Methane and Biogenic Volatile Organic Compound Emissions in Eastern Siberia

  • Jacobus van HuisstedenEmail author
Part of the Ecological Studies book series (ECOLSTUD, volume 236)


Eastern Siberia is a key region for understanding CH4 emissions from permafrost, as has been demonstrated in several landmark publications. Three sources of CH4 can be distinguished: ecosystem CH4 (produced from recently photosynthesized carbon in wetlands), old-carbon CH4 (generated by mobilization of old soil carbon), and deep CH4 (liberated from shallow gas reservoirs in the permafrost, including hydrates). The data uncertainty of these sources is large due to the sparseness of the observation network and challenges in obtaining winter flux measurements. Despite low winter temperatures, ecosystem CH4 flux has proven to be active during this season.

To elucidate ecosystem and old-carbon CH4, a better understanding of the microbial ecology of soils and lake sediments in relation to hydrology and electron acceptor availability is needed. At a large scale, both sources are closely linked to geomorphological processes resulting from permafrost thaw. Deep-permafrost CH4 is likely activated in northwest Siberia; however, there is no evidence for its enhanced activation on land in Eastern Siberia.

There is evidence for increasing biogenic volatile organic compound (BVOC) emissions in Siberian forests, which could reduce OH radical oxidation of CH4 in the atmosphere. However, BVOC oxidation also contributes to the formation of aerosols and is reduced by higher atmospheric CO2 concentrations. Studies modelling future emissions have shown that the net radiative effect is uncertain, varying from negative to positive depending on assumptions about the interaction between BVOC emissions and atmospheric CO2 concentration.


Acetoclastic pathway Atmospheric sink Biogenic volatile organic compound (BVOC) Floodplains Hydrates Methanotrophy 


  1. AMAP (2017) Snow, water, ice and permafrost in the Arctic (SWIPA) 2017. Arctic Monitoring and Assessment Programme (AMAP), OsloGoogle Scholar
  2. Angle JC, Morin TH, Solden LM, Narrowe AB, Smith GJ, Borton MA, Rey-Sanchez C, Daly RA, Mirfenderesgi G, Hoyt DW (2017) Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nat Commun 8(1):1567PubMedPubMedCentralGoogle Scholar
  3. Archer D (2007) Methane hydrate stability and anthropogenic climate change. Biogeosci Discuss 4(2):993–1057Google Scholar
  4. Arneth A, Niinemets Ü, Pressley S, Bäck J, Hari P, Karl T, Noe S, Prentice I, Serça D, Hickler T (2007) Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction. Atmos Chem Phys 7(1):31–53Google Scholar
  5. Arneth A, Sitch S, Bondeau A, Butterbach-Bahl K, Foster P, Gedney N, de Noblet-Ducoudré N, Prentice IC, Sanderson M, Thonicke K, Wania R, Zaehle S (2010) From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere. Biogeosciences 7(1):121–149Google Scholar
  6. Arneth A, Makkonen R, Olin S, Paasonen P, Holst T, Kajos MK, Kulmala M, Maximov T, Miller PA, Schurgers G (2016) Future vegetation–climate interactions in Eastern Siberia: an assessment of the competing effects of CO2 and secondary organic aerosols. Atmos Chem Phys 16(8):5243–5262. Google Scholar
  7. Babkina E, Khomutov A, Leibman M, Dvornikov Y, Kizyakov A (2017) Babkin E Paragenesis of thermal denudation with gas-emission crater and lake formation, Yamal Peninsula, Russia. EGU General Assembly Conference Abstracts, In, p 6026Google Scholar
  8. Bastviken D, Ejlertsson J, Sundh I, Tranvik L (2003) Methane as a source of carbon and energy for lake pelagic food webs. Ecology 84(4):969–981Google Scholar
  9. Bastviken D, Cole JJ, Pace ML, Van de Bogert MC (2008) Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. J Geophys Res Biogeosci 113(G2)Google Scholar
  10. Bauwens M, Stavrakou T, Müller J-F, Smedt ID, Roozendael MV, Werf GR, Wiedinmyer C, Kaiser JW, Sindelarova K, Guenther A (2016) Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations. Atmos Chem Phys 16(15):10133–10158Google Scholar
  11. Beermann F, Teltewskoi A, Fiencke C, Pfeiffer E-M, Kutzbach L (2015) Stoichiometric analysis of nutrient availability (N, P, K) within soils of polygonal tundra. Biogeochemistry 122(2-3):211–227Google Scholar
  12. Bergamaschi P, Houweling S, Segers A, Krol M, Frankenberg C, Scheepmaker RA, Dlugokencky E, Wofsy SC, Kort EA, Sweeney C, Schuck T, Brenninkmeijer C, Chen H, Beck V, Gerbig C (2013) Atmospheric CH4in the first decade of the 21st century: inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. J Geophys Res Atmos 118(13):7350–7369. Google Scholar
  13. Berrittella C, van Huissteden J, Warnsloh JM, Dolman AJ (2017) Permafrost ecosystem: wetlands characteristics and their influence on CH4 emissions in a drained thaw lake basin, Northeastern Siberia. In: Berrittella C (ed) Wetland methane emissions during Last Glacial climate warming. PhD thesis edn. VU University, AmsterdamGoogle Scholar
  14. Bhullar GS, Edwards PJ, Olde Venterink H (2013) Variation in the plant-mediated methane transport and its importance for methane emission from intact wetland peat mesocosms. J Plant Ecol 6(4):298–304. Google Scholar
  15. Bintanja R, Selten F (2014) Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 509(7501):479PubMedGoogle Scholar
  16. Blok D, Heijmans MM, Schaepman-Strub G, Kononov A, Maximov T, Berendse F (2010) Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob Chang Biol 16(4):1296–1305Google Scholar
  17. Blok D, Heijmans MMPD, Schaepman-Strub G, van Ruijven J, Parmentier FJW, Maximov TC, Berendse F (2011) The cooling capacity of mosses: controls on water and energy fluxes in a Siberian Tundra site. Ecosystems 14(7):1055–1065. Google Scholar
  18. Boike J, Georgi C, Kirilin G, Muster S, Abramova K, Fedorova I, Chetverova A, Grigoriev M, Bornemann N, Langer M (2015) Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia – observations and modeling (Lena River Delta, Siberia). Biogeosciences 12(20):5941–5965. Google Scholar
  19. Brouchkov A, Fukuda M (2002) Preliminary measurements on methane content in permafrost, Central Yakutia, and some experimental data. Permafr Periglac Process 13(3):187–197. Google Scholar
  20. Brouchkov A, Fukuda M, Fedorov A, Konstantinov P, Iwahana G (2004) Thermokarst as a short-term permafrost disturbance, Central Yakutia. Permafr Periglac Process 15(1):81–87. Google Scholar
  21. Bruhwiler L, Dlugokencky E, Masarie K, Ishizawa M, Andrews A, Miller J, Sweeney C, Tans P, Worthy D (2014) CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane. Atmos Chem Phys 14(16):8269–8293Google Scholar
  22. Budishchev A, Mi Y, van Huissteden J, Belelli-Marchesini L, Schaepman-Strub G, Parmentier FJW, Fratini G, Gallagher A, Maximov TC, Dolman AJ (2014) Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling. Biogeosciences 11(17):4651–4664. Google Scholar
  23. Callaghan TV, Johansson M, Brown RD, Groisman PY, Labba N, Radionov V, Barry RG, Bulygina ON, Essery RLH, Frolov DM, Golubev VN, Grenfell TC, Petrushina MN, Razuvaev VN, Robinson DA, Romanov P, Shindell D, Shmakin AB, Sokratov SA, Warren S, Yang D (2012) The changing face of Arctic snow cover: a synthesis of observed and projected changes. Ambio 40(S1):17–31. PubMedCentralGoogle Scholar
  24. Chadburn SE, Krinner G, Porada P, Bartsch A, Beer C, Belelli Marchesini L, Boike J, Ekici A, Elberling B, Friborg T, Hugelius G, Johansson M, Kuhry P, Kutzbach L, Langer M, Lund M, Parmentier FJW, Peng S, Van Huissteden K, Wang T, Westermann S, Zhu D, Burke EJ (2017) Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models. Biogeosciences 14(22):5143–5169. Google Scholar
  25. Christensen TR, Jonasson S, Callaghan TV, Havström M (1995) Spatial variation in high latitude methane flux-a transect across tundra environments in Siberia and the European Arctic. J Geophys Res 100(D10):21035–21045Google Scholar
  26. Christensen TR, Ekberg A, Ström L, Mastepanov M, Panikov N, Öquist M, Svensson BH, Nykänen H, Martikainen PJ, Oskarsson H (2003) Factors controlling large scale variations in methane emissions from wetlands. Geophys Res Lett 30(7).
  27. Corbett JE, Tfaily MM, Burdige DJ, Glaser PH, Chanton JP (2015) The relative importance of methanogenesis in the decomposition of organic matter in northern peatlands. J Geophys Res Biogeosci 120(2):280–293Google Scholar
  28. Corradi C, Kolle O, Walter K, Zimov SA, Schulze ED (2005) Carbon dioxide and methane exchange of a north-east Siberian tussock tundra. Glob Chang Biol 11:1910–1925. Google Scholar
  29. Deutzmann JS, Stief P, Brandes J, Schink B (2014) Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. Proc Natl Acad Sci 111(51):18273–18278PubMedGoogle Scholar
  30. Duguay CR, Flato GM, Jeffries MO, Ménard P, Morris K, Rouse WR (2003) Ice-cover variability on shallow lakes at high latitudes: model simulations and observations. Hydrol Process 17(17):3465–3483. Google Scholar
  31. Fedorov AN, Konstantinov PY (2009) Response of permafrost landscapes of Central Yakutia to current changes of climate, and anthropogenic impacts. Geogr Nat Resour 30(2):146–150Google Scholar
  32. Fedorov A, Gavriliev P, Konstantinov P, Hiyama T, Iijima Y, Iwahana G (2014) Estimating the water balance of a thermokarst lake in the middle of the Lena River basin, eastern Siberia. Ecohydrology 7(2):188–196Google Scholar
  33. Flessa H, Rodionov A, Guggenberger G, Fuchs H, Magdon P, Shibistova O, Zrazhevskaya G, Mikheyeva N, Kasansky OA, Blodau C (2008) Landscape controls of CH4fluxes in a catchment of the forest tundra ecotone in northern Siberia. Glob Chang Biol 14(9):2040–2056. Google Scholar
  34. Frenzel P, Karofeld E (2000) CH4 emission from a hollow-ridge complex in a raised bog: the role of CH4 production and oxidation. Biogeochemistry 51(1):91–112Google Scholar
  35. Ganzert L, Jurgens G, Munster U, Wagner D (2007) Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol Ecol 59(2):476–488. PubMedGoogle Scholar
  36. Gauci V, Gowing DJ, Hornibrook ER, Davis JM, Dise NB (2010) Woody stem methane emission in mature wetland alder trees. Atmos Environ 44(17):2157–2160Google Scholar
  37. Glagolev M, Kleptsova I, Filippov I, Maksyutov S, Machida T (2011) Regional methane emission from West Siberia mire landscapes. Environ Res Lett 6(4):045214. Google Scholar
  38. Goovaerts A (2016) An explorative study of carbon sources and greenhouse gas emissions in thermokarst lakes and rivers using stable isotopes (Chokurdakh, Yakutsk, Russia). Master Thesis, KU Leuven, Facultei Bio-Ingenieurswetenschappen:122Google Scholar
  39. Grosse G, Romanovsky V, Walter K, Morgenstern A, Lantuit H, Zimov S (2008) Distribution of thermokarst lakes and ponds at three yedoma sites in Siberia. In: 9th International conference on Permafrost, Fairbanks, 2008. Proceedings 9th International conference on Permafrost. pp 551–556Google Scholar
  40. Grosse G, Harden J, Turetsky M, McGuire AD, Camill P, Tarnocai C, Frolking S, Schuur EAG, Jorgenson T, Marchenko S, Romanovsky V, Wickland KP, French N, Waldrop M, Bourgeau-Chavez L, Striegl RG (2011) Vulnerability of high-latitude soil organic carbon in North America to disturbance. J Geophys Res 116.
  41. Grosse G, Jones B, Arp C (2013) 8. 21 Thermokarst lakes, drainage, and drained basins. 325–353. Google Scholar
  42. Guenther A (2013) Biological and chemical diversity of biogenic volatile organic emissions into the atmosphere. ISRN Atmos Sci 2013:1–27. Google Scholar
  43. Gustafsson Ö, van Dongen BE, Vonk JE, Dudarev OV, Semiletov IP (2011) Widespread release of old carbon across the Siberian Arctic echoed by its large rivers. Biogeosciences 8(6):1737–1743. Google Scholar
  44. Hershey AE, Northington RM, Whalen SC (2013) Substrate limitation of sediment methane flux, methane oxidation and use of stable isotopes for assessing methanogenesis pathways in a small arctic lake. Biogeochemistry 117(2-3):325–336. Google Scholar
  45. Hines ME, Duddleston KN, Kiene RP (2001) Carbon flow to acetate and C1 compounds in northern wetlands. Geophys Res Lett 28(22):4251–4254Google Scholar
  46. Hodgkins SB, Tfaily MM, McCalley CK, Logan TA, Crill PM, Saleska SR, Rich VI, Chanton JP (2014) Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proc Natl Acad Sci USA 111(16):5819–5824. PubMedGoogle Scholar
  47. Hoj L, Olsen RA, Torsvik VL (2008) Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high Arctic peat. ISME J 2(1):37–48. PubMedGoogle Scholar
  48. Holst T, Arneth A, Hayward S, Ekberg A, Mastepanov M, Jackowicz-Korczynski M, Friborg T, Crill PM, Bäckstrand K (2010a) BVOC ecosystem flux measurements at a high latitude wetland site. Atmos Chem Phys 10(4):1617–1634Google Scholar
  49. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson C (2001) Climate change 2001: the scientific basis. The Press Syndicate of the University of Cambridge, CambridgeGoogle Scholar
  50. Houweling S, Krol M, Bergamaschi P, Frankenberg C, Dlugokencky EJ, Morino I, Notholt J, Sherlock V, Wunch D, Beck V, Gerbig C, Chen H, Kort EA, Röckmann T, Aben I (2014) A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements. Atmos Chem Phys 14(8):3991–4012. Google Scholar
  51. Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, O’Donnell JA, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P (2014) Improved estimates show large circumpolar stocks of permafrost carbon while quantifying substantial uncertainty ranges and identifying remaining data gaps. Biogeosci Discuss 11(3):4771–4822. Google Scholar
  52. Iijima Y, Fedorov AN, Park H, Suzuki K, Yabuki H, Maximov TC, Ohata T (2010) Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia. Permaf Periglac Process 21(1):30–41. Google Scholar
  53. Jammet M, Crill P, Dengel S, Friborg T (2015) Large methane emissions from a subarctic lake during spring thaw: mechanisms and landscape significance. J Geophys Res Biogeosci 120(11):2289–2305. Google Scholar
  54. Johansson M, Callaghan TV, Bosiö J, Åkerman HJ, Jackowicz-Korczynski M, Christensen TR (2013) Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden. Environ Res Lett 8(3):035025. Google Scholar
  55. Jones BM, Grosse G, Arp C, Jones M, Walter Anthony K, Romanovsky V (2011) Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. J Geophys Res Biogeosci 116(G2):G00M03. Google Scholar
  56. Jørgenson JC, Lund Johansen KM, Westergaard-Nielsen A, Elberling B (2014) Net regional methane sink in High Arctic soils of northeast Greenland. Nat Geosci 8(1):20–23. Google Scholar
  57. Jorgenson MT, Shur Y (2007) Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. J Geophys Res Earth Surf 112(F2):F02S17. Google Scholar
  58. Jorgenson MT, Shur YL, Pullman ER (2006) Abrupt increase in permafrost degradation in Arctic Alaska. Geophys Res Lett 33(2).
  59. Kajos M, Hakola H, Holst T, Nieminen T, Tarvainen V, Maximov T, Petäjä T, Arneth A, Rinne J (2013) Terpenoid emissions from fully grown east Siberian Larix cajanderi trees. Biogeosciences 10(7):4705Google Scholar
  60. Karlsson J, Lyon S, Destouni G (2014) Temporal behavior of lake size-distribution in a thawing permafrost landscape in Northwestern Siberia. Remote Sens 6(1):621–636. Google Scholar
  61. King J, Reeburgh W, Thieler K, Kling G, Loya W, Johnson L, Nadelhoffer K (2002) Pulse-labeling studies of carbon cycling in Arctic tundra ecosystems: the contribution of photosynthates to methane emission. Glob Biogeochem Cycles 16(4):1062. Google Scholar
  62. Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart G-J, Smolders AJP, Jetten MSM, Damsté JSS, Op den Camp HJM (2010) Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci 3(9):617–621. Google Scholar
  63. Kirpotin S, Polishchuk Y, Zakharova E, Shirokova L, Pokrovsky O, Kolmakova M, Dupre B (2008) One of the possible mechanisms of thermokarst lakes drainage in West-Siberian North. Int J Environ Stud 65(5):631–635. Google Scholar
  64. Kirpotin SN, Polishchuk Y, Bryksina N (2009) Abrupt changes of thermokarst lakes in Western Siberia: impacts of climatic warming on permafrost melting. Int J Environ Stud 66(4):423–431. Google Scholar
  65. Kirpotin S, Polishchuk Y, Bryksina N, Sugaipova A, Kouraev A, Zakharova E, Pokrovsky OS, Shirokova L, Kolmakova M, Manassypov R, Dupre B (2011) West Siberian palsa peatlands: distribution, typology, cyclic development, present day climate-driven changes, seasonal hydrology and impact on CO2 cycle. Int J Environ Stud 68(5):603–623. Google Scholar
  66. Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L (2013) Three decades of global methane sources and sinks. Nat Geosci 6(10):813Google Scholar
  67. Kittler F, Heimann M, Kolle O, Zimov N, Zimov S, Göckede M (2017) Long-term drainage reduces CO2 uptake and CH4 emissions in a Siberian permafrost ecosystem. Global Biogeochem Cycles 31 Google Scholar
  68. Knoblauch C, Zimmermann U, Blumenberg M, Michaelis W, Pfeiffer E-M (2008) Methane turnover and temperature response of methane-oxidizing bacteria in permafrost-affected soils of northeast Siberia. Soil Biol Biochem 40(12):3004–3013Google Scholar
  69. Knoblauch C, Spott O, Evgrafova S, Kutzbach L, Pfeiffer EM (2015) Regulation of methane production, oxidation, and emission by vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra. J Geophys Res Biogeosci 120(12):2525–2541Google Scholar
  70. Kobabe S, Wagner D, Pfeiffer EM (2004) Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridisation. FEMS Microbiol Ecol 50(1):13–23. PubMedGoogle Scholar
  71. Kraev GN, Schultze ED, Rivkina EM (2012) Cryogenesis as a factor of methane distribution in layers of permafrost. Dokl Earth Sci 451(2):882–885. Google Scholar
  72. Kramshøj M, Vedel-Petersen I, Schollert M, Rinnan Å, Nymand J, Ro-Poulsen H, Rinnan R (2016) Large increases in Arctic biogenic volatile emissions are a direct effect of warming. Nat Geosci 9(5):349–352Google Scholar
  73. Kutzbach L, Wagner D, Pfeiffer E-M (2004) Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemistry 69(3):341–362Google Scholar
  74. Kutzbach L, Schneider J, Sachs T, Giebels M, Nykänen H, Shurpali N, Martikainen P, Alm J, Wilmking M (2007) CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeosciences 4(6):1005–1025Google Scholar
  75. Kwon MJ, Heimann M, Kolle O, Luus KA, Schuur EAG, Zimov N, Zimov SA, Göckede M (2016) Long-term drainage reduces CO2 uptake and increases CO2 emission on a Siberian floodplain due to shifts in vegetation community and soil thermal characteristics. Biogeosciences 13(14):4219–4235. Google Scholar
  76. Kwon MJ, Beulig F, Ilie I, Wildner M, Kusel K, Merbold L, Mahecha MD, Zimov N, Zimov SA, Heimann M, Schuur EAG, Kostka JE, Kolle O, Hilke I, Gockede M (2017) Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Glob Chang Biol 23(6):2396–2412. PubMedGoogle Scholar
  77. Langer M, Westermann S, Walter Anthony K, Wischnewski K, Boike J (2015) Frozen ponds: production and storage of methane during the Arctic winter in a lowland tundra landscape in northern Siberia, Lena River delta. Biogeosciences 12(4):977–990. Google Scholar
  78. Lara MJ, McGuire AD, Euskirchen ES, Tweedie CE, Hinkel KM, Skurikhin AN, Romanovsky VE, Grosse G, Bolton WR, Genet H (2015) Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula. Glob Chang Biol 21(4):1634–1651. PubMedGoogle Scholar
  79. Larmola T, Tuittila E-S, Tiirola M, Nykänen H, Martikainen PJ, Yrjälä K, Tuomivirta T, Fritze H (2010) The role of Sphagnum mosses in the methane cycling of a boreal mire. Ecology 91(8):2356–2365PubMedGoogle Scholar
  80. Larmola T, Leppänen SM, Tuittila E-S, Aarva M, Merilä P, Fritze H, Tiirola M (2014) Methanotrophy induces nitrogen fixation during peatland development. Proc Natl Acad Sci 111(2):734–739PubMedGoogle Scholar
  81. Leibman MO, Kizyakov AI, Plekhanov AV, Streletskaya ID (2014) New permafrost feature–deep crater in Central Yamal (West Siberia, Russia) as a response to local climate fluctuations. Environ Sustain 4:68–80Google Scholar
  82. Li B, Heijmans MMPD, Blo D, Wang P, Karsanaev SV, Maximov TC, Van Huissteden J, Berendse F (2017) Thaw pond development and initial vegetation succession in experimental plots at a Siberian lowland tundra site. Pant Soil 420:147–162. Google Scholar
  83. Liebner S, Zeyer J, Wagner D, Schubert C, Pfeiffer EM, Knoblauch C (2011) Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. J Ecol 99(4):914–922Google Scholar
  84. Liljedahl AK, Boike J, Daanen RP, Fedorov AN, Frost GV, Grosse G, Hinzman LD, Iijma Y, Jorgenson JC, Matveyeva N, Necsoiu M, Raynolds MK, Romanovsky VE, Schulla J, Tape KD, Walker DA, Wilson CJ, Yabuki H, Zona D (2016) Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat Geosci 9(4):312–318. Google Scholar
  85. Mastepanov M, Sigsgaard C, Dlugokencky EJ, Houweling S, Strom L, Tamstorf MP, Christensen TR (2008) Large tundra methane burst during onset of freezing. Nature 456(7222):628–630. PubMedGoogle Scholar
  86. Mastepanov M, Sigsgaard C, Tagesson T, Ström L, Tamstorf MP, Lund M, Christensen T (2013) Revisiting factors controlling methane emissions from high-Arctic tundra. Biogeosciences 10(7):5139Google Scholar
  87. McGuire AD, Christensen TR, Hayes D, Heroult A, Euskirchen E, Kimball JS, Koven C, Lafleur P, Miller PA, Oechel W, Peylin P, Williams M, Yi Y (2012) An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences 9(8):3185–3204. Google Scholar
  88. Melton JR, Wania R, Hodson EL, Poulter B, Ringeval B, Spahni R, Bohn T, Avis CA, Beerling DJ, Chen G, Eliseev AV, Denisov SN, Hopcroft PO, Lettenmaier DP, Riley WJ, Singarayer JS, Subin ZM, Tian H, Zürcher S, Brovkin V, van Bodegom PM, Kleinen T, Yu ZC, Kaplan JO (2013) Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10(2):753–788. Google Scholar
  89. Merbold L, Kutsch WL, Corradi C, Kolle O, Rebmann C, Stoy PC, Zimov SA, Schulze ED (2009) Artificial drainage and associated carbon fluxes (CO2/CH4) in a tundra ecosystem. Glob Chang Biol 15(11):2599–2614. Google Scholar
  90. Metje M, Frenzel P (2007) Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. Environ Microbiol 9(4):954–964. PubMedGoogle Scholar
  91. Mi Y, van Huissteden J, Parmentier FJW, Gallagher A, Budishchev A, Berridge CT, Dolman AJ (2014) Improving a plot-scale methane emission model and its performance at a northeastern Siberian tundra site. Biogeosciences 11(14):3985–3999. Google Scholar
  92. Morgenstern A, Grosse G, Günther F, Fedorova I, Schirrmeister L (2011) Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta. Cryosphere 5(4):849–867. Google Scholar
  93. Morgenstern A, Ulrich M, Günther F, Roessler S, Fedorova IV, Rudaya NA, Wetterich S, Boike J, Schirrmeister L (2013) Evolution of thermokarst in East Siberian ice-rich permafrost: a case study. Geomorphology 201:363–379. Google Scholar
  94. Morishita T, Hatano R, Desyatkin RV (2003) CH4flux in an alas ecosystem formed by forest disturbance near Yakutsk, Eastern Siberia, Russia. Soil Sci Plant Nutr 49(3):369–377. Google Scholar
  95. Nakagawa F, Yoshida N, Nojiri Y, Makarov V (2002) Production of methane from alasses in eastern Siberia: implications from its 14C and stable isotopic compositions. Glob Biogeochem Cycles 16(3)Google Scholar
  96. Nakano T, Kuniyoshi S, Fukuda M (2000) Temporal variation in methane emission from tundra wetlands in a permafrost area, northeastern Siberia. Atmos Environ 34(8):1205–1213Google Scholar
  97. Nauta AL, Heijmans MMPD, Blok D, Limpens J, Elberling B, Gallagher A, Li B, Petrov RE, Maximov TC, van Huissteden J, Berendse F (2014) Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat Clim Chang 5(1):67–70. Google Scholar
  98. Niinemets Ü, Arneth A, Kuhn U, Monson RK, Peñuelas J, Staudt M (2010) The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses. Biogeosciences 7(7):2203–2223. Google Scholar
  99. O’Connor FM, Boucher O, Gedney N, Jones CD, Folberth GA, Coppell R, Friedlingstein P, Collins WJ, Chappellaz J, Ridley J, Johnson CE (2010) Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Rev Geophys 48(4).
  100. Ohta T, Maximov TC, Dolman AJ, Nakai T, van der Molen MK, Kononov AV, Maximov AP, Hiyama T, Iijima Y, Moors EJ, Tanaka H, Toba T, Yabuki H (2008) Interannual variation of water balance and summer evapotranspiration in an eastern Siberian larch forest over a 7-year period (1998–2006). Agric For Meteorol 148(12):1941–1953. Google Scholar
  101. Overland JE, Wang M, Walsh JE, Christensen JH, Kattsov VM, Chapman WL (2011) Climate model projections for the Arctic. In: Snow, water, ice and permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP), OsloGoogle Scholar
  102. Parmentier FJW, van Huissteden J, Kip N, Op den Camp HJM, Jetten MSM, Maximov TC, Dolman AJ (2011a) The role of endophytic methane-oxidizing bacteria in submerged Sphagnum in determining methane emissions of Northeastern Siberian tundra. Biogeosciences 8(5):1267–1278. Google Scholar
  103. Parmentier FJW, van Huissteden J, van der Molen MK, Schaepman-Strub G, Karsanaev SA, Maximov TC, Dolman AJ (2011b) Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia. J Geophys Res 116(G3).
  104. Parmentier F-JW, Christensen TR, Sørensen LL, Rysgaard S, McGuire AD, Miller PA, Walker DA (2013) The impact of lower sea-ice extent on Arctic greenhouse-gas exchange. Nat Clim Chang 3(3):195–202. Google Scholar
  105. Parmentier FW, Zhang W, Mi Y, Zhu X, van Huissteden J, Hayes DJ, Zhuang Q, Christensen TR, McGuire AD (2015) Rising methane emissions from northern wetlands associated with sea ice decline. Geophys Res Lett 42(17):7214–7222. PubMedPubMedCentralGoogle Scholar
  106. Petrescu A, Van Huissteden J, Jackowicz-Korczynski M, Yurova A, Christensen T, Crill PM, Maximov T (2007) Modelling CH4 emissions from arctic wetlands: effects of hydrological parameterization. Biogeosci Discuss 4(5):3195–3227Google Scholar
  107. Petrescu A, Van Beek L, Van Huissteden J, Prigent C, Sachs T, Corradi C, Parmentier F, Dolman A (2010) Modeling regional to global CH4 emissions of boreal and arctic wetlands. Glob Biogeochem Cycles 24(4)Google Scholar
  108. Plug LJ, Walls C, Scott B (2008) Tundra lake changes from 1978 to 2001 on the Tuktoyaktuk Peninsula, western Canadian Arctic. Geophys Res Lett 35:L03502. Google Scholar
  109. Pokrovsky OS, Shirokova LS, Kirpotin SN, Kulizhsky SP, Vorobiev SN (2013) Impact of western Siberia heat wave 2012 on greenhouse gases and trace metal concentration in thaw lakes of discontinuous permafrost zone. Biogeosciences 10(8):5349–5365Google Scholar
  110. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damste JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440(7086):918–921. PubMedGoogle Scholar
  111. Rivkina E, Friedmann E, McKay C, Gilichinsky D (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66(8):3230–3233PubMedPubMedCentralGoogle Scholar
  112. Rivkina E, Gilichinsky DA, McKay C, Dallimore S (2001) Methane distribution in permafrost: evidence for an interpore pressure methane hydrate. In: Permafrost response on economic development, environmental security and natural resources. Springer, Dordrecht, pp 487–496Google Scholar
  113. Rivkina E, Shcherbakova V, Laurinavichius K, Petrovskaya L, Krivushin K, Kraev G, Pecheritsina S, Gilichinsky D (2007) Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol Ecol 61(1):1–15. PubMedGoogle Scholar
  114. Sachs T, Giebels M, Wille C, Kutzbach L, Boike J (2008a) Methane emission from Siberian wet polygonal tundra on multiple spatial scales: vertical flux measurements by closed chambers and eddy covariance, Samoylov Island, Lena River Delta. In: 9th international conference on permafrost, Fairbanks, pp 1549–1554Google Scholar
  115. Sachs T, Wille C, Boike J, Kutzbach L (2008b) Environmental controls on ecosystem-scale CH4emission from polygonal tundra in the Lena River Delta, Siberia. J Geophys Res 113.
  116. Sachs T, Giebels M, Boike J, Kutzbach L (2010) Environmental controls on CH4 emission from polygonal tundra on the microsite scale in the Lena river delta, Siberia. Glob Chang Biol 16(11):3096–3110Google Scholar
  117. Schädel C, Bader MK-F, Schuur EA, Biasi C, Bracho R, Čapek P, De Baets S, Diáková K, Ernakovich J, Estop-Aragones C (2016) Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat Clim Chang 6(10):950Google Scholar
  118. Schirrmeister LHM, Wetterich S, Siegert C, Kunitsky VV, Grosse G, Kuznetsova TV, Derevyagin AY (2008) The Yedoma Suite of the Northeastern Siberian Shelf Region: characteristics and Concept of Formation. Proceedings Ninth International Conference On Permafrost 2:1595–1600Google Scholar
  119. Schirrmeister L, Grosse G, Wetterich S, Overduin PP, Strauss J, Schuur EAG, Hubberten H-W (2011) Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic. J Geophys Res 116.
  120. Schirrmeister L, Froese D, Tumskoy V, Grosse G, Wetterich S (2013) Yedoma: late Pleistocene ice-rich syngenetic permafrost of Beringia. In: Encyclopedia of quaternary science, 2nd edn. Elsevier, Amsterdam, pp 542–552. Google Scholar
  121. Schuur EA, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58(8):701–714Google Scholar
  122. Schuur EA, McGuire AD, Schadel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520(7546):171–179. PubMedPubMedCentralGoogle Scholar
  123. Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41(1):23–51Google Scholar
  124. Shakhova N, Semiletov I (2007) Methane release and coastal environment in the East Siberian Arctic shelf. J Mar Syst 66(1-4):227–243. Google Scholar
  125. Shkolnik I, Pavlova T, Efimov S, Zhuravlev S (2017) Future changes in peak river flows across northern Eurasia as inferred from an ensemble of regional climate projections under the IPCC RCP8.5 scenario. Clim Dyn. Google Scholar
  126. Sidorova OV, Siegwolf RT, Saurer M, Naurzbaev MM, Vaganov EA (2008) Isotopic composition (δ13C, δ18O) in wood and cellulose of Siberian larch trees for early Medieval and recent periods. J Geophys Res Biogeosci 113:G02019. Google Scholar
  127. Smith LC, Sheng Y, MacDonald G, Hinzman L (2005) Disappearing arctic lakes. Science 308(5727):1429–1429PubMedGoogle Scholar
  128. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.Google Scholar
  129. Strauss J, Schirrmeister L, Grosse G, Wetterich S, Ulrich M, Herzschuh U, Hubberten HW (2013) The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophys Res Lett 40(23):6165–6170. PubMedPubMedCentralGoogle Scholar
  130. Ström L, Ekberg A, Mastepanov M, Røjle Christensen T (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Chang Biol 9(8):1185–1192Google Scholar
  131. Ström L, Mastepanov M, Christensen TR (2005) Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry 75(1):65–82Google Scholar
  132. Ström L, Falk JM, Skov K, Jackowicz-Korczynski M, Mastepanov M, Christensen TR, Lund M, Schmidt NM (2015) Controls of spatial and temporal variability in CH4 flux in a high arctic fen over three years. Biogeochemistry 125(1):21–35Google Scholar
  133. Sugimoto A, Wada E (1993) Carbon isotopic composition of bacterial methane in a soil incubation experiment: contributions of acetate and CO2H2. Geochim Cosmochim Acta 57(16):4015–4027Google Scholar
  134. Takakai F, Desyatkin AR, Lopez CML, Fedorov AN, Desyatkin RV, Hatano R (2008) CH4 and N2O emissions from a forest-alas ecosystem in the permafrost taiga forest region, eastern Siberia, Russia. J Geophys Res Biogeosci 113(G2). Google Scholar
  135. Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23(2). Google Scholar
  136. Thonat T, Saunois M, Bousquet P, Pison I, Tan Z, Zhuang Q, Crill PM, Thornton BF, Bastviken D, Dlugokencky EJ (2017) Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements. Atmos Chem Phys 17(13):8371–8394Google Scholar
  137. Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ER, Minkkinen K, Moore TR, Myers-Smith IH, Nykanen H, Olefeldt D, Rinne J, Saarnio S, Shurpali N, Tuittila ES, Waddington JM, White JR, Wickland KP, Wilmking M (2014) A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob Chang Biol 20(7):2183–2197. PubMedGoogle Scholar
  138. Van der Kolk H-J, Heijmans MMPD, van Huissteden J, Pullens JWM, Berendse F (2016) Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw. Biogeosciences 13(22):6229–6245. Google Scholar
  139. Van der Molen M, Van Huissteden J, Parmentier F, Petrescu A, Dolman A, Maximov T, Kononov A, Karsanaev S, Suzdalov D (2007) The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia. Biogeosciences 4(6):985–1003Google Scholar
  140. Van Hardenbroek M, Lotter AF, Bastviken D, Duc N, Heiri O (2012) Relationship between δ13C of chironomid remains and methane flux in Swedish lakes. Freshw Biol 57(1):166–177Google Scholar
  141. Van Huissteden J. The permafrost carbon cycle. Springer. (in preparation)Google Scholar
  142. Van Huissteden J, Dolman AJ (2012) Soil carbon in the Arctic and the permafrost carbon feedback. Curr Opin Environ Sustain 4(5):545–551. Google Scholar
  143. Van Huissteden J, Maximov TC, Dolman AJ (2005) High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia). J Geophys Res Biogeosci 110(G2). Google Scholar
  144. Van Huissteden J, Maximov TC, Kononov AV, Dolman AJ (2008) Summer soil CH4 emission and uptake in taiga forest near Yakutsk, Eastern Siberia. Agric For Meteorol 148(12):2006–2012. Google Scholar
  145. Van Huissteden J, Maximov TC, Dolman AJ (2009) Correction to “High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia)”. J Geophys Res Biogeosci 114(G2). Google Scholar
  146. Van Huissteden J, Berrittella C, Parmentier F, Mi Y, Maximov T, Dolman A (2011) Methane emissions from permafrost thaw lakes limited by lake drainage. Nat Clim Chang 1(2):119Google Scholar
  147. Van Huissteden J, Vandenberghe J, Gibbard PL, Lewin J (2013) Periglacial fluvial sediments and forms. In: Encyclopedia of quaternary science, 2nd edn. Elsevier, Amsterdam, pp 490–499. Google Scholar
  148. Vaughn LJ, Conrad ME, Bill M, Torn MS (2016) Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra. Glob Chang Biol 22(10):3487–3502. PubMedGoogle Scholar
  149. Vile MA, Wieder RK, Živković T, Scott KD, Vitt DH, Hartsock JA, Iosue CL, Quinn JC, Petix M, Fillingim HM (2014) N2-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands. Biogeochemistry 121(2):317–328Google Scholar
  150. Vonk JE, Mann PJ, Davydov S, Davydova A, Spencer RGM, Schade J, Sobczak WV, Zimov N, Zimov S, Bulygina E, Eglinton TI, Holmes RM (2013) High biolability of ancient permafrost carbon upon thaw. Geophys Res Lett 40(11):2689–2693. Google Scholar
  151. Wagner D, Liebner S (2009) Global warming and carbon dynamics in permafrost soils: methane production and oxidation. In: Permafrost soils. Springer, pp 219–236Google Scholar
  152. Wagner D, Kobabe S, Pfeiffer EM, Hubberten HW (2003) Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia. Permafr Periglac Process 14(2):173–185Google Scholar
  153. Walter Anthony KM, Anthony P, Grosse G, Chanton J (2012) Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat Geosci 5(6):419–426. Google Scholar
  154. Walter Anthony KM, Zimov SA, Grosse G, Jones MC, Anthony PM, Chapin FS 3rd, Finlay JC, Mack MC, Davydov S, Frenzel P, Frolking S (2014) A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511(7510):452–456. Google Scholar
  155. Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS, 3rd (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443 (7107):71–75. PubMedGoogle Scholar
  156. Walter KM, Edwards ME, Grosse G, Zimov SA, Chapin FS 3rd (2007a) Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 318(5850):633–636. PubMedGoogle Scholar
  157. Walter KM, Smith LC, Chapin FS, 3rd (2007b) Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philos Trans A Math Phys Eng Sci 365 (1856):1657–1676. Google Scholar
  158. Walter K, Chanton J, Chapin F, Schuur E, Zimov S (2008) Methane production and bubble emissions from arctic lakes: isotopic implications for source pathways and ages. J Geophys Res Biogeosci 113:G00A08.
  159. Walvoord MA, Kurylyk BL (2016) Hydrologic impacts of thawing permafrost—a review. Vadose Zone J 15 (6):0. Google Scholar
  160. Wik M, Crill PM, Bastviken D, Danielsson Å, Norbäck E (2011) Bubbles trapped in arctic lake ice: potential implications for methane emissions. J Geophys Res Biogeosci 116(G3)Google Scholar
  161. Wik M, Thornton BF, Bastviken D, MacIntyre S, Varner RK, Crill PM (2014) Energy input is primary controller of methane bubbling in subarctic lakes. Geophys Res Lett 41(2):555–560Google Scholar
  162. Wille C, Kutzbach L, Sachs T, Wagner D, Pfeiffer E-M (2008) Methane emission from Siberian arctic polygonal tundra: eddy covariance measurements and modeling. Glob Chang Biol 14(6):1395–1408. Google Scholar
  163. Worden JR, Bloom AA, Pandey S, Jiang Z, Worden HM, Walker TW, Houweling S, Röckmann T (2017) Reduced biomass burning emissions reconcile conflicting estimates of the post-2006 atmospheric methane budget. Nat Commun 8(1):2227PubMedPubMedCentralGoogle Scholar
  164. Yakushev V, Chuvilin E (2000) Natural gas and gas hydrate accumulations within permafrost in Russia. Cold Reg Sci Technol 31(3):189–197Google Scholar
  165. Zalman C, Meade N, Chanton J, Kostka J, Bridgham S, Keller J (2018) Methylotrophic methanogenesis in Sphagnum-dominated peatland soils. Soil Biol Biochem 118:156–160Google Scholar
  166. Zimov S, Voropaev YV, Semiletov I, Davidov S, Prosiannikov S, Chapin FS, Chapin M, Trumbore S, Tyler S (1997) North Siberian lakes: a methane source fueled by Pleistocene carbon. Science 277(5327):800–802Google Scholar
  167. Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG, Dutta K, Chapin FS (2006) Permafrost carbon: stock and decomposability of a globally significant carbon pool. Geophys Res Lett 33(20).
  168. Zona D, Gioli B, Commane R, Lindaas J, Wofsy SC, Miller CE, Dinardo SJ, Dengel S, Sweeney C, Karion A, Chang RY, Henderson JM, Murphy PC, Goodrich JP, Moreaux V, Liljedahl A, Watts JD, Kimball JS, Lipson DA, Oechel WC (2016) Cold season emissions dominate the Arctic tundra methane budget. Proc Natl Acad Sci USA 113(1):40–45. PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Faculty of SciencesVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations