Advertisement

River Discharge

  • Tetsuya HiyamaEmail author
  • Shigemi Hatta
  • Hotaek Park
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 236)

Abstract

Reductions in the extent of sea ice in the Arctic Ocean and snow cover in the pan-Arctic watershed will enhance the hydrological cycle in the northern high latitudes. The Lena River basin in eastern Siberia is one of the largest pan-Arctic river basins of the Eurasian continent, contributing around 15% of the total freshwater inflow into the Arctic Ocean. In this chapter, we provide an overview of the geographical scope of the Lena River basin and the seasonal changes and long-term trends in its discharge. Recent progress in hydrological modeling has targeted the discharge of the Lena River, but other pan-Arctic rivers are also described, including perspectives on river ice, permafrost, and groundwater. Additionally, we describe projections of future river discharge to mitigate the effects of river floods and/or climate change-induced river disasters. Finally, river water chemistry and past and ongoing activities related to the monitoring of river water chemistry in the pan-Arctic rivers are overviewed.

Keywords

Arctic Ocean Groundwater Pan-Arctic Permafrost Hydrological modeling Water chemistry 

References

  1. Aagaard K, Carmack EC (1989) The role of sea ice and other fresh-water in the Arctic circulation. J Geophys Res 94(C10):14485–14498.  https://doi.org/10.1029/JC094iC10p14485 CrossRefGoogle Scholar
  2. Adam JC, Lettenmaier DP (2003) Adjustment of global gridded precipitation for systematic bias. J Geophys Res 108(D9):4257.  https://doi.org/10.1029/2002JD002499 CrossRefGoogle Scholar
  3. Bamber J, van den Broeke M, Ettema J, Lenaerts J, Rignot E (2012) Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys Res Lett 39:L19501.  https://doi.org/10.1029/2012GL052552 CrossRefGoogle Scholar
  4. Beltaos S (ed) (1995) River ice jams. Water Resources Publications, LLC, Colorado, 372p. isbn:978-091833487-9Google Scholar
  5. Beltaos S (ed) (2008) River ice breakup. Water Resources Publications, LLC, Colorado, 462p. isbn:978-188720150-6Google Scholar
  6. Bennett KE, Prowse TD (2010) Northern hemisphere geography of ice-covered rivers. Hydrol Process 24:235–240.  https://doi.org/10.1002/hyp.7561 CrossRefGoogle Scholar
  7. Berezovskaya S, Yang D, Kane DL (2004) Compatibility analysis of precipitation and runoff trends over the large Siberian watersheds. Geophys Res Lett 31:L21502.  https://doi.org/10.1029/2004GL021277 CrossRefGoogle Scholar
  8. Berezovskaya S, Yang D, Hinzman L (2005) Long-term annual water balance analysis of the Lena River. Glob Planet Chang 48:84–95.  https://doi.org/10.1016/j.gloplacha.2004.12.006 CrossRefGoogle Scholar
  9. Bintanja R, Selten FM (2014) Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 509:479–482.  https://doi.org/10.1038/nature13259 CrossRefPubMedGoogle Scholar
  10. Bowling LC, Lettenmaier DP, Nijssen B, Graham LP, Clark DB, Maayar ME, Essery R, Goers S, Gusev YM, Habets F, van den Hurk B, Jin J, Kahan D, Lohmann D, Ma X, Mahanama S, Mocko D, Nasonova O, Niu G-Y, Samuelsson P, Shmakin AB, Takata K, Verseghy D, Viterbo P, Xia Y, Xue Y, Yang Z-L (2003) Simulation of high-latitude hydrological processes in the Torne-Kalix basin: PILPS phase 2(e) 1: experiment description and summary intercomparisons. Glob Planet Chang 38:1–30.  https://doi.org/10.1016/S0921-8181(03)00003-1 CrossRefGoogle Scholar
  11. Bring A, Fedorova I, Dibike Y, Hinzman L, Mård J, Mernild SH, Prowse T, Semenova O, Stuefer SL, Woo M-K (2016) Arctic terrestrial hydrology: a synthesis of processes, regional effects, and research challenges. J Geophys Res Biogeosci 121:621–649.  https://doi.org/10.1002/2015JG003131 CrossRefGoogle Scholar
  12. Bring A, Shiklomanov A, Lammers RB (2017) Pan-Arctic river discharge: prioritizing monitoring of future climate change hot spots. Earth’s Future 5:72–92.  https://doi.org/10.1002/2016EF000434 CrossRefGoogle Scholar
  13. Brown RD, Mote PW (2009) The response of northern hemisphere snow cover to a changing climate. J Clim 22:2124–2145.  https://doi.org/10.1175/2008JCLI2665.1 CrossRefGoogle Scholar
  14. Brutsaert W, Hiyama T (2012) The determination of permafrost thawing trends from long-term streamflow measurements with an application in eastern Siberia. J Geophys Res 117:D22110.  https://doi.org/10.1029/2012JD018344 CrossRefGoogle Scholar
  15. Carmack EC, Yamamoto-Kawai M, Haine TWN, Bacon S, Bluhm BA, Lique C, Melling H, Polyakov IV, Straneo F, Timmermans M-L, Williams WJ (2016) Freshwater and its role in the Arctic marine system: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J Geophys Res Biogeosci 121:675–717.  https://doi.org/10.1002/2015JG003140 CrossRefGoogle Scholar
  16. Déry SJ, Stieglitz M, McKenna EC, Wood EF (2005) Characteristics and trends of river discharge into Hudson, James, and Ungava bays, 1964-2000. J Clim 18:2540–2557.  https://doi.org/10.1175/JCLI3440.1 CrossRefGoogle Scholar
  17. Déry SJ, Stadnyk TA, MacDonald MK, Gauli-Sharma B (2016) Recent trends and variability in river discharge across northern Canada. Hydrol Earth Syst Sci 20:4801–4818.  https://doi.org/10.5194/hess-20-4801-2016 CrossRefGoogle Scholar
  18. Essery R, Clark DB (2003) Developments in the MOSES 2 land-surface model for PILPS 2e. Glob Planet Chang 38:161–164.  https://doi.org/10.1016/S0921-8181(03)00026-2 CrossRefGoogle Scholar
  19. Frey KE, McClelland JW (2009) Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol Process 23:169–182.  https://doi.org/10.1002/hyp.7196 CrossRefGoogle Scholar
  20. Fukutomi Y, Igarashi H, Masuda K, Yasunari T (2003) Interannual variability of summer water balance components in three major river basins of northern Eurasia. J Hydrometeorol 4:283–296.  https://doi.org/10.1175/1525-7541(2003)4<283:IVOSWB>2.0.CO;2 CrossRefGoogle Scholar
  21. Gautier E, Dépret T, Costard F, Virmoux C, Fedorov A, Grancher D, Konstantinov P, Brunstein D (2018) Going with the flow: hydrologic response of middle Lena River (Siberia) to the climate variability and change. J Hydrol 557:475–488.  https://doi.org/10.1016/j.jhydrol.2017.12.034 CrossRefGoogle Scholar
  22. Haine TWN, Curry B, Gerdes R, Hansen E, Karcher M, Lee C, Rudels B, Spreen G, de Steur L, Stewart KD, Woodgate R (2015) Arctic freshwater export: status, mechanisms, and prospects. Glob Planet Chang 125:13–35.  https://doi.org/10.1016/j.gloplacha.2014.11.013 CrossRefGoogle Scholar
  23. Hatta S, Hayakawa H, Park H, Yamazaki T, Yamamoto K, Ohta T (2009) Long term runoff analysis of the Lena river basin using a distributed hydrological model. J Jpn Soc Hydrol Water Resour 22:177–187.  https://doi.org/10.3178/jjshwr.22.177 (in Japanese with English abstract)CrossRefGoogle Scholar
  24. Hiyama T, Takakura H (2018) Global warming and human-nature dimension in Northern Eurasia. Global Environmental Studies (GES)/Springer, Singapore, 224p. isbn:978-981-10-4647-6. https://doi.org/10.1007/978-981-10-4648-3 Google Scholar
  25. Hiyama T, Asai K, Kolesnikov AB, Gagarin LA, Shepelev VV (2013) Estimation of the residence time of permafrost groundwater in the middle of the Lena River basin, eastern Siberia. Environ Res Lett 8:035040.  https://doi.org/10.1088/1748-9326/8/3/035040 CrossRefGoogle Scholar
  26. Holland MM, Finnis J, Barret AP, Serreze MC (2007) Projected changes in Arctic Ocean freshwater budgets. J Geophys Res 112(G4):G04S55.  https://doi.org/10.1029/2006JG000354 CrossRefGoogle Scholar
  27. Holmes RM, McClelland JW, Peterson BJ, Tank SE, Bulygina E, Eglinton TI, Gordeev VV, Gurtovaya TY, Raymond PA, Repeta DJ, Staples R, Striegl RG, Zhulidov AV, Zimov SA (2012) Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuar Coasts 35:369–382.  https://doi.org/10.1007/s12237-011-9386-6 CrossRefGoogle Scholar
  28. Liu B, Yang D, Ye B, Berezovskaya S (2005) Long-term open-water season stream temperature variations and changes over Lena River basin in Siberia. Glob Planet Chang 48:96–111.  https://doi.org/10.1016/j.gloplacha.2004.12.007 CrossRefGoogle Scholar
  29. Ma X, Fukushima Y (2002) A numerical model of the river freezing process and its application to the Lena River. Hydrol Process 16:2131–2140.  https://doi.org/10.1002/hyp.1146 CrossRefGoogle Scholar
  30. Ma X, Fukushima Y, Hiyama T, Hashimoto T, Ohata T (2000) A macro-scale hydrological analysis of the Lena River basin. Hydrol Process 14:639–651.  https://doi.org/10.1002/(SICI)1099-1085(20000228)14:3<639::AID-HYP959>3.0.CO;2-0 CrossRefGoogle Scholar
  31. McClelland JW, Holmes RM, Peterson BJ, Amon R, Brabets T, Cooper L, Gibson J, Gordeev VV, Guay C, Milburn D, Staples R, Raymond PA, Shiklomanov I, Striegl R, Zhulidov A, Gurtovaya T, Zimov S (2008) Development of a pan-Arctic database for river chemistry. EOS Trans Am Geophys Union 89(24):217–218.  https://doi.org/10.1029/2008EO240001 CrossRefGoogle Scholar
  32. McClelland JW, Tank SE, Spencer RGM, Shiklomanov AI (2015) Coordination and sustainability of river observing activities in the Arctic. Arctic 68.  https://doi.org/10.14430/arctic4448 CrossRefGoogle Scholar
  33. McClelland JW, Holmes RM, Peterson BJ, Raymond PA, Striegl RG, Zhulidov AV, Zimov SA, Zimov N, Tank SE, Spencer RGM, Staples R, Gurtovaya TY, Griffin CG (2016) Particulate organic carbon and nitrogen export from major Arctic rivers. Glob Biogeochem Cycles 30:629–643.  https://doi.org/10.1002/2015GB005351 CrossRefGoogle Scholar
  34. Oshima K, Tachibana Y, Hiyama T (2015) Climate and year-to-year variability of atmospheric and terrestrial water cycles in the three great Siberian rivers. J Geophys Res Atmos 120:3043–3062.  https://doi.org/10.1002/2014JD022489 CrossRefGoogle Scholar
  35. Park H, Yamazaki T, Yamamoto K, Ohta T (2008) Tempo-spatial characteristics of energy budget and evapotranspiration in the eastern Siberia. Agric For Meteorol 148:1990–2005.  https://doi.org/10.1016/j.agrformet.2008.06.018 CrossRefGoogle Scholar
  36. Park H, Walsh J, Fedorov AN, Sherstiukov AB, Iijima Y, Ohata T (2013a) The influence of climate and hydrological variables on opposite anomaly in active-layer thickness between Eurasian and North American watersheds. Cryosphere 7:631–645.  https://doi.org/10.5194/tc-7-631-2013 CrossRefGoogle Scholar
  37. Park H, Walsh JE, Kim Y, Nakai T, Ohata T (2013b) The role of declining Arctic Sea ice in recent decreasing terrestrial Arctic snow depths. Pol Sci 7:174–187.  https://doi.org/10.1016/j.polar.2012.10.002 CrossRefGoogle Scholar
  38. Park H, Yoshikawa Y, Oshima K, Kim Y, Ngo-Duc T, Kimball JS, Yang D (2016) Quantification of warming climate-induced changes in terrestrial Arctic River ice thickness and phenology. J Clim 29:1733–1754.  https://doi.org/10.1175/JCLI-D-15-0569.1 CrossRefGoogle Scholar
  39. Peterson BJ, Holmes RM, McClelland JW, Vorosmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173.  https://doi.org/10.1126/science.1077445 CrossRefGoogle Scholar
  40. Peterson BJ, McClelland J, Curry R, Holmes RM, Walsh JE, Aagaard K (2006) Trajectory shifts in the Arctic and subarctic freshwater cycle. Science 313:1061–1066.  https://doi.org/10.1126/science.1122593 CrossRefPubMedGoogle Scholar
  41. Prowse T, Bring A, Mård J, Carmack E (2015a) Arctic freshwater synthesis: introduction. J Geophys Res Biogeosci 120:2121–2131.  https://doi.org/10.1002/2015JG003127 CrossRefGoogle Scholar
  42. Prowse T, Bring A, Mård J, Carmack E, Holland M, Instanes A, Vihma T, Wrona FJ (2015b) Arctic freshwater synthesis: summary of key emerging issues. J Geophys Res Biogeosci 120:1887–1893.  https://doi.org/10.1002/2015JG003128 CrossRefGoogle Scholar
  43. Rawlins MA, Steele M, Holland MM, Adam JC, Cherry JE, Francis JA, Groisman PY, Hinzman LD, Huntington TG, Kane DL, Kimball JS, Kwok R, Lammers RB, Lee CM, Lettenmaier DP, McDonald KC, Podest E, Pundsack JW, Rudels B, Serreze MC, Shiklomanov A, Skagseth Ø, Troy TJ, Vörösmarty CJ, Wensnahan M, Wood EF, Woodgate R, Yang D, Zhang K, Zhang T (2010) Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J Clim 23:5715–5737.  https://doi.org/10.1175/2010JCLI3421.1 CrossRefGoogle Scholar
  44. Raymond PA, McClelland JW, Holmes RM, Zhulidov AV, Mull K, Peterson BJ, Striegl RG, Aiken GR, Gurtovaya TY (2007) Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest arctic rivers. Glob Biogeochem Cycle 21:GB4011.  https://doi.org/10.1029/2007GB002934 CrossRefGoogle Scholar
  45. Sakai T, Hatta S, Okumura M, Hiyama T, Yamaguchi Y, Inoue G (2015) Use of Landsat TM/ETM+ to monitor the spatial and temporal extent of spring breakup floods in the Lena River, Siberia. Int J Remote Sens 36:719–733.  https://doi.org/10.1080/01431161.2014.995271 CrossRefGoogle Scholar
  46. Serreze MC, Bromwich DH, Clark MP, Ertringer AJ, Zhang T, Lammers R (2003) Large-scale hydro-climatology of the terrestrial Arctic drainage system. J Geophys Res 108(D2):8160.  https://doi.org/10.1029/2001JD000919 CrossRefGoogle Scholar
  47. Serreze MC, Barrett AP, Slater AG, Woodgate RA, Aagaard K, Lammers RB, Steele M, Moritz R, Meredith M, Lee CM (2006) The large-scale freshwater cycle of the Arctic. J Geophys Res 111:C11010.  https://doi.org/10.1029/2005JC003424 CrossRefGoogle Scholar
  48. Shiklomanov AI, Lammers RB (2009) Record Russian river discharge in 2007 and the limits of analysis. Environ Res Lett 4:045015.  https://doi.org/10.1088/1748-9326/4/4/045015 CrossRefGoogle Scholar
  49. Slater AG, Bohn TJ, McCreight JL, Serreze MC, Lettenmaier DP (2007) A multimodel simulation of pan-Arctic hydrology. J Geophys Res 112(G4):G04S45.  https://doi.org/10.1029/2006JG000303 CrossRefGoogle Scholar
  50. Smith LC, Pavelsky TM, MacDonald GM, Shiklomanov AI, Lammers RB (2007) Rising minimum daily flows in northern Eurasian rivers: a growing influence of groundwater in the high-latitude hydrologic cycle. J Geophys Res 112:G04S47.  https://doi.org/10.1029/2006JG000327 CrossRefGoogle Scholar
  51. Su F, Adam JC, Bowling LC, Lettenmaier DP (2005) Streamflow simulations of the terrestrial Arctic domain. J Geophys Res 110(D8):D08112.  https://doi.org/10.1029/2004JD005518 CrossRefGoogle Scholar
  52. Suzuki K, Matsuo K, Hiyama T (2016) Satellite gravimetry-based analysis of terrestrial water storage and its relationship with run-off from the Lena River in eastern Siberia. Int J Remote Sens 37:2198–2210.  https://doi.org/10.1080/01431161.2016.1165890 CrossRefGoogle Scholar
  53. Swenson SC, Lawrence DM, Lee H (2012) Improved simulation of the terrestrial hydrological cycle in permafrost regions by the community land model. J Adv Model Earth Syst 4:M08002.  https://doi.org/10.1029/2012MS000165 CrossRefGoogle Scholar
  54. Tananaev NI, Makarieva OM, Lebedeva LS (2016) Trends in annual and extreme flows in the Lena River basin, northern Eurasia. Geophys Res Lett 43:10764–10772.  https://doi.org/10.1002/2016GL070796 CrossRefGoogle Scholar
  55. Tank SE, Raymond PA, Striegl RG, McClelland JW, Holmes RM, Fiske GJ, Peterson BJ (2012) A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean. Glob Biogeochem Cycle 26:GB4018.  https://doi.org/10.1029/2011GB004192 CrossRefGoogle Scholar
  56. van den Hurk B, Viterbo P (2003) The Torne-Kalix PILPS 2(e) experiment as a test bed for modifications to the ECMWF land surface scheme. Glob Planet Chang 38:165–173.  https://doi.org/10.1016/S0921-8181(03)00027-4 CrossRefGoogle Scholar
  57. van Vliet MTH, Franssen WHP, Yearsley JR, Ludwig F, Haddeland I, Lettenmaier DP, Kabat P (2013) Global river discharge and water temperature under climate change. Glob Environ Chang 23:450–464.  https://doi.org/10.1016/j.gloenvcha.2012.11.002 CrossRefGoogle Scholar
  58. Vihma T, Screen J, Tjernström M, Newton B, Zhang X, Popova V, Deser C, Holland M, Prowse T (2016) The atmospheric role in the Arctic water cycle: a review on processes, past and future changes, and their impacts. J Geophys Res Biogeosci 121:586–620.  https://doi.org/10.1002/2015JG003132 CrossRefGoogle Scholar
  59. Walsh J et al (2005) Cryosphere and hydrology. In: Arctic climate impact assessment. Cambridge University Press, Cambridge, pp 183–242Google Scholar
  60. White D, Hinzman L, Alessa L, Cassano J, Chambers M, Falkner K, Francis J, Gutowski WJ Jr, Holland M, Holmes RM, Huntington H, Kane D, Kliskey A, Lee C, McClelland J, Peterson B, Rupp TS, Straneo F, Steele M, Woodgate R, Yang D, Yoshikawa K, Zhang T (2007) The arctic freshwater system: changes and impacts. J Geophys Res 112(G4):G04S54.  https://doi.org/10.1029/2006JG000353 CrossRefGoogle Scholar
  61. Wrona FJ, Johansson M, Culp JM, Jenkins A, Mård J, Myers-Smith IH, Prowse TD, Vincent WF, Wookey PA (2016) Transitions in Arctic ecosystems: ecological implications of a changing hydrological regime. J Geophys Res Biogeosci 121:650–674.  https://doi.org/10.1002/2015JG003133 CrossRefGoogle Scholar
  62. Yang D, Kane DL, Hinzman L, Zhang X, Zhang T, Ye H (2002) Siberian Lena River hydrologic regime and recent change. J Geophys Res 107(D23):4694.  https://doi.org/10.1029/2002JD002542 CrossRefGoogle Scholar
  63. Ye B, Yang D, Kane DL (2003) Changes in Lena River streamflow hydrology: human impacts versus natural variations. Water Resour Res 39:1200.  https://doi.org/10.1029/2003WR001991 CrossRefGoogle Scholar
  64. Ye H, Yang D, Zhang T, Zhang X, Ladochy S, Ellison M (2004) The impact of climatic conditions on seasonal river discharges in Siberia. J Hydrometeorol 5:286–295.  https://doi.org/10.1175/1525-7541(2004)005<0286:TIOCCO>2.0.CO;2 CrossRefGoogle Scholar
  65. Ye B, Yang D, Zhang Z, Kane DL (2009) Variation of hydrological regime with permafrost coverage over Lena Basin in Siberia. J Geophys Res 114(D17):D07102.  https://doi.org/10.1029/2008JD010537 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute for Space-Earth Environmental Research (ISEE)Nagoya UniversityNagoyaJapan
  2. 2.National Institute of Technology, Tomakomai CollegeTomakomaiJapan
  3. 3.Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan

Personalised recommendations