Skip to main content

Three-Dimensional Cell Culture and Tissue Restoration of Neural Stem Cells Under Microgravity

  • Chapter
  • First Online:
Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite

Part of the book series: Research for Development ((REDE))

Abstract

On April 6, 2016, the SJ-10 recoverable microgravity experimental satellite (SJ-10 satellite) was launched from Jiuquan in China, which conducted a mission of space microgravity experiments. As a recoverable satellite, the SJ-10 satellite provided an effective, open, and comprehensive platform to study space life and microgravity science. The SJ-10 satellite program consisted of 27 experiments including both fields of microgravity and space life sciences. Among the experiments, “three-dimensional (3D) cell culture and tissue restoration of NSCs under microgravity” proposed by Dr. Jianwu Dai and his staff was selected from more than 200 applications. This project was characterized by two aspects: neural stem cells and 3D culture. It was the first time that in vitro-cultured NSCs experienced a microgravity environment in space. 3D culture provided a specialized environment to benefit the in vitro tissue constructs. NSC-based therapy has attracted attention in recent years, which may be a promising treatment for many neurological diseases such as spinal cord injury, Alzheimer’s disease, stroke, and Parkinson’s disease. The 3D culture of NSCs under microgravity may provide valuable data for tissue reconstruction of the nervous system. To communicate the background and progress of this research, this review focuses on the key points of NSCs, 3D culture, and microgravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three-dimensional

2D:

Two-dimensional

BDNF:

Brain-derived neurotrophic factor

bFGF:

Basic fibroblast growth factor

bHLH:

Basic helix-loop-helix

BMP:

Bone morphogenetic protein

BMSCs:

Bone marrow stromal cells

CNS:

Center nervous systems

CREB:

CAMP response element-binding protein

DE:

Differentially expressed

DEGs:

Differentially expressed genes

DG:

Dentate gyrus

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

ESCs:

Embryonic stem cells

EWS:

Ewing sarcoma

FDA:

Fluorescein diacetate

FPKM:

Fragments per kilobase of transcript per million mapped reads

GFAP:

Glial fibrillary acidic protein

GO:

Gene Ontology

HDP:

Hanging drop plates

HGF:

Hepatocyte growth factor

hiPSC-NSs:

HiPSC-derived neurospheres

HUCB-NSCs:

Human umbilical cord blood-derived NSCs

IGF-1R:

Insulin-like growth factor-1 receptor

IL:

Interleukin

KEGG:

Kyoto Encyclopedia of Genes and Genomes

MAG:

Myelin-associated glycoprotein

Map2:

Microtubule-associated protein-2

MEFs:

Mouse embryonic fibroblasts

mESCs:

Mouse embryonic stem cells

MSCs:

Mesenchymal stem cells

mTOR:

Mammalian target of rapamycin

NSCs:

Neural stem cells

NPCs:

Neural progenitor cells

OMGP:

Oligodendrocyte myelin glucoprotein

PBS:

Phosphate buffered saline

PDGF:

Platelet growth factor

PI:

Propidium iodide

PLG:

Poly(lactide-co-glycolide)

PNS:

Peripheral nervous system

RG:

Radial glial-like

RMS:

Rostral migratory stream

SJ-10 satellite:

SJ-10 recoverable microgravity experimental satellite

SGZ:

Subgranular zone

SEM:

Scanning electron microscope

SVZ:

Subventricular zone

Tuj1:

Neuron-specific tubulin III

VEGF:

Vascular endothelial growth factor

VZ:

Ventricular zone

References

  • Ahn S, Joyner AL (2005) In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437:894–897

    Article  CAS  PubMed  Google Scholar 

  • Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22:2008–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  PubMed  Google Scholar 

  • Baker EL, Bonnecaze RT, Zaman MH (2009) Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys J 97:1013–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baptista S, Lasgi C, Benstaali C et al (2014) Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate. Stem Cell Res 13:329–341

    Article  CAS  PubMed  Google Scholar 

  • Barca-Mayo O, Lu QR (2012) Fine-tuning oligodendrocyte development by microRNAs. Front Neurosci 6:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkho BZ, Song H, Aimone JB et al (2006) Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev 15:407–421

    Article  CAS  PubMed  Google Scholar 

  • Barnabe-Heider F, Goritz C, Sabelstrom H et al (2010) Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7:470–482

    Article  CAS  PubMed  Google Scholar 

  • Barton A, Fendrik AJ (2013) Sustained vs. oscillating expressions of Ngn2, Dll1 and Hes1: a model of neural differentiation of embryonic telencephalon. J Theor Biol 328:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bengoa-Vergniory N, Kypta RM (2015) Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell Mol Life Sci 72:4157–4172

    Article  CAS  PubMed  Google Scholar 

  • Blaber EA, Finkelstein H, Dvorochkin N et al (2015) Microgravity reduces the differentiation and regenerative potential of embryonic stem cells. Stem Cells Dev 24:2605–2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaguidi MA, Mcguire T, Hu M et al (2005) LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells. Development 132:5503–5514

    Article  CAS  PubMed  Google Scholar 

  • Brent A, Reynolds SW (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  Google Scholar 

  • Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81:229–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caliari SR, Burdick A (2016) A practical guide to hydrogels for cell culture. Nat Methods 13:405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatr-Aryamontri A, Oughtred R, Boucher L et al (2017) The BioGRID interaction database: 2017 update. Nucleic Acids Res 45:D369–D379

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Liu R, Yang Y et al (2011) The simulated microgravity enhances the differentiation of mesenchymal stem cells into neurons. Neurosci Lett 505:171–175

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Lin RZ, QiH et al (2012) Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater 22:2027–2039

    Google Scholar 

  • Chen X, Wang W, Zhang J et al (2015) Involvement of caspase-3/PTEN signaling pathway in isoflurane-induced decrease of self-renewal capacity of hippocampal neural precursor cells. Brain Res 1625:275–286

    Article  CAS  PubMed  Google Scholar 

  • Cheng TY, Chen MH, Chang WH et al (2013) Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials 34:2005–2016

    Article  CAS  PubMed  Google Scholar 

  • Chiang MC, Lin H, Cheng YC et al (2012) Beta-adrenoceptor pathway enhances mitochondrial function in human neural stem cells via rotary cell culture system. J Neurosci Methods 207:130–136

    Article  CAS  PubMed  Google Scholar 

  • Choi I, Woo JH, Jou I et al (2016) PINK1 deficiency decreases expression levels of mir-326, mir-330, and mir-3099 during brain development and neural stem cell differentiation. Exp Neurobiol 25:14–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Cimadamore F, Amador-Arjona A, Chen C et al (2013) SOX2-LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors. Proc Natl Acad Sci USA 110:E3017–3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coskun V, Wu H, Blanchi B et al (2008) CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci USA 105:1026–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Xiao Z, Han J et al (2012) MiR-125b orchestrates cell proliferation, differentiation and migration in neural stem/progenitor cells by targeting Nestin. BMC Neurosci 13:116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Han J, Xiao Z et al (2016) The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation. Sci Rep 6:23300

    Google Scholar 

  • Cukierman E, Pankov R, Stevens DR et al (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712

    Article  CAS  PubMed  Google Scholar 

  • Cunha C, Panseri S, Villa O et al (2011) 3D culture of adult mouse neural stem cells within functionalized self-assembling peptide scaffolds. Int J Nanomed 6:943–955

    Article  CAS  Google Scholar 

  • Delgehyr N, Meunier A, Faucourt M et al (2015) Ependymal cell differentiation, from monociliated to multiciliated cells. Methods Cell Biol 127:19–35

    Article  CAS  PubMed  Google Scholar 

  • Edmondson R, Broglie JJ, Adcock AF et al (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12:207–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson IE, Huang AH, Chung C et al (2009) Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels. Tissue Eng Part A 15:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Fischbach C, Chen R, Matsumoto T et al (2007) Engineering tumors with 3D scaffolds. Nat Methods 4:855–860

    Article  CAS  PubMed  Google Scholar 

  • Fishell G, Kriegstein AR (2003) Neurons from radial glia: the consequences of asymmetric inheritance. Curr Opin Neurobiol 13:34–41

    Article  CAS  PubMed  Google Scholar 

  • Fogarty LC, Song B, Suppiah Y et al (2016) Bcl-xL dependency coincides with the onset of neurogenesis in the developing mammalian spinal cord. Mol Cell Neurosci 77:34–46

    Article  CAS  PubMed  Google Scholar 

  • Fong EL, Lamhamedi-Cherradi SE, Burdett E et al (2013) Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. Proc Natl Acad Sci USA 110:6500–6505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  CAS  PubMed  Google Scholar 

  • Ge S, Goh EL, Sailor KA et al (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593

    Article  CAS  PubMed  Google Scholar 

  • Gibbons MC, Foley MA, Cardinal KO (2013) Thinking inside the box: keeping tissue-engineered constructs in vitro for use as preclinical models. Tissue Eng Part B Rev 19:14–30

    Article  CAS  PubMed  Google Scholar 

  • Gioia U, Di Carlo V, Caramanica P et al (2014) Mir-23a and mir-125b regulate neural stem/progenitor cell proliferation by targeting Musashi1. RNA Biol 11:1105–1112

    Article  PubMed  PubMed Central  Google Scholar 

  • Godlewski J, Nowicki MO, Bronisz A et al (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130

    Article  CAS  PubMed  Google Scholar 

  • Goncalves JT, Schafer ST, Gage FH (2016) Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell 167:897–914

    Article  CAS  PubMed  Google Scholar 

  • Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    Article  PubMed  CAS  Google Scholar 

  • Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8:481–488

    Article  CAS  PubMed  Google Scholar 

  • Grimm D, Wehland M, Pietsch J et al (2014) Growing tissues in real and simulated microgravity: new methods for tissue engineering. Tissue Eng Part B Rev 20:555–566

    Article  PubMed  PubMed Central  Google Scholar 

  • Gross CG (2000) Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 1:67–73

    Article  CAS  PubMed  Google Scholar 

  • Han Q, Jin W, Xiao Z et al (2010) The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody. Biomaterials 31:9212–9220

    Article  CAS  PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Huang Y, Liu X, Wang Y (2015) MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression. Biochem Biophys Res Commun 466:214–220

    Article  CAS  PubMed  Google Scholar 

  • Imayoshi I, Kageyama R (2014) bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells. Neuron 82:9–23

    Article  CAS  PubMed  Google Scholar 

  • Inghilleri M, Iacovelli E (2011) Clinical neurophysiology in ALS. Arch Ital Biol 149:57–63

    PubMed  Google Scholar 

  • Jiang D, Du J, Zhang X et al (2016) miR-124 promotes the neuronal differentiation of mouse inner ear neural stem cells. Int J Mol Med 38:1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurga M, Lipkowski AW, Lukomska B et al (2009) Generation of functional neural artificial tissue from human umbilical cord blood stem cells. Tissue Eng Part C Methods 15:365–372

    Article  CAS  PubMed  Google Scholar 

  • Kawahara Y, Manabe T, Matsumoto M et al (2009) LIF-free embryonic stem cell culture in simulated microgravity. PLoS ONE 4:e6343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kempermann G, Gage FH (2000) Neurogenesis in the adult hippocampus. Novartis Found Symp 231:220–235; discussion 235–241, 302–226

    Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH (1997) Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc Natl Acad Sci USA 94:10409–10414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Pertea G, Trapnell C et al (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kleber M, Sommer L (2004) Wnt signaling and the regulation of stem cell function. Curr Opin Cell Biol 16:681–687

    Article  CAS  PubMed  Google Scholar 

  • Klein EA, Yin L, Kothapalli D et al (2009) Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr Biol 19:1511–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowlton S, Cho Y, Li XJ et al (2016) Utilizing stem cells for three-dimensional neural tissue engineering. Biomater Sci 4:768–784

    Article  CAS  PubMed  Google Scholar 

  • Laks DR, Masterman-Smith M, Visnyei K et al (2009) Neurosphere formation is an independent predictor of clinical outcome in malignant glioma. Stem Cells 27:980–987

    Article  PubMed  PubMed Central  Google Scholar 

  • Lange C, Mix E, Rateitschak K et al (2006) Wnt signal pathways and neural stem cell differentiation. Neurodegener Dis 3:76–86

    Article  CAS  PubMed  Google Scholar 

  • Lee GY, Kenny PA, Lee EH et al (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4:359–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee-Liu D, Edwards-Faret G, Tapia VS et al (2013) Spinal cord regeneration: lessons for mammals from non-mammalian vertebrates. Genesis 51:529–544

    Article  PubMed  Google Scholar 

  • Li X, Xiao Z, Han J et al (2013) Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair. Biomaterials 34:5107–5116

    Article  CAS  PubMed  Google Scholar 

  • Lie DC, Colamarino SA, Song HJ et al (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437:1370–1375

    Article  CAS  PubMed  Google Scholar 

  • Lim DA, Alvarez-Buylla A (1999) Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc Natl Acad Sci USA 96:7526–7531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim DA, Tramontin AD, Trevejo JM et al (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28:713–726

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Jiang X, Dai Z et al (2009) Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 24:1651–1661

    Article  CAS  PubMed  Google Scholar 

  • Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179–193

    Article  CAS  PubMed  Google Scholar 

  • Louis SA, Rietze RL, Deleyrolle L et al (2008) Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay. Stem Cells 26:988–996

    Article  PubMed  Google Scholar 

  • Luca AC, Mersch S, Deenen R et al (2013) Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS ONE 8:e59689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma DK, Marchetto MC, Guo JU et al (2010) Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 13:1338–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao S, Li X, Wang J et al (2016) miR-17-92 facilitates neuronal differentiation of transplanted neural stem/precursor cells under neuroinflammatory conditions. J Neuroinflammation 13:208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matigian N, Abrahamsen G, Sutharsan R et al (2010) Disease-specific, neurosphere-derived cells as models for brain disorders. Dis Model Mech 3:785–798

    Article  CAS  PubMed  Google Scholar 

  • Mc Garrigle MJ, Mullen CA, Haugh MG et al (2016) Osteocyte differentiation and the formation of an interconnected cellular network in vitro. Eur Cell Mater 31:323–340

    Article  CAS  PubMed  Google Scholar 

  • Mcconnell SK (1995) Strategies for the generation of neuronal diversity in the developing central nervous system. J Neurosci 15:6987–6998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcpherson A, Hormozdiari F, Zayed A et al (2011) deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol 7:e1001138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  CAS  PubMed  Google Scholar 

  • Monticone M, Liu Y, Pujic N et al (2010) Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure. J Cell Biochem 111:442–452

    Article  CAS  PubMed  Google Scholar 

  • Nelson LJ, Walker SW, Hayes PC et al (2010) Low-shear modelled microgravity environment maintains morphology and differentiated functionality of primary porcine hepatocyte cultures. Cells Tissues Organs 192:125–140

    Article  PubMed  Google Scholar 

  • Nickerson CA, Ott CM, Wilson JW et al (2004) Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev 68:345–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Ivic L et al (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Goritz C, Catchpole T et al (2010) EphB signaling controls lineage plasticity of adult neural stem cell niche cells. Cell Stem Cell 7:730–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nori S, Okada Y, Yasuda A et al (2011) Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci USA 108:16825–16830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63:300–311

    Article  CAS  PubMed  Google Scholar 

  • Okano H, Temple S (2009) Cell types to order: temporal specification of CNS stem cells. Curr Opin Neurobiol 19:112–119

    Article  CAS  PubMed  Google Scholar 

  • Platel JC, Dave KA, Gordon V et al (2010) NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron 65:859–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prewitz M, Seib FP, Pompe T et al (2012) Polymeric biomaterials for stem cell bioengineering. Macromol Rapid Commun 33:1420–1431

    Article  CAS  PubMed  Google Scholar 

  • Puca A, Russo G, Giordano A (2012) Properties of mechano-transduction via simulated microgravity and its effects on intracellular trafficking of VEGFR’s. Oncotarget 3:426–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravi M, Paramesh V, Kaviya SR et al (2015) 3D cell culture systems: advantages and applications. J Cell Physiol 230:16–26

    Article  CAS  PubMed  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  CAS  PubMed  Google Scholar 

  • Riquelme PA, Drapeau E, Doetsch F (2008) Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond B Biol Sci 363:123–137

    Article  PubMed  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sher F, Boddeke E, Olah M et al (2012) Dynamic changes in Ezh2 gene occupancy underlie its involvement in neural stem cell self-renewal and differentiation towards oligodendrocytes. PLoS ONE 7:e40399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shihabuddin LS (2008) Adult rodent spinal cord-derived neural stem cells: isolation and characterization. Methods Mol Biol 438:55–66

    Article  CAS  PubMed  Google Scholar 

  • Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417:39–44

    Article  CAS  PubMed  Google Scholar 

  • Souza GR, Molina JR, Raphael RM et al (2010) Three-dimensional tissue culture based on magnetic cell levitation. Nat Nanotechnol 5:291–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamenkovic V, Keller G, Nesic D et al (2010) Neocartilage formation in 1 g, simulated, and microgravity environments: implications for tissue engineering. Tissue Eng Part A 16:1729–1736

    Article  CAS  PubMed  Google Scholar 

  • Sun G, Fu C, Shen C et al (2011) Histone deacetylases in neural stem cells and induced pluripotent stem cells. J Biomed Biotechnol 2011:835968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–452

    Article  CAS  PubMed  Google Scholar 

  • Tamura Y, Takahashi K, Takata K et al (2016) Noninvasive evaluation of cellular proliferative activity in brain neurogenic regions in rats under depression and treatment by enhanced [18F]FLT-PET imaging. J Neurosci 36:8123–8131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tashiro A, Sandler VM, Toni N et al (2006) NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature 442:929–933

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueki T, Tanaka M, Yamashita K et al (2003) A novel secretory factor, Neurogenesin-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. J Neurosci 23:11732–11740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Zhang Z, Xin W (2007) Microgravity resulted from 3D dynamic culture induces compounding of bone morrow-derived mesenchymal stem cells with Pluronic F-127 scaffold used for repairing of cartilage defects. Chin Tissue Eng Clin Recov 11:2609–2613

    CAS  Google Scholar 

  • Wang Y, An L, Jiang Y et al (2011) Effects of simulated microgravity on embryonic stem cells. PLoS ONE 6:e29214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Li P, Qin K et al (2012) miR-124 regulates neural stem cells in the treatment of spinal cord injury. Neurosci Lett 529:12–17

    Article  CAS  PubMed  Google Scholar 

  • Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Lee JS, Kim J et al (2012) Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials 33:6952–6964

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Wang LG, Han Y et al (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuge L, Kajiume T, Tahara H et al (2006) Microgravity potentiates stem cell proliferation while sustaining the capability of differentiation. Stem Cells Dev 15:921–929

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Sun G, Li S et al (2010) MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci USA 107:1876–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziv Y, Ron N, Butovsky O et al (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9:268–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Strategic Priority Research Program of the Chinese Academy of Sciences” (XDA04020000) and National Science Foundation of China (U1738109 and 81601084).

We are greatly thankful to everyone who helped us to complete the SJ-10 satellite project. We thank Prof. Zhang Tao and his staff of the Shanghai Institute of Technical Physics (Chinese Academy of Sciences, CAS) for designing and manufacturing the fully automated bioreactors for 3D-cultured NSC survival in space. We thank Prof. Suo Guangli and his graduate student Zhou Yuanshuai of the Suzhou Institute of Nano-tech and Nano-Bionics (CAS) and Prof. Wu Xianming of the Institute of Genetics and Developmental Biology (CAS) for processing the bioinformatics data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwu Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, J., Cui, Y., Xu, B., Xue, W., Liu, S., Dai, J. (2019). Three-Dimensional Cell Culture and Tissue Restoration of Neural Stem Cells Under Microgravity. In: Duan, E., Long, M. (eds) Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite. Research for Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6325-2_10

Download citation

Publish with us

Policies and ethics