:521

    Google Scholar 

  • Zhou F, Chen RT et al (2014) piggyBac transposon-derived targeting shRNA interference against the Bombyx mori nucleopolyhedrovirus (BmNPV). Mol Biol Rep 41:8247–8254

    CAS  PubMed  Google Scholar 

  • Zhu L, Mon H et al (2015) CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells. Sci Rep 5:18103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang DH et al (1995) A preliminary report on experiments in the silkworm (Bombyx mori l.) on board a recoverable satellite. Sci Seric 21:135–138

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Strategic Priority Research Program of Chinese Academy of Sciences (XDA04020414) and National Science Foundation of China (U1738110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjiang Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Z., Li, Z., Shang, P., Huang, Y., Tan, A. (2019). Effects of the Space Environment on Silkworm Development Time. In: Duan, E., Long, M. (eds) Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite. Research for Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6325-2_5

Download citation

Publish with us

Policies and ethics