Advertisement

Carbon-Water Cycle Modeling

  • Hotaek ParkEmail author
  • Takeshi Yamazaki
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 236)

Abstract

The Arctic warming observed in recent decades has amplified changes in terrestrial ecohydrological processes. A number of process-based models have been developed to simulate the ecohydrological processes in cold regions under changing climate conditions. These models have simulated prominent changes in ecohydrological processes in regions of eastern Siberia at point and watershed scales, such as degrading permafrost, decreasing snow extent, and increasing river discharge and evapotranspiration induced by warming; model results have been consistent with observations. These modeling results improve our understanding of the responses of ecohydrological processes to the warming climate, in turn contributing to further model improvement and better projection of future changes in hydrologic processes. However, model representations of some cold region hydrological processes remain insufficient and need further improvement. This chapter summarizes changes in key processes and ecohydrology conditions of the Lena watershed based on a synthesis of observations and model simulations.

Keywords

Common parameter Ecohydrology Land surface model Model parameterization River discharge Stomatal conductance 

References

  1. Bekryaev RV, Polyakov IV, Alexeev VA (2010) Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J Clim 23:3888–3906.  https://doi.org/10.1175/2010JCLI3297.1 CrossRefGoogle Scholar
  2. Betts AK, Viterbo P, ACM B, van den Hurk BIJM (2001) Impact of BOREAS on the ECMWF forecast model. J Geophys Res 106:33593–33604CrossRefGoogle Scholar
  3. Buermann W, Anderson B, Tucker CJ, Dickinson RE, Lucht W, Potter CS, Myneni RB (2003) Interannual covariability in Northern Hemisphere air temperature and greenness associated with El Nino-Southern oscillation and the Arctic oscillation. J Geophys Res 108:4396.  https://doi.org/10.1029/2002JD002630 CrossRefGoogle Scholar
  4. Bulygina ON, Razuvaev V, Korshunova N (2009) Change in snow cover northern Eurasia in the last decades. Environ Res Lett 4:045026.  https://doi.org/10.1088/17489326/14/4/045026 CrossRefGoogle Scholar
  5. Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KG, Laundre JA (1995) Response of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711CrossRefGoogle Scholar
  6. Cohen J, Furtado J, Barlow M, Alexeev V, Cherry J (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7:014007.  https://doi.org/10.1088/1748-9326/1/1/014007 CrossRefGoogle Scholar
  7. Cox PM, Huntingford C, Harding RJ (1998) A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J Hydrol 212–213:79–94CrossRefGoogle Scholar
  8. Deardorff JW (1978) Effective prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J Geophys Res 83:1889–1903CrossRefGoogle Scholar
  9. Dickinson RE (1984) Modeling evapotranspiration for three-dimensional global climate models. In: Hansen JE, Takahashi T (eds) Climate processes and climate sensitivity, Geophysical monograph, 29. American Geophysical Union, Washington, DC, pp 58–72CrossRefGoogle Scholar
  10. Fedorov AN, Ivanova RN, Park H, Hiyama T, Iijima Y (2014) Recent air temperature changes in the permafrost landscapes of northeastern Eurasia. Pol Sci 8:114–128.  https://doi.org/10.1016/j.polar.2014.02.001 CrossRefGoogle Scholar
  11. Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem Cycles 10(4):603–628CrossRefGoogle Scholar
  12. Ghatak D, Frei A, Gong G, Stroeve J, Robinson D (2010) On the emergence of an Arctic amplification signal in terrestrial Arctic snow extent. J Geophys Res 11:D24105.  https://doi.org/10.1029/2010JD014007 CrossRefGoogle Scholar
  13. Gouttevin I, Menegoz M, Domine F, Krinner G, Koven C, Ciais P, Tarnocai C, Boike J (2012) How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area. J Geophys Res 117:G02020.  https://doi.org/10.1029/2011JG001916 CrossRefGoogle Scholar
  14. Haine TWN et al (2015) Arctic freshwater export: status, mechanisms, and prospects. Glob Planet Chang 124:13–35.  https://doi.org/10.1016/j.gloplacha.2014.11.013 CrossRefGoogle Scholar
  15. Hamada S, Ohta T, Hiyama T, Kuwada T, Takahashi A, Maximov TC (2004) Hydrometeorological behaviour of pine and larch forests in eastern Siberia. Hydrol Process 18:23–39CrossRefGoogle Scholar
  16. Holmes RM, Shiklomanov AI, Tank SE, McClelland JW, Tretiakov M (2015) River discharge. Arctic Report Card. http://www.arctic.noaa.gov/Report-Card/Report-Card-2015/ArtMID/5037/ArticleID/227/River-Discharge
  17. Hugelius G et al (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–6593CrossRefGoogle Scholar
  18. Iida S et al (2009) Evapotranspiration from understory vegetation in an eastern Siberian boreal larch forest. Agric For Meteorol 149:1129–1139.  https://doi.org/10.1016/j.agrformet.2009.02.003 CrossRefGoogle Scholar
  19. Iijima Y, Fedorov AN, Park H, Suzuki K, Yabuki H, Maximov TC, Ohata T (2010) Abrupt increases in soil temperatures following increased precipitation in a permafrost region, Central Lena River basin, Russia. Permafr Periglac Process 21:30–41CrossRefGoogle Scholar
  20. Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond B Biol Sci 273:593–610CrossRefGoogle Scholar
  21. Lawrence DM, Slater AG (2008) Incorporating organic soil into a global climate model. Clim Dyn 30:145–160.  https://doi.org/10.1007/s00382-007-0278-1 CrossRefGoogle Scholar
  22. Levis, SG, Bonan B, Vertenstein M, Oleson KW (2004) The Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM): Technical Description and User’s Guide, NCAR Tech. Note TN-459+lA, 50 pp, National Center for Atmospheric Research, Boulder, ColoradoGoogle Scholar
  23. Liu J, Curry J, Wang H, Song M, Horton R (2012) Impact of declining Arctic Sea ice on winter snowfall. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.1114910109 CrossRefGoogle Scholar
  24. Liu L, Schaefer K, Grosse G, Jones BM, Zhang T, Parsekian AD, Zebker HA (2014) Seasonal thaw settlement at drained thermokarst lake basins. Arctic Alaska Cryosphere 8:815–826.  https://doi.org/10.5194/tc-8-815-2014 CrossRefGoogle Scholar
  25. Manabe S (1969) Climate and the ocean circulation: 1, the atmospheric circulation and the hydrology of the Earth’s surface. Mon Weather Rev 97:739–805CrossRefGoogle Scholar
  26. Miyazaki S et al (2015) The GRENE-TEA Model Intercomparison Project (GTMIP): overview and experiment protocol for Stage 1. Geosci Model Dev 8:2841–2856CrossRefGoogle Scholar
  27. Nakai T et al (2013) Characteristics of evapotranspiration from a permafrost black spruce forest in interior Alaska. Pol Sci 7:136–148.  https://doi.org/10.1016/j.polar.2013.03.003 CrossRefGoogle Scholar
  28. Ohta T, Hiyama T, Tanaka H, Kuwada T, Maximov TC, Ohata T, Fukushima Y (2001) Seasonal variation in the energy and water exchanges above and below a larch forest in eastern Siberia. Hydrol Process 15:1459–1476CrossRefGoogle Scholar
  29. Ohta T, Maximov TC, Dolman AJ, Nakai T, van der Molen MK, Kononov AV, Maximov AP, Hiyama T, Iijima Y, Moors EJ, Tanaka H, Toba T, Yabuki H (2008) Interannual variation of water balance and summer evapotranspiration in an eastern Siberian larch forest over a 7-year period (1998–2006). Agric For Meteorol 148:1941–1953CrossRefGoogle Scholar
  30. Ohta T, Kotani A, Iijima Y, Maximov TC, Ito S, Hanamura M, Kononov AV, Maximov AP (2014) Effects of waterlogging on water and carbon dioxide fluxes and environmental variables in a Siberian larch forest, 1998–2011. Agric For Meteorol 188:64–75CrossRefGoogle Scholar
  31. Park H, Yamazaki T, Yamamoto K, Ohta T (2008) Tempo-spatial characteristics of energy budget and evapotranspiration in the eastern Siberia. Agric For Meteorol 148:1990–2005.  https://doi.org/10.1016/j.agrformet.2008.06.018 CrossRefGoogle Scholar
  32. Park H, Iijima Y, Yabuki H, Ohta T, Walsh J, Kodama Y, Ohata T (2011) The application of a coupled hydrological and biogeochemical model (CHANGE) for modeling of energy, water, and CO2 exchanges over a larch forest in eastern Siberia. J Geophys Res 116:D15102.  https://doi.org/10.1029/2010JD01586 CrossRefGoogle Scholar
  33. Park H, Walsh J, Fedorov AN, Sherstiukov AB, Iijima Y, Ohata T (2013a) The influence of climate and hydrological variables on opposite anomaly in active-layer thickness between Eurasian and North American watersheds. Cryosphere 7:631–645.  https://doi.org/10.5194/tc-7-631-2013 CrossRefGoogle Scholar
  34. Park H, Walsh JE, Kim Y, Nakai T, Ohata T (2013b) The role of declining Arctic sea ice in recent decreasing terrestrial Arctic snow depths. Pol Sci 7:174–187.  https://doi.org/10.1016/j.polar.2012.10.002 CrossRefGoogle Scholar
  35. Park H, Sherstiukov AB, Fedorov AN, Polyakov IV, Walsh JE (2014) An observation-based assessment of the influence of air temperature and snow depth on soil temperature in Russia. Environ Res Lett 9:064026.  https://doi.org/10.1088/1748-9326/9/6/064026 CrossRefGoogle Scholar
  36. Park H, Fedorov AN, Zheleznyak MN, Konstantinov PY, Walsh JE (2015) Effect of snow cover on pan-Arctic permafrost thermal regimes. Clim Dyn 44:2873–2895.  https://doi.org/10.1007/s00382-014-2356-5 CrossRefGoogle Scholar
  37. Park H, Kim Y, Kimball JS (2016a) Widespread permafrost vulnerability and soil active layer increases over the high northern latitudes inferred from satellite remote sensing and process model assessments. Remote Sens Environ 175:349–358.  https://doi.org/10.1016/j.rse.2015.12.046 CrossRefGoogle Scholar
  38. Park H, Yoshikawa Y, Oshima K, Kim Y, Ngo-Duc T, Kimball JS, Yang D (2016b) Quantification of warming climate-induced changes in terrestrial Arctic river ice thickness and phenology. J Clim 29:1733–1754.  https://doi.org/10.1175/JCLI-D-15-0569-1 CrossRefGoogle Scholar
  39. Park H, Yoshikawa Y, Yang D, Oshima K (2017) Warming water in Arctic terrestrial rivers under climate change. J Hydrometeorol.  https://doi.org/10.1175/JHM-D-16-0260.1 CrossRefGoogle Scholar
  40. Pitman AJ (2003) The evolution of, and revolution in, land surface schemes designed for climate models. Int J Climatol 23:479–510CrossRefGoogle Scholar
  41. Rawlins MA et al (2010) Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J Clim 23:5715–5737.  https://doi.org/10.1175/2010JCLI3421.1 CrossRefGoogle Scholar
  42. Rawlins MA et al (2015) Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia. Biogeosciences 12:4385–4405.  https://doi.org/10.5194/bg-12-4385-2015 CrossRefGoogle Scholar
  43. Schuur EAG et al (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179CrossRefGoogle Scholar
  44. Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (SiB) for use within general circulation models. J Atmos Sci 43:505–531CrossRefGoogle Scholar
  45. Sellers PJ et al (1997) BOREAS in 1997: experiment overview, scientific results, and future directions. J Geophys Res 102:28731–28769CrossRefGoogle Scholar
  46. Serreze MC et al (2006) The large-scale freshwater cycle of the Arctic. J Geophys Res 111:C11010.  https://doi.org/10.1029/2005JC003424 CrossRefGoogle Scholar
  47. Starfield A, Chapins FS (1996) Model of transient changes in arctic and boreal vegetation in response to climate and land use change. Ecol Model 6:842–864Google Scholar
  48. Sugimoto A, Naito D, Yanagisawa N, Ichiyanagi K, Kurita N, Kubota J, Kotake T, Ohata T, Maximov TC, Fedorov AN (2003) Characteristics of soil moisture in permafrost observed in east Siberian taiga with stable isotopes of water. Hydrol Process 17:1073–1092CrossRefGoogle Scholar
  49. Swenson SC, Lawrence DM, Lee H (2012) Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model. J Adv Model Earth Syst 4:M08002.  https://doi.org/10.1029/2012MS000165 CrossRefGoogle Scholar
  50. Tananaev NI, Makarieva OM, Lebedeva LS (2016) Trends in annual and extreme flows in the Lena River basin, Northern Eurasia. Geophys Res Lett 43:10764–10772.  https://doi.org/10.1002/2016GL070796 CrossRefGoogle Scholar
  51. Toba T, Ohta T (2005) An observational study of the factors that influence interception loss in boreal and temperate forests. J Hydrol 313:208–220CrossRefGoogle Scholar
  52. Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor MG (2001) Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int J Biometeorol 45:184–190CrossRefGoogle Scholar
  53. Ulrich M, Matthes H, Schirrmeister L, Schütze J, Park H, Iijima Y, Fedorov AN (2017) Differences in behavior and distribution of permafrost-related lakes in Central Yakutia and their response to climatic drivers. Water Resour Res 53.  https://doi.org/10.1002/2016WR019267 CrossRefGoogle Scholar
  54. Van Huissteden J, Berrittella C, Parmentier FJW, Mi Y, Maximov TC, Dolman AJ (2011) Methane emissions from permafrost thaw lakes limited by lake drainage. Nat Clim Chang 1:119–123.  https://doi.org/10.1038/NCLIMATE1101 CrossRefGoogle Scholar
  55. Verseghy DL (1991) CLASS -A Canadian land surface scheme for GCMs, Part I: Soil model. Int J Climatol 11:111–133CrossRefGoogle Scholar
  56. Verseghy DL, McFarland NA, Lazare M (1993) CLASS -A Canadian land surface scheme for GCMs, Part II: Vegetation model and coupled runs. Int J Climatol 13:347–370CrossRefGoogle Scholar
  57. Viterbo P, Betts AK (1999) Impact on ECMWF forecasts of changes to the albedo of the boreal forests in the presence of snow. J Geophys Res Atmos 104(D22):27803–27810CrossRefGoogle Scholar
  58. Yamazaki T (2001) A one-dimensional land surface model adaptable to intensely cold regions and its applications in Eastern Siberia. J Meteorol Soc Jpn 79:1107–1118CrossRefGoogle Scholar
  59. Yamazaki T, Yabuki H, Ishii Y, Ohta T, Ohata T (2004) Water and energy exchanges at forests and a grassland in eastern Siberia evaluated using a one-dimensional land surface model. J Hydrometeorol 5:504–515CrossRefGoogle Scholar
  60. Yamazaki T, Yabuki H, Ohata T (2007) Hydrometeorological effects of intercepted snow in an eastern Siberian taiga forest using a land surface model. Hydrol Process 21:1148–1156.  https://doi.org/10.1002/hyp.6675 CrossRefGoogle Scholar
  61. Yamazaki T, Kato K, Ito T, Nakai T, Matsumoto K, Miki N, Park H, Ohta T (2013) A common stomatal parameter set to simulate the energy and water balance over boreal and temperate forests. J Meteorol Soc Jpn 91:273–285.  https://doi.org/10.2151/jmsj.2013-303 CrossRefGoogle Scholar
  62. Yang D (1999) An improved precipitation climatology for the Arctic Ocean. Geophys Res Lett 26:1525–1528CrossRefGoogle Scholar
  63. Zhang K, Kimball JS, Hogg EH, Zhao M, Oechel WC, Cassano JJ, Running SW (2008) Satellite-based model detection of recent climate-driven changes in northern high-latitude vegetation productivity. J Geophys Res 113:G03033.  https://doi.org/10.1029/2007JG000621 CrossRefGoogle Scholar
  64. Zhang K, Kimball JS, Mu Q, Jones LA, Goetz SJ, Running SW (2009) Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. J Hydrol 379:92–110.  https://doi.org/10.1016/j.jhydrol.2009.09.047 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan
  2. 2.Tohoku UniversitySendaiJapan

Personalised recommendations