Advertisement

Remote Sensing of Terrestrial Water

  • Kazuyoshi SuzukiEmail author
  • Koji Matsuo
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 236)

Abstract

Terrestrial water is a critical component of ecosystems and is important for hydroclimatology and human usage. Terrestrial water storage (TWS) includes all water stored on land, such as soil moisture (SM), snow, surface water (SW), and ice in permafrost. In Sects. 11.1 and 11.2 of this chapter, we introduce and describe remote sensing-based techniques for assessing TWS. In Sects. 11.3, 11.4, and 11.5, we then describe the techniques for assessing different components of TWS, specifically SM, snow, and SW, respectively, in eastern Siberia. In Sect. 11.6, we discuss recent advances in remote sensing data-assimilation techniques. Finally, in Sect. 11.7, we provide concluding remarks and research perspectives for the near future.

Keywords

Terrestrial water storage Soil moisture Snow water equivalent Snow coverage area Surface water 

References

  1. Bartsch A, Balzter H, George C (2009) The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites. Environ Res Lett 4(4).  https://doi.org/10.1088/1748-9326/4/4/045021 CrossRefGoogle Scholar
  2. Bettadpur S (2012) Gravity recovery and climate experiment UTCSR Level-2 Processing Standards Document (Rev 4.0 May 29, 2012) (For Level-2 Product Release 0005). ftp://podaac.jpl.nasa.gov/allData/grace/docs/L2-CSR0005_ProcStd_v4.0.pdf
  3. Brown RD, Robinson DA (2011) Northern hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 5(1):219–229.  https://doi.org/10.5194/tc-5-219-2011 CrossRefGoogle Scholar
  4. Che T, Li X, Jin R, Huang C (2014) Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth. Remote Sens Environ 143(C):54–63.  https://doi.org/10.1016/j.rse.2013.12.009 CrossRefGoogle Scholar
  5. Derksen C (2008) The contribution of AMSR-E 18.7 and 10.7 GHz measurements to improved boreal forest snow water equivalent retrievals. Remote Sens Environ 112(5):2701–2710.  https://doi.org/10.1016/j.rse.2008.01.001 CrossRefGoogle Scholar
  6. Dietz AJ, Kuenzer C, Gessner U, Dech S (2012) Remote sensing of snow – a review of available methods. Int J Remote Sens 33(13):4094–4134.  https://doi.org/10.1080/01431161.2011.640964 CrossRefGoogle Scholar
  7. Dudarev AA, Dushkina EV, Sladkova YN, Alloyarov PR, Chupakhin VS, Dorofeyev VM et al (2013) Food and water security issues in Russia II: water security in general population of Russian Arctic, Siberia and Far East, 2000–2011. Int J Circumpolar Health 72(0):1–11.  https://doi.org/10.3402/ijch.v72i0.22646 CrossRefGoogle Scholar
  8. Earl L, Gardner A (2016) A satellite-derived glacier inventory for North Asia. Ann Glaciol 57(71):50–60.  https://doi.org/10.3189/2016AoG71A008 CrossRefGoogle Scholar
  9. Entekhabi D, Njoku EG, O’Neill PE, Kellogg KH, Crow WT, Edelstein WN et al (2010) The soil moisture active passive (SMAP) mission. Proc IEEE 98(5):704–716.  https://doi.org/10.1109/JPROC.2010.2043918 CrossRefGoogle Scholar
  10. Figa-Saldaña J, Wilson JJW, Attema E, Gelsthorpe R, Drinkwater MR, Stoffelen A (2002) The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: a follow on for European wind scatterometers. Can J Remote Sens 28(3):404–412.  https://doi.org/10.5589/m02-035 CrossRefGoogle Scholar
  11. Ford TW, Harris E, Quiring SM (2014) Estimating root zone soil moisture using near-surface observations from SMOS. Hydrol Earth Syst Sci 18(1):139–154.  https://doi.org/10.5194/hess-18-139-2014 CrossRefGoogle Scholar
  12. Foster JL, Sun C, Walker JP, Kelly R, Chang A, Dong J et al (2005) Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sens Environ 94(2):17–17.  https://doi.org/10.1016/j.rse.2004.09.012 CrossRefGoogle Scholar
  13. Geruo A, Wahr J, Zhong S (2013) Computations of the viscoelastic response of a 3-D compressible earth to surface loading: an application to glacial isostatic adjustment in Antarctica and Canada. Geophys J Int 192(2):557–572.  https://doi.org/10.1093/gji/ggs030 CrossRefGoogle Scholar
  14. Geruo A, Velicogna I, Kimball JS, Kim Y (2015) Impact of changes in GRACE derived terrestrial water storage on vegetation growth in Eurasia. Environ Res Lett 10(12):1–10.  https://doi.org/10.1088/1748-9326/10/12/124024 CrossRefGoogle Scholar
  15. Hall DK, Riggs GA (2007) Accuracy assessment of the MODIS snow products. Hydrol Process 21(12):1534–1547.  https://doi.org/10.1002/hyp.6715 CrossRefGoogle Scholar
  16. Hall DK, Kelly R, Riggs GA, Chang A, Foster JL (2002) Assessment of the relative accuracy of hemispheric-scale snow-cover maps. Ann Glaciol 34(1):24–30.  https://doi.org/10.3189/172756402781817770 CrossRefGoogle Scholar
  17. Hogstrom E, Bartsch A (2016) Impact of backscatter variations over water bodies on coarse-scale radar retrieved soil moisture and the potential of correcting with meteorological data. IEEE Trans Geosci Remote Sens 55(1):3–13.  https://doi.org/10.1109/TGRS.2016.2530845 CrossRefGoogle Scholar
  18. Hood JL, Hayashi M (2015) Characterization of snowmelt flux and groundwater storage in an alpine headwater basin. J Hydrol 521:482–497CrossRefGoogle Scholar
  19. Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319(1–4):83–95CrossRefGoogle Scholar
  20. Iijima Y, Masuda K, Ohata T (2007) Snow disappearance in eastern Siberia and its relationship to atmospheric influences. Int J Climatol 27(2):169–177.  https://doi.org/10.1002/joc.1382 CrossRefGoogle Scholar
  21. Imaoka K, Kachi M, Fujii H, Murakami H, Hori M, Ono A, Igarashi T, Nakagawa K, Oki T, Honda Y, Shimoda H (2010) Global Change Observation Mission (GCOM) for monitoring carbon, water cycles, and climate change. Proc IEEE 98(5):717–734CrossRefGoogle Scholar
  22. Kachi M, Maeda T, Tsutsui H, Imaoka K (2015) The water-related parameters and datasets derived from GCOM-W/AMSR2. IGARSS.  https://doi.org/10.1109/IGARSS.2015.7326979
  23. Keiji Imaoka, Misako Kachi, Hideyuki Fujii, Hiroshi Murakami, Masahiro Hori, Akiko Ono, Tamotsu Igarashi, Keizo Nakagawa, Taikan Oki, Yoshiaki Honda, Haruhisa Shimoda, Global Change Observation Mission (GCOM) for Monitoring Carbon, Water Cycles, and Climate Change. Proceedings of the IEEE 98 (5):717-734Google Scholar
  24. Kerr YH, Waldteufel P, Wigneron J-P, Delwart S, Cabot F, Boutin J et al (2010) The SMOS mission – new tool for monitoring key elements of the global water cycle. Proc IEEE 98(5):666–687.  https://doi.org/10.1109/JPROC.2010.2043032 CrossRefGoogle Scholar
  25. Klein AG, Barnett AC (2003) Validation of daily MODIS snow cover maps of the upper Rio Grande River basin for the 2000-2001 snow year. Remote Sens Environ 86(2):162–176.  https://doi.org/10.1016/S0034-4257(03)00097-X CrossRefGoogle Scholar
  26. Kumar SV, Zaitchik BF, Peters-Lidard CD, Rodell M, Reichle R, Li B et al (2016) Assimilation of gridded GRACE terrestrial water storage estimates in the north American land data assimilation system. J Hydrometeorol 17(7):1951–1972.  https://doi.org/10.1175/JHM-D-15-0157.1 CrossRefGoogle Scholar
  27. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod 81(11):733–749.  https://doi.org/10.1007/s00190-007-0143-3 CrossRefGoogle Scholar
  28. Masuda K, Hashimoto Y, Matsuyama H, Oki T (2001) Seasonal cycle of water storage in major river basins of the world. Geophys Res Lett 28(16):3215–3218.  https://doi.org/10.1029/2000GL012444 CrossRefGoogle Scholar
  29. Merlin O, Bitar Al A, Walker JP, Kerr Y (2010) An improved algorithm for disaggregating microwave-derived soil moisture based on red, near-infrared and thermal-infrared data. Remote Sens Environ 114(10):2305–2316.  https://doi.org/10.1016/j.rse.2010.05.007 CrossRefGoogle Scholar
  30. Muskett RR, Romanovsky VE (2009) Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements. Environ Res Lett 4(4):045009.  https://doi.org/10.1088/1748-9326/4/4/045009 CrossRefGoogle Scholar
  31. Nitta T, Yoshimura K, Takata K, O’ishi R, Sueyoshi T, Kanae S et al (2014) Representing variability in subgrid snow cover and snow depth in a global land model: offline validation. J Clim 27:3318–3330.  https://doi.org/10.1175/JCLI-D-13-00310.1 CrossRefGoogle Scholar
  32. Owe M, de Jeu R, Holmes T (2008) Multisensor historical climatology of satellite-derived global land surface moisture. J Geophysical Res 113(F1):687–617.  https://doi.org/10.1029/2007JF000769 CrossRefGoogle Scholar
  33. Painter TH, Dozier J, Roberts DA, Davis RE, Green RO (2003) Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data. Remote Sens Environ 85(1):64–77.  https://doi.org/10.1016/S0034-4257(02)00187-6 CrossRefGoogle Scholar
  34. Painter TH, Rittger K, McKenzie C, Slaughter P, Davis RE, Dozier J (2009) Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens Environ 113(4):868–879.  https://doi.org/10.1016/j.rse.2009.01.001 CrossRefGoogle Scholar
  35. Paltan H, Dash J, Edwards M (2015) A refined mapping of Arctic lakes using Landsat imagery. Int J Remote Sens 36(23):5970–5982.  https://doi.org/10.1080/01431161.2015.1110263 CrossRefGoogle Scholar
  36. Papa F, Prigent C, Rossow WB (2008) Monitoring flood and discharge variations in the large Siberian rivers from a multi-satellite technique. Surv Geophysi 29(4–5):297–317.  https://doi.org/10.1007/s10712-008-9036-0 CrossRefGoogle Scholar
  37. Parajka J, Bloschl G (2008) Spatio-temporal combination of MODIS images – potential for snow cover mapping. Water Resour Res 44(3).  https://doi.org/10.1029/2007WR006204
  38. Pekel J-F, Cottam A, Gorelick N, Belward AS (2016) High-resolution mapping of global surface water and its long-term changes. Nature 540(7633):418–422.  https://doi.org/10.1038/nature20584 CrossRefPubMedGoogle Scholar
  39. Petropoulos GP, Ireland G, Barrett B (2015) Surface soil moisture retrievals from remote sensing: current status, products & future trends. Phys Chem Earth 83–84:36–56.  https://doi.org/10.1016/j.pce.2015.02.009 CrossRefGoogle Scholar
  40. Prigent C, Papa F, Aires F, Rossow WB, Matthews E (2007) Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J Geophys Res 112(D12):D12107–D12113.  https://doi.org/10.1029/2006JD007847 CrossRefGoogle Scholar
  41. Quinton WL, Hayashi M, Pietroniro A (2003) Connectivity and storage functions of channel fens and flat bogs in northern basins. Hydrol Process 17(18):3665–3684CrossRefGoogle Scholar
  42. Ramsay BH (1998) The interactive multisensor snow and ice mapping system. Hydrol Process 12(1):1537–1546.  https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1537::AID-HYP679>3.3.CO;2-1 CrossRefGoogle Scholar
  43. Rasmy M, Koike T, Kuria D, Mirza CR, Li X, Yang K (2012) Development of the coupled atmosphere and land data assimilation system (CALDAS) and its application over the Tibetan plateau. IEEE Trans Geosci Remote Sens 50(11):4227–4242.  https://doi.org/10.1109/TGRS.2012.2190517 CrossRefGoogle Scholar
  44. Reichle RH, Koster RD, Liu P, Mahanama SPP, Njoku EG, Owe M (2007) Comparison and assimilation of global soil moisture retrievals from The Advanced Microwave Scanning Radiometer For the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR). J Geophys Res Atmos 112(D):D09108.  https://doi.org/10.1029/2006JD008033 CrossRefGoogle Scholar
  45. Revilla-Romero B, Wanders N, Burek P, Salamon P, de Roo A (2016) Integrating remotely sensed surface water extent into continental scale hydrology. J Hydrol 543(Part B):659–670.  https://doi.org/10.1016/j.jhydrol.2016.10.041 CrossRefGoogle Scholar
  46. Schaefer K, Collatz GJ, Tans P, Denning AS, Baker I, Berry J, Prihodko L, Suits N, Philpott A (2008) Combined simple biosphere/carnegie-Ames-Stanford approach terrestrial carbon cycle model. J Geophys Res Biogeo 113:G03034.  https://doi.org/10.1029/2007jg000603 CrossRefGoogle Scholar
  47. Seo K-W, Ryu D, Kim B-M, Waliser DE, Tian B, Eom J (2010) GRACE and AMSR-E-based estimates of winter season solid precipitation accumulation in the Arctic drainage region. J Geophys Res 115(D20):D20117–D20118.  https://doi.org/10.1029/2009JD013504 CrossRefGoogle Scholar
  48. Sugimoto A, Naito D, Yanagisawa N, Ichiyanagi K, Kurita N, Kubota J et al (2003) Characteristics of soil moisture in permafrost observed in east Siberian taiga with stable isotopes of water. Hydrol Process 17(6):1073–1092.  https://doi.org/10.1002/hyp.1180 CrossRefGoogle Scholar
  49. Suzuki K (2011) Siberia. In: Encyclopedia of snow, ice and glaciers. Springer Netherlands, Dordrecht, pp 1028–1031.  https://doi.org/10.1007/978-90-481-2642-2_486 CrossRefGoogle Scholar
  50. Suzuki K, Kubota J, Ohata T, Vuglinsky V (2006) Influence of snow ablation and frozen ground on spring runoff generation in the Mogot experimental watershed, southern mountainous taiga of eastern Siberia. Hydrol Res 37(1):21–29.  https://doi.org/10.2166/nh.2005.027 CrossRefGoogle Scholar
  51. Suzuki K, Liston GE, Matsuo K (2015) Estimation of continental-basin-scale sublimation in the Lena River Basin, Siberia. Adv Meteorol 2015(22):1–14.  https://doi.org/10.1155/2015/286206 CrossRefGoogle Scholar
  52. Suzuki K, Matsuo K, Hiyama T (2016) Satellite gravimetry-based analysis of terrestrial water storage and its relationship with run-off from the Lena River in eastern Siberia. In J Remote Sen 37(10):2198–2210.  https://doi.org/10.1080/01431161.2016.1165890 CrossRefGoogle Scholar
  53. Suzuki K, Zupanski M, Zupanski D (2017) A case study involving single observation experiments performed over snowy Siberia using a coupled atmosphere-land modelling system. Atmos Sci Lett 18(3):106–111.  https://doi.org/10.1002/asl.730 CrossRefGoogle Scholar
  54. Suzuki K, Matsuo K, Yamazaki D, Ichii K, Iijima Y, Yanagi Y et al (2018) Hydrological variability and changes in the Arctic circumpolar tundra and the three largest pan-Arctic river basins from 2002 to 2016. Remote Sens 2018(10):402.  https://doi.org/10.3390/rs10030402 CrossRefGoogle Scholar
  55. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33(8):L08402–4.  https://doi.org/10.1029/2005GL025285 CrossRefGoogle Scholar
  56. Takala M, Luojus K, Pulliainen J, Derksen C, Lemmetyinen J, Kärnä J-P et al (2011) Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens Environ 115(12):3517–3529.  https://doi.org/10.1016/j.rse.2011.08.014 CrossRefGoogle Scholar
  57. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305(5683):503–505.  https://doi.org/10.1126/science.1099192 CrossRefPubMedGoogle Scholar
  58. Tedesco M, Jeyaratnam J (2016) A new operational snow retrieval algorithm applied to historical AMSR-E brightness temperatures. Remote Sens 8(12):1037.  https://doi.org/10.3390/rs8121037 CrossRefGoogle Scholar
  59. van der Molen MK, de Jeu RAM, Wagner W, van der Velde IR, Kolari P, Kurbatova J et al (2016) The effect of assimilating satellite-derived soil moisture data in SiBCASA on simulated carbon fluxes in Boreal Eurasia. Hydrol Earth Syst Sci 20(2):605–624.  https://doi.org/10.5194/hess-20-605-2016 CrossRefGoogle Scholar
  60. Velicogna I, Tong J, Zhang T, Kimball JS (2012) Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE. Geophy Res Lett 39(9):L09403.  https://doi.org/10.1029/2012GL051623 CrossRefGoogle Scholar
  61. Vey S, Steffen H, Müller J, Boike J (2013) Inter-annual water mass variations from GRACE in Central Siberia. J Geod 87(3):287–299.  https://doi.org/10.1007/s00190-012-0597-9 CrossRefGoogle Scholar
  62. Wagner W, Hahn S, Kidd R, Melzer T, Bartalis Z, Hasenauer S et al (2013) The ASCAT soil moisture product: a review of its specifications, validation results, and emerging applications. Meteorol Z 22(1):5–33.  https://doi.org/10.1127/0941-2948/2013/0399 CrossRefGoogle Scholar
  63. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229.  https://doi.org/10.1029/98JB02844 CrossRefGoogle Scholar
  64. Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31(11).  https://doi.org/10.1029/2004GL019779 CrossRefGoogle Scholar
  65. Watts JD, Kimball JS, Jones LA, Schroeder R, McDonald KC (2012) Satellite microwave remote sensing of contrasting surface water inundation changes within the Arctic–Boreal region. Remote Sens Environ 127:223–236.  https://doi.org/10.1016/j.rse.2012.09.003 CrossRefGoogle Scholar
  66. Watts JD, Kimball JS, Bartsch A, McDonald KC (2014) Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions. Environ Res Lett 9(7):075001.  https://doi.org/10.1088/1748-9326/9/7/075001 CrossRefGoogle Scholar
  67. Xu H (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27(14):3025–3033.  https://doi.org/10.1080/01431160600589179 CrossRefGoogle Scholar
  68. Yamazaki D, Trigg MA, Ikeshima D (2015) Development of a global ~90 m water body map using multi-temporal Landsat images. Remote Sens Environ 171(C):337–351.  https://doi.org/10.1016/j.rse.2015.10.014 CrossRefGoogle Scholar
  69. Yang D, Zhao Y, Armstrong R, Robinson D, Brodzik M-J (2007) Streamflow response to seasonal snow cover mass changes over large Siberian watersheds. J Geophys Res Earth Surf 112(F):F02S22.  https://doi.org/10.1029/2006JF000518 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Japan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  2. 2.The Geospatial Information Authority of JapanTsukubaJapan

Personalised recommendations