Skip to main content

Role of Alcohol Oxidative Metabolism in Its Cardiovascular and Autonomic Effects

  • Chapter
  • First Online:
Aldehyde Dehydrogenases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1193))

Abstract

Several review articles have been published on the neurobehavioral actions of acetaldehyde and other ethanol metabolites as well as in major alcohol-related disorders such as cancer and liver and lung disease. However, very few reviews dealt with the role of alcohol metabolism in the adverse cardiac and autonomic effects of alcohol and their potential underlying mechanisms, particularly in vulnerable populations. In this chapter, following a brief overview of the dose-related favorable and adverse cardiovascular effects of alcohol, we discuss the role of ethanol metabolism in its adverse effects in the brainstem and heart. Notably, current knowledge dismisses a major role for acetaldehyde in the adverse autonomic and cardiac effects of alcohol because of its low tissue level in vivo. Contrary to these findings in men and male rodents, women and hypertensive individuals are more sensitive to the adverse cardiac effects of similar amounts of alcohol. To understand this discrepancy, we discuss the autonomic and cardiac effects of alcohol and its metabolite acetaldehyde in a model of hypertension, the spontaneously hypertensive rat (SHR) and female rats. We present evidence that enhanced catalase activity, which contributes to cardioprotection in hypertension (compensatory) and in the presence of estrogen (inherent), becomes detrimental due to catalase catalysis of alcohol metabolism to acetaldehyde. Noteworthy, studies in SHRs and in estrogen deprived or replete normotensive rats implicate acetaldehyde in triggering oxidative stress in autonomic nuclei and the heart via (i) the Akt/extracellular signal-regulated kinases (ERK)/nitric oxide synthase (NOS) cascade and (ii) estrogen receptor-alpha (ERα) mediation of the higher catalase activity, which generates higher ethanol-derived acetaldehyde in female heart. The latter is supported by the ability of ERα blockade or catalase inhibition to attenuate alcohol-evoked myocardial oxidative stress and dysfunction. More mechanistic studies are needed to further understand the mechanisms of this public health problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Rahman AA, Wooles WR (1987) Ethanol-induced hypertension involves impairment of baroreceptors. Hypertension 10(1):67–73

    Article  CAS  PubMed  Google Scholar 

  2. Abdel-Rahman AR, Dar MS, Wooles WR (1985) Effect of chronic ethanol administration on arterial baroreceptor function and pressor and depressor responsiveness in rats. J Pharmacol Exp Ther 232(1):194–201

    CAS  PubMed  Google Scholar 

  3. Abdel-Rahman AR, Merrill RH, Wooles WR (1987) Effect of acute ethanol administration on the baroreceptor reflex control of heart rate in normotensive human volunteers. Clin Sci (Lond) 72(1):113–122

    Article  CAS  Google Scholar 

  4. Abdel-Rahman AR, Russ R, Strickland JA, Wooles WR (1987) Acute effects of ethanol on baroreceptor reflex control of heart rate and on pressor and depressor responsiveness in rats. Can J Physiol Pharmacol 65(5):834–841

    Article  CAS  PubMed  Google Scholar 

  5. Abilio VC, Silva RH, Carvalho RC, Grassl C, Calzavara MB, Registro S, D’Almeida V, Ribeiro Rde A, Frussa-Filho R (2004) Important role of striatal catalase in aging- and reserpine-induced oral dyskinesia. Neuropharmacology 47(2):263–272. https://doi.org/10.1016/j.neuropharm.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  6. Ajmera VH, Terrault NA, Harrison SA (2017) Is moderate alcohol use in nonalcoholic fatty liver disease good or bad? A critical review. Hepatology 65(6):2090–2099. https://doi.org/10.1002/hep.29055

    Article  CAS  PubMed  Google Scholar 

  7. Altura BM, Carella A, Altura BT (1978) Acetaldehyde on vascular smooth muscle: possible role in vasodilator action of ethanol. Eur J Pharmacol 52(1):73–83

    Article  CAS  PubMed  Google Scholar 

  8. Amamoto K, Okamura T, Tamaki S, Kita Y, Tsujita Y, Kadowaki T, Nakamura Y, Ueshima H (2002) Epidemiologic study of the association of low-Km mitochondrial acetaldehyde dehydrogenase genotypes with blood pressure level and the prevalence of hypertension in a general population. Hypertens Res 25(6):857–864

    Article  CAS  PubMed  Google Scholar 

  9. Amanvermez R, Agara E (2006) Does ascorbate/L-Cys/L-Met mixture protect different parts of the rat brain against chronic alcohol toxicity? Adv Ther 23(5):705–718

    Article  CAS  PubMed  Google Scholar 

  10. Antunes VR, Yao ST, Pickering AE, Murphy D, Paton JF (2006) A spinal vasopressinergic mechanism mediates hyperosmolality-induced sympathoexcitation. J Physiol 576(Pt 2):569–583. https://doi.org/10.1113/jphysiol.2006.115766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arkwright PD, Beilin LJ, Rouse I, Armstrong BK, Vandongen R (1982) Effects of alcohol use and other aspects of lifestyle on blood pressure levels and prevalence of hypertension in a working population. Circulation 66(1):60–66

    Article  CAS  PubMed  Google Scholar 

  12. Aroor AR, Shukla SD (2004) MAP kinase signaling in diverse effects of ethanol. Life Sci 74(19):2339–2364

    Article  CAS  PubMed  Google Scholar 

  13. Awtry EH, Philippides GJ (2010) Alcoholic and cocaine-associated cardiomyopathies. Prog Cardiovasc Dis 52(4):289–299. https://doi.org/10.1016/j.pcad.2009.11.004

    Article  PubMed  Google Scholar 

  14. Baros AM, Wright TM, Latham PK, Miller PM, Anton RF (2008) Alcohol consumption, %CDT, GGT and blood pressure change during alcohol treatment. Alcohol Alcohol 43(2):192–197. https://doi.org/10.1093/alcalc/agm156

    Article  CAS  PubMed  Google Scholar 

  15. Beilin LJ (1995) Alcohol and hypertension. Clin Exp Pharmacol Physiol 22(3):185–188

    Article  CAS  PubMed  Google Scholar 

  16. Bhaskaran D, Freed CR (1989) Catechol and indole metabolism in rostral ventrolateral medulla change synchronously with changing blood pressure. J Pharmacol Exp Ther 249(2):660–666

    CAS  PubMed  Google Scholar 

  17. Brien JF, Loomis CW (1983) Pharmacology of acetaldehyde. Can J Physiol Pharmacol 61(1):1–22

    Article  CAS  PubMed  Google Scholar 

  18. Brooks VL, Freeman KL, O’Donaughy TL (2004) Acute and chronic increases in osmolality increase excitatory amino acid drive of the rostral ventrolateral medulla in rats. Am J Physiol Regul Integr Comp Physiol 287(6):R1359–R1368. https://doi.org/10.1152/ajpregu.00104.2004

    Article  CAS  PubMed  Google Scholar 

  19. Brown RA, Savage AO (1996) Effects of acute acetaldehyde, chronic ethanol, and pargyline treatment on agonist responses of the rat aorta. Toxicol Appl Pharmacol 136(1):170–178. https://doi.org/10.1006/taap.1996.0021

    Article  CAS  PubMed  Google Scholar 

  20. Budas GR, Disatnik MH, Chen CH, Mochly-Rosen D (2010) Activation of aldehyde dehydrogenase 2 (ALDH2) confers cardioprotection in protein kinase C epsilon (PKCvarepsilon) knockout mice. J Mol Cell Cardiol 48(4):757–764. https://doi.org/10.1016/j.yjmcc.2009.10.030

    Article  CAS  PubMed  Google Scholar 

  21. Campos C, Casali KR, Baraldi D, Conzatti A, Araujo AS, Khaper N, Llesuy S, Rigatto K, Bello-Klein A (2014) Efficacy of a low dose of estrogen on antioxidant defenses and heart rate variability. Oxidative Med Cell Longev 2014:218749. https://doi.org/10.1155/2014/218749

    Article  CAS  Google Scholar 

  22. Campos RR, Oliveira-Sales EB, Nishi EE, Boim MA, Dolnikoff MS, Bergamaschi CT (2011) The role of oxidative stress in renovascular hypertension. Clin Exp Pharmacol Physiol 38(2):144–152. https://doi.org/10.1111/j.1440-1681.2010.05437.x

    Article  CAS  PubMed  Google Scholar 

  23. Cardoso LM, Colombari DS, Menani JV, Toney GM, Chianca DA Jr, Colombari E (2009) Cardiovascular responses to hydrogen peroxide into the nucleus tractus solitarius. Am J Physiol Regul Integr Comp Physiol 297(2):R462–R469. https://doi.org/10.1152/ajpregu.90796.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75(1):50–83. https://doi.org/10.1128/MMBR.00031-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Castillo C, Ceballos G, Rodriguez D, Villanueva C, Medina R, Lopez J, Mendez E, Castillo EF (2006) Effects of estradiol on phenylephrine contractility associated with intracellular calcium release in rat aorta. Am J Physiol Cell Physiol 291(6):C1388–C1394. https://doi.org/10.1152/ajpcell.00556.2005

    Article  CAS  PubMed  Google Scholar 

  26. Chalmers J, Pilowsky P (1991) Brainstem and bulbospinal neurotransmitter systems in the control of blood pressure. J Hypertens 9(8):675–694

    Article  CAS  PubMed  Google Scholar 

  27. Chan TC, Sutter MC (1982) The effects of chronic ethanol consumption on cardiac function in rats. Can J Physiol Pharmacol 60(6):777–782

    Article  CAS  PubMed  Google Scholar 

  28. Chan TC, Wall RA, Sutter MC (1985) Chronic ethanol consumption, stress, and hypertension. Hypertension 7(4):519–524

    Article  CAS  PubMed  Google Scholar 

  29. Chen CA, Druhan LJ, Varadharaj S, Chen YR, Zweier JL (2008) Phosphorylation of endothelial nitric-oxide synthase regulates superoxide generation from the enzyme. J Biol Chem 283(40):27038–27047. https://doi.org/10.1074/jbc.M802269200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD, Mochly-Rosen D (2008) Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 321(5895):1493–1495. https://doi.org/10.1126/science.1158554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen YC, Lu RB, Peng GS, Wang MF, Wang HK, Ko HC, Chang YC, Lu JJ, Li TK, Yin SJ (1999) Alcohol metabolism and cardiovascular response in an alcoholic patient homozygous for the ALDH2*2 variant gene allele. Alcohol Clin Exp Res 23(12):1853–1860

    Article  CAS  PubMed  Google Scholar 

  32. Choi EY, Hwang HJ, Kim IH, Nam TJ (2009) Protective effects of a polysaccharide from Hizikia fusiformis against ethanol toxicity in rats. Food Chem Toxicol 47(1):134–139. https://doi.org/10.1016/j.fct.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  33. Correa M, Arizzi MN, Betz A, Mingote S, Salamone JD (2003) Open field locomotor effects in rats after intraventricular injections of ethanol and the ethanol metabolites acetaldehyde and acetate. Brain Res Bull 62(3):197–202

    Article  CAS  PubMed  Google Scholar 

  34. Correa M, Salamone JD, Segovia KN, Pardo M, Longoni R, Spina L, Peana AT, Vinci S, Acquas E (2012) Piecing together the puzzle of acetaldehyde as a neuroactive agent. Neurosci Biobehav Rev 36(1):404–430. https://doi.org/10.1016/j.neubiorev.2011.07.009

    Article  CAS  PubMed  Google Scholar 

  35. Cullen N, Carlen PL (1992) Electrophysiological actions of acetate, a metabolite of ethanol, on hippocampal dentate granule neurons: interactions with adenosine. Brain Res 588(1):49–57

    Article  CAS  PubMed  Google Scholar 

  36. DePuy SD, Stornetta RL, Bochorishvili G, Deisseroth K, Witten I, Coates M, Guyenet PG (2013) Glutamatergic neurotransmission between the C1 neurons and the parasympathetic preganglionic neurons of the dorsal motor nucleus of the vagus. J Neurosci 33(4):1486–1497. https://doi.org/10.1523/JNEUROSCI.4269-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deshpande M, Mali VR, Pan G, Xu J, Yang XP, Thandavarayan RA, Palaniyandi SS (2016) Increased 4-hydroxy-2-nonenal-induced proteasome dysfunction is correlated with cardiac damage in streptozotocin-injected rats with isoproterenol infusion. Cell Biochem Funct 34(5):334–342. https://doi.org/10.1002/cbf.3195

    Article  CAS  PubMed  Google Scholar 

  38. Doyle KM, Bird DA, al-Salihi S, Hallaq Y, Cluette-Brown JE, Goss KA, Laposata M (1994) Fatty acid ethyl esters are present in human serum after ethanol ingestion. J Lipid Res 35(3):428–437

    CAS  PubMed  Google Scholar 

  39. Duan J, Esberg LB, Ye G, Borgerding AJ, Ren BH, Aberle NS, Epstein PN, Ren J (2003) Influence of gender on ethanol-induced ventricular myocyte contractile depression in transgenic mice with cardiac overexpression of alcohol dehydrogenase. Comp Biochem Physiol A Mol Integr Physiol 134(3):607–614

    Article  PubMed  Google Scholar 

  40. El-Bassossy HM, Awan Z, El-Mas MM (2017) Perinatal ciclosporin A exposure elicits sex-related cardiac dysfunction and inflammation in the rat progeny. Toxicol Lett 281:35–43. https://doi.org/10.1016/j.toxlet.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  41. El-Bassossy HM, Banjar ZM, El-Mas MM (2017) The inflammatory state provokes sexual dimorphism in left ventricular and electrocardiographic effects of chronic cyclosporine in rats. Sci Rep 7:42457. https://doi.org/10.1038/srep42457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. El-Lakany MA, Fouda MA, El-Gowelli HM, El-Gowilly SM, El-Mas MM (2018) Gonadal hormone receptors underlie the resistance of female rats to inflammatory and cardiovascular complications of endotoxemia. Eur J Pharmacol 823:41–48. https://doi.org/10.1016/j.ejphar.2018.01.051

    Article  CAS  PubMed  Google Scholar 

  43. el-Mas MM, Abdel-Rahman AA (1992) Role of aortic baroreceptors in ethanol-induced impairment of baroreflex control of heart rate in conscious rats. J Pharmacol Exp Ther 262(1):157–165

    CAS  PubMed  Google Scholar 

  44. el-Mas MM, Abdel-Rahman AA (1993) Direct evidence for selective involvement of aortic baroreceptors in ethanol-induced impairment of baroreflex control of heart rate. J Pharmacol Exp Ther 264(3):1198–1205

    CAS  PubMed  Google Scholar 

  45. el-Mas MM, Abdel-Rahman AA (1993) Role of NMDA and non-NMDA receptors in the nucleus tractus solitarius in the depressant effect of ethanol on baroreflexes. J Pharmacol Exp Ther 266(2):602–610

    CAS  PubMed  Google Scholar 

  46. el-Mas MM, Abdel-Rahman AA (1997) Contrasting effects of urethane, ketamine, and thiopental anesthesia on ethanol-clonidine hemodynamic interaction. Alcohol Clin Exp Res 21(1):19–27

    Article  CAS  PubMed  Google Scholar 

  47. El-Mas MM, Abdel-Rahman AA (1998) Ovariectomy abolishes ethanol-induced impairment of baroreflex control of heart rate in conscious rats. Eur J Pharmacol 349(2–3):253–261

    Article  CAS  PubMed  Google Scholar 

  48. El-Mas MM, Abdel-Rahman AA (1999) Acute hemodynamic effects of ethanol in conscious spontaneously hypertensive and normotensive rats. Alcohol Clin Exp Res 23(2):285–292

    Article  CAS  PubMed  Google Scholar 

  49. El-Mas MM, Abdel-Rahman AA (1999) Estrogen-dependent hypotensive effects of ethanol in conscious female rats. Alcohol Clin Exp Res 23(4):624–632

    Article  CAS  PubMed  Google Scholar 

  50. El-Mas MM, Abdel-Rahman AA (1999) Ethanol counteraction of I1-imidazoline but not alpha-2 adrenergic receptor-mediated reduction in vascular resistance in conscious spontaneously hypertensive rats. J Pharmacol Exp Ther 288(2):455–462

    CAS  PubMed  Google Scholar 

  51. El-Mas MM, Abdel-Rahman AA (1999) Sexually dimorphic hemodynamic effects of intragastric ethanol in conscious rats. Clin Exp Hypertens 21(8):1429–1445

    Article  CAS  PubMed  Google Scholar 

  52. El-Mas MM, Abdel-Rahman AA (2000) Clonidine diminishes c-jun gene expression in the cardiovascular sensitive areas of the rat brainstem. Brain Res 856(1–2):245–249

    Article  CAS  PubMed  Google Scholar 

  53. El-Mas MM, Abdel-Rahman AA (2000) Ovariectomy alters the chronic hemodynamic and sympathetic effects of ethanol in radiotelemetered female rats. Clin Exp Hypertens 22(1):109–126

    Article  CAS  PubMed  Google Scholar 

  54. El-Mas MM, Abdel-Rahman AA (2000) Radiotelemetric evaluation of hemodynamic effects of long-term ethanol in spontaneously hypertensive and Wistar-Kyoto rats. J Pharmacol Exp Ther 292(3):944–951

    CAS  PubMed  Google Scholar 

  55. El-Mas MM, Abdel-Rahman AA (2001) An association between the estrogen-dependent hypotensive effect of ethanol and an elevated brainstem c-jun mRNA in female rats. Brain Res 912(1):79–88

    Article  CAS  PubMed  Google Scholar 

  56. El-Mas MM, Abdel-Rahman AA (2001) Effect of long-term ethanol feeding on brainstem alpha(2)-receptor binding in Wistar-Kyoto and spontaneously hypertensive rats. Brain Res 900(2):324–328

    Article  CAS  PubMed  Google Scholar 

  57. El-Mas MM, Abdel-Rahman AA (2009) Longitudinal assessment of the effects of oestrogen on blood pressure and cardiovascular autonomic activity in female rats. Clin Exp Pharmacol Physiol 36(10):1002–1009. https://doi.org/10.1111/j.1440-1681.2009.05192.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. El-Mas MM, Abdel-Rahman AA (2012) Enhanced catabolism to acetaldehyde in rostral ventrolateral medullary neurons accounts for the pressor effect of ethanol in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 302(3):H837–H844. https://doi.org/10.1152/ajpheart.00958.2011

    Article  CAS  PubMed  Google Scholar 

  59. El-Mas MM, Abdel-Rahman AA (2012) Exacerbation of myocardial dysfunction and autonomic imbalance contributes to the estrogen-dependent chronic hypotensive effect of ethanol in female rats. Eur J Pharmacol 679(1–3):95–100. https://doi.org/10.1016/j.ejphar.2012.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. El-Mas MM, Abdel-Rahman AA (2014) Nongenomic effects of estrogen mediate the dose-related myocardial oxidative stress and dysfunction caused by acute ethanol in female rats. Am J Physiol Endocrinol Metab 306(7):E740–E747. https://doi.org/10.1152/ajpendo.00465.2013

    Article  CAS  PubMed  Google Scholar 

  61. El-Mas MM, Abdel-Rahman AA (2014) Ser/thr phosphatases tonically attenuate the ERK-dependent pressor effect of ethanol in the rostral ventrolateral medulla in normotensive rats. Brain Res 1577:21–28. https://doi.org/10.1016/j.brainres.2014.06.026

    Article  CAS  PubMed  Google Scholar 

  62. El-Mas MM, Abdel-Rahman AA (2015) Estrogen modulation of the ethanol-evoked myocardial oxidative stress and dysfunction via DAPK3/Akt/ERK activation in male rats. Toxicol Appl Pharmacol 287(3):284–292. https://doi.org/10.1016/j.taap.2015.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. El-Mas MM, El-Gowelli HM, Ghazal AR, Harraz OF, Mohy El-Din MM (2009) Facilitation of central imidazoline I(1)-site/extracellular signal-regulated kinase/p38 mitogen-activated protein kinase signalling mediates the hypotensive effect of ethanol in rats with acute renal failure. Br J Pharmacol 158(6):1629–1640. https://doi.org/10.1111/j.1476-5381.2009.00444.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. El-Mas MM, Fan M, Abdel-Rahman AA (2009) Facilitation of myocardial PI3K/Akt/nNOS signaling contributes to ethanol-evoked hypotension in female rats. Alcohol Clin Exp Res 33(7):1158–1168. https://doi.org/10.1111/j.1530-0277.2009.00939.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. El-Mas MM, Fan M, Abdel-Rahman AA (2011) Upregulation of cardiac NOS due to endotoxemia and vagal overactivity contributes to the hypotensive effect of chronic ethanol in female rats. Eur J Pharmacol 650(1):317–323. https://doi.org/10.1016/j.ejphar.2010.10.032

    Article  CAS  PubMed  Google Scholar 

  66. El-Mas MM, Fan M, Abdel-Rahman AA (2013) Role of rostral ventrolateral medullary ERK/JNK/p38 MAPK signaling in the pressor effects of ethanol and its oxidative product acetaldehyde. Alcohol Clin Exp Res 37(11):1827–1837. https://doi.org/10.1111/acer.12179

    Article  CAS  PubMed  Google Scholar 

  67. El-Mas MM, Mohy El-Din MM, Helmy MM, Omar AG (2012) Redox imbalances incite the hypertensive, baroreflex, and autonomic effects of cyclosporine in rats. Eur J Pharmacol 694(1–3):82–88. https://doi.org/10.1016/j.ejphar.2012.08.021

    Article  CAS  PubMed  Google Scholar 

  68. El-Mas MM, Zhang J, Abdel-Rahman AA (2006) Upregulation of vascular inducible nitric oxide synthase mediates the hypotensive effect of ethanol in conscious female rats. J Appl Physiol (1985) 100(3):1011–1018. https://doi.org/10.1152/japplphysiol.01058.2005

    Article  CAS  PubMed  Google Scholar 

  69. El-Yazbi AF, Ibrahim KS, El-Gowelli HM, El-Deeb NM, El-Mas MM (2017) Modulation by NADPH oxidase of the chronic cardiovascular and autonomic interaction between cyclosporine and NSAIDs in female rats. Eur J Pharmacol 806:96–104. https://doi.org/10.1016/j.ejphar.2017.04.016

    Article  CAS  PubMed  Google Scholar 

  70. English JM, Cobb MH (2002) Pharmacological inhibitors of MAPK pathways. Trends Pharmacol Sci 23(1):40–45

    Article  CAS  PubMed  Google Scholar 

  71. Enomoto N, Takase S, Yasuhara M, Takada A (1991) Acetaldehyde metabolism in different aldehyde dehydrogenase-2 genotypes. Alcohol Clin Exp Res 15(1):141–144

    Article  CAS  PubMed  Google Scholar 

  72. Eriksson CJ (2015) Genetic-epidemiological evidence for the role of acetaldehyde in cancers related to alcohol drinking. Adv Exp Med Biol 815:41–58. https://doi.org/10.1007/978-3-319-09614-8_3

    Article  CAS  PubMed  Google Scholar 

  73. Eriksson CJ, Fukunaga T, Sarkola T, Lindholm H, Ahola L (1996) Estrogen-related acetaldehyde elevation in women during alcohol intoxication. Alcohol Clin Exp Res 20(7):1192–1195

    Article  CAS  PubMed  Google Scholar 

  74. Farquhar WB, Wenner MM, Delaney EP, Prettyman AV, Stillabower ME (2006) Sympathetic neural responses to increased osmolality in humans. Am J Physiol Heart Circ Physiol 291(5):H2181–H2186. https://doi.org/10.1152/ajpheart.00191.2006

    Article  CAS  PubMed  Google Scholar 

  75. Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A 98(5):2604–2609. https://doi.org/10.1073/pnas.041359198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gaitanaki C, Konstantina S, Chrysa S, Beis I (2003) Oxidative stress stimulates multiple MAPK signalling pathways and phosphorylation of the small HSP27 in the perfused amphibian heart. J Exp Biol 206(Pt 16):2759–2769

    Article  CAS  PubMed  Google Scholar 

  77. Gao L, Li Y, Schultz HD, Wang WZ, Wang W, Finch M, Smith LM, Zucker IH (2010) Downregulated Kv4.3 expression in the RVLM as a potential mechanism for sympathoexcitation in rats with chronic heart failure. Am J Physiol Heart Circ Physiol 298(3):H945–H955. https://doi.org/10.1152/ajpheart.00145.2009

    Article  CAS  PubMed  Google Scholar 

  78. George A, Figueredo VM (2010) Alcohol and arrhythmias: a comprehensive review. J Cardiovasc Med (Hagerstown) 11(4):221–228. https://doi.org/10.2459/JCM.0b013e328334b42d

    Article  Google Scholar 

  79. Ghali MGZ (2017) The brainstem network controlling blood pressure: an important role for pressor sites in the caudal medulla and cervical spinal cord. J Hypertens 35(10):1938–1947. https://doi.org/10.1097/HJH.0000000000001427

    Article  CAS  PubMed  Google Scholar 

  80. Goel S, Sharma A, Garg A (2018) Effect of alcohol consumption on cardiovascular health. Curr Cardiol Rep 20(4):19. https://doi.org/10.1007/s11886-018-0962-2

    Article  PubMed  Google Scholar 

  81. Gong D, Zhang L, Zhang Y, Wang F, Zhou X, Sun H (2018) East Asian variant of aldehyde dehydrogenase 2 is related to worse cardioprotective results after coronary artery bypass grafting. Interact Cardiovasc Thorac Surg. https://doi.org/10.1093/icvts/ivy204

    Article  Google Scholar 

  82. Gordon FJ, Mark AL (1983) Impaired baroreflex control of vascular resistance in prehypertensive Dahl S rats. Am J Phys 245(2):H210–H217. https://doi.org/10.1152/ajpheart.1983.245.2.H210

    Article  CAS  Google Scholar 

  83. Gordon FJ, Matsuguchi H, Mark AL (1981) Abnormal baroreflex control of heart rate in prehypertensive and hypertensive Dahl genetically salt-sensitive rats. Hypertension 3(3 Pt 2):I135–I141

    CAS  PubMed  Google Scholar 

  84. Greenberg SS, Xie J, Wang Y, Kolls J, Shellito J, Nelson S, Summer WR (1993) Ethanol relaxes pulmonary artery by release of prostaglandin and nitric oxide. Alcohol 10(1):21–29

    Article  CAS  PubMed  Google Scholar 

  85. Grogan JR, Kochar MS (1994) Alcohol and hypertension. Arch Fam Med 3(2):150–154

    Article  CAS  PubMed  Google Scholar 

  86. Guo R, Hu N, Kandadi MR, Ren J (2012) Facilitated ethanol metabolism promotes cardiomyocyte contractile dysfunction through autophagy in murine hearts. Autophagy 8(4):593–608. https://doi.org/10.4161/auto.18997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Guo R, Ren J (2010) Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway. PLoS One 5(1):e8757. https://doi.org/10.1371/journal.pone.0008757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guyenet PG, Schreihofer AM, Stornetta RL (2001) Regulation of sympathetic tone and arterial pressure by the rostral ventrolateral medulla after depletion of C1 cells in rats. Ann N Y Acad Sci 940:259–269

    Article  CAS  PubMed  Google Scholar 

  89. Haorah J, Ramirez SH, Floreani N, Gorantla S, Morsey B, Persidsky Y (2008) Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radic Biol Med 45(11):1542–1550. https://doi.org/10.1016/j.freeradbiomed.2008.08.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Harada S, Agarwal DP, Goedde HW (1981) Aldehyde dehydrogenase deficiency as cause of facial flushing reaction to alcohol in Japanese. Lancet 2(8253):982

    Article  CAS  PubMed  Google Scholar 

  91. Haseba T (2014) Molecular evidences of non-ADH pathway in alcohol metabolism and Class III alcohol dehydrogenase (ADH3). Nihon Arukoru Yakubutsu Igakkai Zasshi 49(3):159–168

    PubMed  Google Scholar 

  92. Herschman HR, Lim RW, Brankow DW, Fujiki H (1989) The tumor promoters 12-O-tetradecanoylphorbol-13-acetate and okadaic acid differ in toxicity, mitogenic activity and induction of gene expression. Carcinogenesis 10(8):1495–1498

    Article  CAS  PubMed  Google Scholar 

  93. Hipolito L, Sanchez MJ, Polache A, Granero L (2007) Brain metabolism of ethanol and alcoholism: an update. Curr Drug Metab 8(7):716–727

    Article  CAS  PubMed  Google Scholar 

  94. Hurtado R, Celani M, Geber S (2016) Effect of short-term estrogen therapy on endothelial function: a double-blinded, randomized, controlled trial. Climacteric 19(5):448–451. https://doi.org/10.1080/13697137.2016.1201809

    Article  CAS  PubMed  Google Scholar 

  95. Husain K, Ansari RA, Ferder L (2014) Alcohol-induced hypertension: mechanism and prevention. World J Cardiol 6(5):245–252. https://doi.org/10.4330/wjc.v6.i5.245

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ibrahim BM, Fan M, Abdel-Rahman AA (2014) Oxidative stress and autonomic dysregulation contribute to the acute time-dependent myocardial depressant effect of ethanol in conscious female rats. Alcohol Clin Exp Res 38(5):1205–1215. https://doi.org/10.1111/acer.12363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ibrahim KS, El-Yazbi AF, El-Gowelli HM, El-Mas MM (2017) Opposite modulatory effects of selective and non-selective cyclooxygenase inhibition on cardiovascular and autonomic consequences of cyclosporine in female rats. Basic Clin Pharmacol Toxicol 120(6):571–581. https://doi.org/10.1111/bcpt.12754

    Article  CAS  PubMed  Google Scholar 

  98. Ireland MA, Vandongen R, Davidson L, Beilin LJ, Rouse IL (1984) Acute effects of moderate alcohol consumption on blood pressure and plasma catecholamines. Clin Sci (Lond) 66(6):643–648

    Article  CAS  Google Scholar 

  99. Itoh T, Matsumoto M, Nakamura M, Okada A, Shirahashi N, Hougaku H, Hashimoto H, Sakaguchi M, Handa N, Takeshita T, Morimoto K, Hori M (1997) Effects of daily alcohol intake on the blood pressure differ depending on an individual’s sensitivity to alcohol: oriental flushing as a sign to stop drinking for health reasons. J Hypertens 15(11):1211–1217

    Article  CAS  PubMed  Google Scholar 

  100. Iwai N, Tago N, Yasui N, Kokubo Y, Inamoto N, Tomoike H, Shioji K (2004) Genetic analysis of 22 candidate genes for hypertension in the Japanese population. J Hypertens 22(6):1119–1126

    Article  CAS  PubMed  Google Scholar 

  101. Jayakumar AR, Panickar KS, Murthy Ch R, Norenberg MD (2006) Oxidative stress and mitogen-activated protein kinase phosphorylation mediate ammonia-induced cell swelling and glutamate uptake inhibition in cultured astrocytes. J Neurosci 26(18):4774–4784. https://doi.org/10.1523/JNEUROSCI.0120-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jeavons CM, Zeiner AR (1984) Effects of elevated female sex steroids on ethanol and acetaldehyde metabolism in humans. Alcohol Clin Exp Res 8(4):352–358

    Article  CAS  PubMed  Google Scholar 

  103. Ji A, Lou P, Dong Z, Xu C, Zhang P, Chang G, Li T (2018) The prevalence of alcohol dependence and its association with hypertension: a population-based cross-sectional study4 in Xuzhou city, China. BMC Public Health 18(1):364. https://doi.org/10.1186/s12889-018-5276-1

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kandadi MR, Hu N, Ren J (2013) ULK1 plays a critical role in AMPK-mediated myocardial autophagy and contractile dysfunction following acute alcohol challenge. Curr Pharm Des 19(27):4874–4887

    Article  CAS  PubMed  Google Scholar 

  105. Kang PF, Wu WJ, Tang Y, Xuan L, Guan SD, Tang B, Zhang H, Gao Q, Wang HJ (2016) Activation of ALDH2 with low concentration of ethanol attenuates myocardial ischemia/reperfusion injury in diabetes rat model. Oxidative Med Cell Longev 2016:6190504. https://doi.org/10.1155/2016/6190504

    Article  CAS  Google Scholar 

  106. Kannel WB (1975) Role of blood pressure in cardiovascular disease: the Framingham Study. Angiology 26(1 Pt. 1):1–14. https://doi.org/10.1177/000331977502600101

    Article  CAS  PubMed  Google Scholar 

  107. Karahanian E, Quintanilla ME, Tampier L, Rivera-Meza M, Bustamante D, Gonzalez-Lira V, Morales P, Herrera-Marschitz M, Israel Y (2011) Ethanol as a prodrug: brain metabolism of ethanol mediates its reinforcing effects. Alcohol Clin Exp Res 35(4):606–612. https://doi.org/10.1111/j.1530-0277.2011.01439.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Karuppiah K, Druhan LJ, Chen CA, Smith T, Zweier JL, Sessa WC, Cardounel AJ (2011) Suppression of eNOS-derived superoxide by caveolin-1: a biopterin-dependent mechanism. Am J Physiol Heart Circ Physiol 301(3):H903–H911. https://doi.org/10.1152/ajpheart.00936.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Katahira K, Mikami H, Otsuka A, Moriguchi A, Kohara K, Higashimori K, Okuda N, Nagano M, Morishita R, Ogihara T (1994) Differential control of vascular tone and heart rate by different amino acid neurotransmitters in the rostral ventrolateral medulla of the rat. Clin Exp Pharmacol Physiol 21(7):545–556

    Article  CAS  PubMed  Google Scholar 

  110. Kawano Y, Abe H, Kojima S, Ashida T, Yoshida K, Imanishi M, Yoshimi H, Kimura G, Kuramochi M, Omae T (1992) Acute depressor effect of alcohol in patients with essential hypertension. Hypertension 20(2):219–226

    Article  CAS  PubMed  Google Scholar 

  111. Kelbaek H, Gjorup T, Brynjolf I, Christensen NJ, Godtfredsen J (1985) Acute effects of alcohol on left ventricular function in healthy subjects at rest and during upright exercise. Am J Cardiol 55(1):164–167

    Article  CAS  PubMed  Google Scholar 

  112. Kim KH, Young BD, Bender JR (2014) Endothelial estrogen receptor isoforms and cardiovascular disease. Mol Cell Endocrinol 389(1–2):65–70. https://doi.org/10.1016/j.mce.2014.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kinoshita H, Jessop DS, Finn DP, Coventry TL, Roberts DJ, Ameno K, Jiri I, Harbuz MS (2001) Acetaldehyde, a metabolite of ethanol, activates the hypothalamic-pituitary-adrenal axis in the rat. Alcohol Alcohol 36(1):59–64

    Article  CAS  PubMed  Google Scholar 

  114. Kishi T, Hirooka Y, Konno S, Ogawa K, Sunagawa K (2010) Angiotensin II type 1 receptor-activated caspase-3 through ras/mitogen-activated protein kinase/extracellular signal-regulated kinase in the rostral ventrolateral medulla is involved in sympathoexcitation in stroke-prone spontaneously hypertensive rats. Hypertension 55(2):291–297. https://doi.org/10.1161/HYPERTENSIONAHA.109.138636

    Article  CAS  PubMed  Google Scholar 

  115. Klatsky AL (1990) Blood pressure and alcohol intake. In: J L B (ed) Hypertension: pathophysiology, diagnosis, and management. Raven Press Ltd, New York, pp 277–294

    Google Scholar 

  116. Krenz M, Korthuis RJ (2012) Moderate ethanol ingestion and cardiovascular protection: from epidemiologic associations to cellular mechanisms. J Mol Cell Cardiol 52(1):93–104. https://doi.org/10.1016/j.yjmcc.2011.10.011

    Article  CAS  PubMed  Google Scholar 

  117. Kucerova J, Strbak V (2001) The osmotic component of ethanol and urea action is critical for their immediate stimulation of thyrotropin-releasing hormone (TRH) release from rat brain septum. Physiol Res 50(3):309–314

    CAS  PubMed  Google Scholar 

  118. Lange LG, Sobel BE (1983) Mitochondrial dysfunction induced by fatty acid ethyl esters, myocardial metabolites of ethanol. J Clin Invest 72(2):724–731. https://doi.org/10.1172/JCI111022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Laposata EA, Lange LG (1986) Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse. Science 231(4737):497–499

    Article  CAS  PubMed  Google Scholar 

  120. Larson HN, Weiner H, Hurley TD (2005) Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase “Asian” variant. J Biol Chem 280(34):30550–30556. https://doi.org/10.1074/jbc.M502345200

    Article  CAS  PubMed  Google Scholar 

  121. Lauar MR, Colombari DS, De Paula PM, Colombari E, Cardoso LM, De Luca LA Jr, Menani JV (2010) Inhibition of central angiotensin II-induced pressor responses by hydrogen peroxide. Neuroscience 171(2):524–530. https://doi.org/10.1016/j.neuroscience.2010.08.048

    Article  CAS  PubMed  Google Scholar 

  122. Leal S, Ricardo Jorge DO, Joana B, Maria SS, Isabel SS (2017) Heavy alcohol consumption effects on blood pressure and on kidney structure persist after long-term withdrawal. Kidney Blood Press Res 42(4):664–675. https://doi.org/10.1159/000482022

    Article  CAS  PubMed  Google Scholar 

  123. Lee RD, An SM, Kim SS, Rhee GS, Kwack SJ, Seok JH, Chae SY, Park CH, Choi YW, Kim HS, Cho HY, Lee BM, Park KL (2005) Neurotoxic effects of alcohol and acetaldehyde during embryonic development. J Toxicol Environ Health A 68(23–24):2147–2162. https://doi.org/10.1080/15287390500177255

    Article  CAS  PubMed  Google Scholar 

  124. Leibing E, Meyer T (2016) Enzymes and signal pathways in the pathogenesis of alcoholic cardiomyopathy. Herz 41(6):478–483. https://doi.org/10.1007/s00059-016-4459-8

    Article  CAS  PubMed  Google Scholar 

  125. Lekontseva O, Chakrabarti S, Jiang Y, Cheung CC, Davidge ST (2011) Role of neuronal nitric-oxide synthase in estrogen-induced relaxation in rat resistance arteries. J Pharmacol Exp Ther 339(2):367–375. https://doi.org/10.1124/jpet.111.183798

    Article  CAS  PubMed  Google Scholar 

  126. Li G, Wang X, Abdel-Rahman AA (2005) Brainstem norepinephrine neurons mediate ethanol-evoked pressor response but not baroreflex dysfunction. Alcohol Clin Exp Res 29(4):639–647

    Article  CAS  PubMed  Google Scholar 

  127. Li SY, Li Q, Shen JJ, Dong F, Sigmon VK, Liu Y, Ren J (2006) Attenuation of acetaldehyde-induced cell injury by overexpression of aldehyde dehydrogenase-2 (ALDH2) transgene in human cardiac myocytes: role of MAP kinase signaling. J Mol Cell Cardiol 40(2):283–294. https://doi.org/10.1016/j.yjmcc.2005.11.006

    Article  CAS  PubMed  Google Scholar 

  128. Li SY, Ren J (2008) Cardiac overexpression of alcohol dehydrogenase exacerbates chronic ethanol ingestion-induced myocardial dysfunction and hypertrophy: role of insulin signaling and ER stress. J Mol Cell Cardiol 44(6):992–1001. https://doi.org/10.1016/j.yjmcc.2008.02.276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Liang Q, Carlson EC, Borgerding AJ, Epstein PN (1999) A transgenic model of acetaldehyde overproduction accelerates alcohol cardiomyopathy. J Pharmacol Exp Ther 291(2):766–772

    CAS  PubMed  Google Scholar 

  130. Lieber CS (1997) Ethanol metabolism, cirrhosis and alcoholism. Clin Chim Acta 257(1):59–84

    Article  CAS  PubMed  Google Scholar 

  131. Lohmeier TE, Iliescu R (2015) The baroreflex as a long-term controller of arterial pressure. Physiology (Bethesda) 30(2):148–158. https://doi.org/10.1152/physiol.00035.2014

    Article  CAS  Google Scholar 

  132. Ma H, Yu L, Byra EA, Hu N, Kitagawa K, Nakayama KI, Kawamoto T, Ren J (2010) Aldehyde dehydrogenase 2 knockout accentuates ethanol-induced cardiac depression: role of protein phosphatases. J Mol Cell Cardiol 49(2):322–329. https://doi.org/10.1016/j.yjmcc.2010.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Magner PO, Ethier JH, Kamel KS, Halperin ML (1991) Interpretation of the urine osmolality: the role of ethanol and the rate of excretion of osmoles. Clin Invest Med 14(4):355–358

    CAS  PubMed  Google Scholar 

  134. Manzo-Avalos S, Saavedra-Molina A (2010) Cellular and mitochondrial effects of alcohol consumption. Int J Environ Res Public Health 7(12):4281–4304. https://doi.org/10.3390/ijerph7124281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mao L, Abdel-Rahman AA (1995) Blockade of L-glutamate receptors in the rostral ventrolateral medulla contributes to ethanol-evoked impairment of baroreflexes in conscious rats. Brain Res Bull 37(5):513–521

    Article  CAS  PubMed  Google Scholar 

  136. Mao L, Li G, Abdel-Rahman AA (2003) Effect of ethanol on reductions in norepinephrine electrochemical signal in the rostral ventrolateral medulla and hypotension elicited by I1-receptor activation in spontaneously hypertensive rats. Alcohol Clin Exp Res 27(9):1471–1480. https://doi.org/10.1097/01.ALC.0000086062.95225.0C

    Article  CAS  PubMed  Google Scholar 

  137. Martin SR, Emanuel K, Sears CE, Zhang YH, Casadei B (2006) Are myocardial eNOS and nNOS involved in the beta-adrenergic and muscarinic regulation of inotropy? A systematic investigation. Cardiovasc Res 70(1):97–106. https://doi.org/10.1016/j.cardiores.2006.02.002

    Article  CAS  PubMed  Google Scholar 

  138. Matyas C, Varga ZV, Mukhopadhyay P, Paloczi J, Lajtos T, Erdelyi K, Nemeth BT, Nan M, Hasko G, Gao B, Pacher P (2016) Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis. Am J Physiol Heart Circ Physiol 310(11):H1658–H1670. https://doi.org/10.1152/ajpheart.00214.2016

    Article  PubMed  PubMed Central  Google Scholar 

  139. McBride WJ, Li TK, Deitrich RA, Zimatkin S, Smith BR, Rodd-Henricks ZA (2002) Involvement of acetaldehyde in alcohol addiction. Alcohol Clin Exp Res 26(1):114–119

    Article  PubMed  Google Scholar 

  140. Meriin AB, Yaglom JA, Gabai VL, Zon L, Ganiatsas S, Mosser DD, Zon L, Sherman MY (1999) Protein-damaging stresses activate c-Jun N-terminal kinase via inhibition of its dephosphorylation: a novel pathway controlled by HSP72. Mol Cell Biol 19(4):2547–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Meyer MR, Haas E, Barton M (2006) Gender differences of cardiovascular disease: new perspectives for estrogen receptor signaling. Hypertension 47(6):1019–1026. https://doi.org/10.1161/01.HYP.0000223064.62762.0b

    Article  CAS  PubMed  Google Scholar 

  142. Meyer MR, Prossnitz ER, Barton M (2011) The G protein-coupled estrogen receptor GPER/GPR30 as a regulator of cardiovascular function. Vasc Pharmacol 55(1–3):17–25. https://doi.org/10.1016/j.vph.2011.06.003

    Article  CAS  Google Scholar 

  143. Mochly-Rosen D, Zakhari S (2010) Focus on: the cardiovascular system: what did we learn from the French (Paradox)? Alcohol Res Health 33(1–2):76–86

    PubMed  PubMed Central  Google Scholar 

  144. Morales JA, Ram JL, Song J, Brown RA (1997) Acetaldehyde inhibits current through voltage-dependent calcium channels. Toxicol Appl Pharmacol 143(1):70–74. https://doi.org/10.1006/taap.1996.8072

    Article  CAS  PubMed  Google Scholar 

  145. Nakao LS, Kadiiska MB, Mason RP, Grijalba MT, Augusto O (2000) Metabolism of acetaldehyde to methyl and acetyl radicals: in vitro and in vivo electron paramagnetic resonance spin-trapping studies. Free Radic Biol Med 29(8):721–729

    Article  CAS  PubMed  Google Scholar 

  146. Nasser SA, Elmallah AI, Sabra R, Khedr MM, El-Din MM, El-Mas MM (2014) Blockade of endothelin ET(A), but not thromboxane, receptors offsets the cyclosporine-evoked hypertension and interrelated baroreflex and vascular dysfunctions. Eur J Pharmacol 727:52–59. https://doi.org/10.1016/j.ejphar.2014.01.034

    Article  CAS  PubMed  Google Scholar 

  147. Nieminen MT, Salaspuro M (2018) Local acetaldehyde-an essential role in alcohol-related upper gastrointestinal tract carcinogenesis. Cancers (Basel) 10(1). https://doi.org/10.3390/cancers10010011

    Article  PubMed Central  CAS  Google Scholar 

  148. Nishimura FT, Fukunaga T, Kajiura H, Umeno K, Takakura H, Ono T, Nishijo H (2002) Effects of aldehyde dehydrogenase-2 genotype on cardiovascular and endocrine responses to alcohol in young Japanese subjects. Auton Neurosci 102(1–2):60–70

    Article  CAS  PubMed  Google Scholar 

  149. Nuutinen H, Lindros KO, Salaspuro M (1983) Determinants of blood acetaldehyde level during ethanol oxidation in chronic alcoholics. Alcohol Clin Exp Res 7(2):163–168

    Article  CAS  PubMed  Google Scholar 

  150. O’Keefe EL, DiNicolantonio JJ, O’Keefe JH, Lavie CJ (2018) Alcohol and CV health: Jekyll and Hyde J-curves. Prog Cardiovasc Dis 61(1):68–75. https://doi.org/10.1016/j.pcad.2018.02.001

    Article  PubMed  Google Scholar 

  151. Oba T, Maeno Y, Ishida K (2005) Differential contribution of clinical amounts of acetaldehyde to skeletal and cardiac muscle dysfunction in alcoholic myopathy. Curr Pharm Des 11(6):791–780

    Article  CAS  PubMed  Google Scholar 

  152. Oh YI, Kim JH, Kang CW (2008) Effects of ethanol on insulin-like growth factor-I system in primary cultured rat hepatocytes: implications of JNK1/2 and alcoholdehydrogenase. World J Gastroenterol 14(27):4324–4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pastor R, Aragon CM (2008) Ethanol injected into the hypothalamic arcuate nucleus induces behavioral stimulation in rats: an effect prevented by catalase inhibition and naltrexone. Behav Pharmacol 19(7):698–705. https://doi.org/10.1097/FBP.0b013e328315ecd7

    Article  CAS  PubMed  Google Scholar 

  154. Peana AT, Sanchez-Catalan MJ, Hipolito L, Rosas M, Porru S, Bennardini F, Romualdi P, Caputi FF, Candeletti S, Polache A, Granero L, Acquas E (2017) Mystic acetaldehyde: the never-ending story on alcoholism. Front Behav Neurosci 11:81. https://doi.org/10.3389/fnbeh.2017.00081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Perissinotto E, Buja A, Maggi S, Enzi G, Manzato E, Scafato E, Mastrangelo G, Frigo AC, Coin A, Crepaldi G, Sergi G, Group IW (2010) Alcohol consumption and cardiovascular risk factors in older lifelong wine drinkers: the Italian Longitudinal Study on Aging. Nutr Metab Cardiovasc Dis 20(9):647–655. https://doi.org/10.1016/j.numecd.2009.05.014

    Article  CAS  PubMed  Google Scholar 

  156. Perry PJ, Doroudgar S, Van Dyke P (2017) Ethanol forensic toxicology. J Am Acad Psychiatry Law 45(4):429–438

    PubMed  Google Scholar 

  157. Pfeiffer D, Jurisch D, Neef M, Hagendorff A (2016) Alcohol and arrhythmias. Herz 41(6):498–502. https://doi.org/10.1007/s00059-016-4463-z

    Article  CAS  PubMed  Google Scholar 

  158. Polizio AH, Pena C (2005) Effects of angiotensin II type 1 receptor blockade on the oxidative stress in spontaneously hypertensive rat tissues. Regul Pept 128(1):1–5. https://doi.org/10.1016/j.regpep.2004.12.004

    Article  CAS  PubMed  Google Scholar 

  159. Potter JF, Beevers DG (1984) Pressor effect of alcohol in hypertension. Lancet 1(8369):119–122

    Article  CAS  PubMed  Google Scholar 

  160. Pragst F, Auwaerter V, Sporkert F, Spiegel K (2001) Analysis of fatty acid ethyl esters in hair as possible markers of chronically elevated alcohol consumption by headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). Forensic Sci Int 121(1–2):76–88

    Article  CAS  PubMed  Google Scholar 

  161. Puddey IB, Beilin LJ, Vandongen R, Rouse IL, Rogers P (1985) Evidence for a direct effect of alcohol consumption on blood pressure in normotensive men. A randomized controlled trial. Hypertension 7(5):707–713

    Article  CAS  PubMed  Google Scholar 

  162. Quertemont E (2003) Discriminative stimulus effects of ethanol with a conditioned taste aversion procedure: lack of acetaldehyde substitution. Behav Pharmacol 14(4):343–350. https://doi.org/10.1097/01.fbp.0000082130.08343.47

    Article  CAS  PubMed  Google Scholar 

  163. Quertemont E (2004) Genetic polymorphism in ethanol metabolism: acetaldehyde contribution to alcohol abuse and alcoholism. Mol Psychiatry 9(6):570–581. https://doi.org/10.1038/sj.mp.4001497

    Article  CAS  PubMed  Google Scholar 

  164. Quertemont E, Tambour S, Tirelli E (2005) The role of acetaldehyde in the neurobehavioral effects of ethanol: a comprehensive review of animal studies. Prog Neurobiol 75(4):247–274. https://doi.org/10.1016/j.pneurobio.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  165. Ramchandani VA, Bosron WF, Li TK (2001) Research advances in ethanol metabolism. Pathol Biol (Paris) 49(9):676–682

    Article  CAS  Google Scholar 

  166. Ratna A, Mandrekar P (2017) Alcohol and cancer: mechanisms and therapies. Biomol Ther 7(3). https://doi.org/10.3390/biom7030061

    Article  PubMed Central  CAS  Google Scholar 

  167. Rehm J, Hasan OSM, Imtiaz S, Neufeld M (2017) Quantifying the contribution of alcohol to cardiomyopathy: a systematic review. Alcohol 61:9–15. https://doi.org/10.1016/j.alcohol.2017.01.011

    Article  CAS  PubMed  Google Scholar 

  168. Rekik M, El-Mas MM, Mustafa JS, Abdel-Rahman AA (2002) Role of endothelial adenosine receptor-mediated vasorelaxation in ethanol-induced hypotension in hypertensive rats. Eur J Pharmacol 452(2):205–214

    Article  CAS  PubMed  Google Scholar 

  169. Ren J, Davidoff AJ, Brown RA (1997) Acetaldehyde depresses shortening and intracellular Ca2+ transients in adult rat ventricular myocytes. Cell Mol Biol (Noisy-le-Grand) 43(6):825–834

    CAS  Google Scholar 

  170. Ren J, Wang GJ, Petrovski P, Ren BH, Brown RA (2002) Influence of hypertension on acetaldehyde-induced vasorelaxation in rat thoracic aorta. Pharmacol Res 45(3):195–199. https://doi.org/10.1006/phrs.2002.0947

    Article  CAS  PubMed  Google Scholar 

  171. Ren J, Wold LE (2008) Mechanisms of alcoholic heart disease. Ther Adv Cardiovasc Dis 2(6):497–506. https://doi.org/10.1177/1753944708095137

    Article  PubMed  Google Scholar 

  172. Reslan OM, Yin Z, do Nascimento GR, Khalil RA (2013) Subtype-specific estrogen receptor-mediated vasodilator activity in the cephalic, thoracic, and abdominal vasculature of female rat. J Cardiovasc Pharmacol 62(1):26–40. https://doi.org/10.1097/FJC.0b013e31828bc88a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Robinson DL, Lara JA, Brunner LJ, Gonzales RA (2000) Quantification of ethanol concentrations in the extracellular fluid of the rat brain: in vivo calibration of microdialysis probes. J Neurochem 75(4):1685–1693

    Article  CAS  PubMed  Google Scholar 

  174. Roth Flach RJ, Bennett AM (2010) Mitogen-activated protein kinase phosphatase-1 – a potential therapeutic target in metabolic disease. Expert Opin Ther Targets 14(12):1323–1332. https://doi.org/10.1517/14728222.2010.528395

    Article  CAS  PubMed  Google Scholar 

  175. Russ R, Abdel-Rahman AR, Wooles WR (1991) Role of the sympathetic nervous system in ethanol-induced hypertension in rats. Alcohol 8(4):301–307

    Article  CAS  PubMed  Google Scholar 

  176. Salaspuro M (2017) Key role of local acetaldehyde in upper GI tract carcinogenesis. Best Pract Res Clin Gastroenterol 31(5):491–499. https://doi.org/10.1016/j.bpg.2017.09.016

    Article  CAS  PubMed  Google Scholar 

  177. Sallam MY, El-Gowilly SM, Abdel-Galil AG, El-Mas MM (2016) Modulation by central MAPKs/PI3K/sGc of the TNF-alpha/iNOS-dependent hypotension and compromised cardiac autonomic control in endotoxic rats. J Cardiovasc Pharmacol 68(2):171–181. https://doi.org/10.1097/FJC.0000000000000400

    Article  CAS  PubMed  Google Scholar 

  178. Sapkota M, Wyatt TA (2015) Alcohol, aldehydes, adducts and airways. Biomol Ther 5(4):2987–3008. https://doi.org/10.3390/biom5042987

    Article  CAS  Google Scholar 

  179. Schoppet M, Maisch B (2001) Alcohol and the heart. Herz 26(5):345–352

    Article  CAS  PubMed  Google Scholar 

  180. Seitz HK, Mueller S (2015) Alcohol and cancer: an overview with special emphasis on the role of acetaldehyde and cytochrome P450 2E1. Adv Exp Med Biol 815:59–70. https://doi.org/10.1007/978-3-319-09614-8_4

    Article  CAS  PubMed  Google Scholar 

  181. Seliskar M, Rozman D (2007) Mammalian cytochromes P450 – importance of tissue specificity. Biochim Biophys Acta 1770(3):458–466. https://doi.org/10.1016/j.bbagen.2006.09.016

    Article  CAS  PubMed  Google Scholar 

  182. Seyedabadi M, Goodchild AK, Pilowsky PM (2001) Differential role of kinases in brain stem of hypertensive and normotensive rats. Hypertension 38(5):1087–1092

    Article  CAS  PubMed  Google Scholar 

  183. Silverstein PS, Kumar S, Kumar A (2014) HIV-1, HCV and alcohol in the CNS: potential interactions and effects on neuroinflammation. Curr HIV Res 12(4):282–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Skotzko CE, Vrinceanu A, Krueger L, Freudenberger R (2009) Alcohol use and congestive heart failure: incidence, importance, and approaches to improved history taking. Heart Fail Rev 14(1):51–55. https://doi.org/10.1007/s10741-007-9048-8

    Article  PubMed  Google Scholar 

  185. Song BJ, Akbar M, Jo I, Hardwick JP, Abdelmegeed MA (2015) Translational implications of the alcohol-metabolizing enzymes, including cytochrome P450-2E1, in alcoholic and nonalcoholic liver disease. Adv Pharmacol 74:303–372. https://doi.org/10.1016/bs.apha.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  186. Stampfer MJ, Colditz GA, Willett WC, Speizer FE, Hennekens CH (1988) A prospective study of moderate alcohol consumption and the risk of coronary disease and stroke in women. N Engl J Med 319(5):267–273. https://doi.org/10.1056/NEJM198808043190503

    Article  CAS  PubMed  Google Scholar 

  187. Steiner JL, Lang CH (2017) Alcoholic cardiomyopathy: disrupted protein balance and impaired cardiomyocyte contractility. Alcohol Clin Exp Res 41(8):1392–1401. https://doi.org/10.1111/acer.13405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Steiner JL, Lang CH (2017) Etiology of alcoholic cardiomyopathy: mitochondria, oxidative stress and apoptosis. Int J Biochem Cell Biol 89:125–135. https://doi.org/10.1016/j.biocel.2017.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Stickel F, Moreno C, Hampe J, Morgan MY (2017) The genetics of alcohol dependence and alcohol-related liver disease. J Hepatol 66(1):195–211. https://doi.org/10.1016/j.jhep.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  190. Stocker SD, Osborn JL, Carmichael SP (2008) Forebrain osmotic regulation of the sympathetic nervous system. Clin Exp Pharmacol Physiol 35(5–6):695–700. https://doi.org/10.1111/j.1440-1681.2007.04835.x

    Article  CAS  PubMed  Google Scholar 

  191. Sudhir K, Elser MD, Jennings GL, Komesaroff PA (1997) Estrogen supplementation decreases norepinephrine-induced vasoconstriction and total body norepinephrine spillover in perimenopausal women. Hypertension 30(6):1538–1543

    Article  CAS  PubMed  Google Scholar 

  192. Swingle M, Ni L, Honkanen RE (2007) Small-molecule inhibitors of ser/thr protein phosphatases: specificity, use and common forms of abuse. Methods Mol Biol 365:23–38. https://doi.org/10.1385/1-59745-267-X:23

    Article  PubMed  PubMed Central  Google Scholar 

  193. Takagi S, Baba S, Iwai N, Fukuda M, Katsuya T, Higaki J, Mannami T, Ogata J, Goto Y, Ogihara T (2001) The aldehyde dehydrogenase 2 gene is a risk factor for hypertension in Japanese but does not alter the sensitivity to pressor effects of alcohol: the Suita study. Hypertens Res 24(4):365–370

    Article  CAS  PubMed  Google Scholar 

  194. Tibirica E, Mermet C, Feldman J, Gonon F, Bousquet P (1989) Correlation between the inhibitory effect on catecholaminergic ventrolateral medullary neurons and the hypotension evoked by clonidine: a voltammetric approach. J Pharmacol Exp Ther 250(2):642–647

    CAS  PubMed  Google Scholar 

  195. Turlapaty PD, Altura BT, Altura BM (1979) Ethanol reduces Ca2+ concentrations in arterial and venous smooth muscle. Experientia 35(5):639–640

    Article  CAS  PubMed  Google Scholar 

  196. Umoh NA, Walker RK, Al-Rubaiee M, Jeffress MA, Haddad GE (2014) Acute alcohol modulates cardiac function as PI3K/Akt regulates oxidative stress. Alcohol Clin Exp Res 38(7):1847–1864. https://doi.org/10.1111/acer.12459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Urbano-Marquez A, Estruch R, Fernandez-Sola J, Nicolas JM, Pare JC, Rubin E (1995) The greater risk of alcoholic cardiomyopathy and myopathy in women compared with men. JAMA 274(2):149–154

    Article  CAS  PubMed  Google Scholar 

  198. Varga K, Kunos G (1990) Ethanol inhibition of baroreflex bradycardia: role of brainstem GABA receptors. Br J Pharmacol 101(4):773–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Varga K, Kunos G (1992) Inhibition of baroreflex bradycardia by ethanol involves both GABAA and GABAB receptors in the brainstem of the rat. Eur J Pharmacol 214(2–3):223–232

    Article  CAS  PubMed  Google Scholar 

  200. Wakabayashi I (2010) Associations between alcohol drinking and multiple risk factors for atherosclerosis in smokers and nonsmokers. Angiology 61(5):495–503. https://doi.org/10.1177/0003319709358694

    Article  PubMed  Google Scholar 

  201. Wang Q, Brunner HR, Burnier M (2004) Determination of cardiac contractility in awake unsedated mice with a fluid-filled catheter. Am J Physiol Heart Circ Physiol 286(2):H806–H814. https://doi.org/10.1152/ajpheart.00291.2003

    Article  CAS  PubMed  Google Scholar 

  202. Wang S, Ren J (2018) Role of autophagy and regulatory mechanisms in alcoholic cardiomyopathy. Biochim Biophys Acta 1864(6. Pt A):2003–2009. https://doi.org/10.1016/j.bbadis.2018.03.016

    Article  CAS  Google Scholar 

  203. Wang X, Li G, Abdel-Rahman AA (2005) Site-dependent inhibition of neuronal c-jun in the brainstem elicited by imidazoline I1 receptor activation: role in rilmenidine-evoked hypotension. Eur J Pharmacol 514(2–3):191–199. https://doi.org/10.1016/j.ejphar.2005.03.021

    Article  CAS  PubMed  Google Scholar 

  204. Wang Y, Zeigler MM, Lam GK, Hunter MG, Eubank TD, Khramtsov VV, Tridandapani S, Sen CK, Marsh CB (2007) The role of the NADPH oxidase complex, p38 MAPK, and Akt in regulating human monocyte/macrophage survival. Am J Respir Cell Mol Biol 36(1):68–77. https://doi.org/10.1165/rcmb.2006-0165OC

    Article  CAS  PubMed  Google Scholar 

  205. Watanabe A, Kobayashi M, Hobara N, Nakatsukasa H, Nagashima H, Fujimoto A (1985) A report of unusually high blood ethanol and acetaldehyde levels in two surviving patients. Alcohol Clin Exp Res 9(1):14–16

    Article  CAS  PubMed  Google Scholar 

  206. Yan X, Wu L, Lin Q, Dai X, Hu H, Wang K, Zhang C, Shao M, Cai L, Tan Y (2017) From the cover: alcohol inhibition of the enzymatic activity of glyceraldehyde 3-phosphate dehydrogenase impairs cardiac glucose utilization, contributing to alcoholic cardiomyopathy. Toxicol Sci 159(2):392–401. https://doi.org/10.1093/toxsci/kfx140

    Article  CAS  PubMed  Google Scholar 

  207. Yang ZW, Wang J, Zheng T, Altura BT, Altura BM (2001) Ethanol-induced contractions in cerebral arteries: role of tyrosine and mitogen-activated protein kinases. Stroke 32(1):249–257

    Article  CAS  PubMed  Google Scholar 

  208. Yang ZW, Wang J, Zheng T, Altura BT, Altura BM (2002) Roles of tyrosine kinase-, 1-phosphatidylinositol 3-kinase-, and mitogen-activated protein kinase-signaling pathways in ethanol-induced contractions of rat aortic smooth muscle: possible relation to alcohol-induced hypertension. Alcohol 28(1):17–28

    Article  PubMed  Google Scholar 

  209. Yao F, Abdel-Rahman AA (2016) Estrogen receptor ERalpha plays a major role in ethanol-evoked myocardial oxidative stress and dysfunction in conscious female rats. Alcohol 50:27–35. https://doi.org/10.1016/j.alcohol.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  210. Yao F, Abdel-Rahman AA (2017) Combined catalase and ADH inhibition ameliorates ethanol-induced myocardial dysfunction despite causing oxidative stress in conscious female rats. Alcohol Clin Exp Res 41(9):1541–1550. https://doi.org/10.1111/acer.13442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Yao F, Abdel-Rahman AA (2017) Estrogen receptors alpha and beta play major roles in ethanol-evoked myocardial oxidative stress and dysfunction in conscious ovariectomized rats. Alcohol Clin Exp Res 41(2):279–290. https://doi.org/10.1111/acer.13290

    Article  CAS  PubMed  Google Scholar 

  212. Yedlapati SH, Mendu A, Stewart SH (2016) Alcohol-related diagnoses and increased mortality in acute myocardial infarction patients: an analysis of the nationwide inpatient sample. J Hosp Med 11(8):563–567. https://doi.org/10.1002/jhm.2584

    Article  PubMed  Google Scholar 

  213. Yeligar SM, Machida K, Tsukamoto H, Kalra VK (2009) Ethanol augments RANTES/CCL5 expression in rat liver sinusoidal endothelial cells and human endothelial cells via activation of NF-kappa B, HIF-1 alpha, and AP-1. J Immunol 183(9):5964–5976. https://doi.org/10.4049/jimmunol.0901564

    Article  CAS  PubMed  Google Scholar 

  214. Yoshizawa S, Matsushima R, Watanabe MF, Harada K, Ichihara A, Carmichael WW, Fujiki H (1990) Inhibition of protein phosphatases by microcystins and nodularin associated with hepatotoxicity. J Cancer Res Clin Oncol 116(6):609–614

    Article  CAS  PubMed  Google Scholar 

  215. Yu Y, Zhong MK, Li J, Sun XL, Xie GQ, Wang W, Zhu GQ (2007) Endogenous hydrogen peroxide in paraventricular nucleus mediating cardiac sympathetic afferent reflex and regulating sympathetic activity. Pflugers Arch 454(4):551–557. https://doi.org/10.1007/s00424-007-0256-9

    Article  CAS  PubMed  Google Scholar 

  216. Zagon A, Smith AD (1993) Monosynaptic projections from the rostral ventrolateral medulla oblongata to identified sympathetic preganglionic neurons. Neuroscience 54(3):729–743

    Article  CAS  PubMed  Google Scholar 

  217. Zhang X, Li SY, Brown RA, Ren J (2004) Ethanol and acetaldehyde in alcoholic cardiomyopathy: from bad to ugly en route to oxidative stress. Alcohol 32(3):175–186. https://doi.org/10.1016/j.alcohol.2004.01.005

    Article  CAS  PubMed  Google Scholar 

  218. Zhao X, Park J, Ho D, Gao S, Yan L, Ge H, Iismaa S, Lin L, Tian B, Vatner DE, Graham RM, Vatner SF (2012) Cardiomyocyte overexpression of the alpha1A-adrenergic receptor in the rat phenocopies second but not first window preconditioning. Am J Physiol Heart Circ Physiol 302(8):H1614–H1624. https://doi.org/10.1152/ajpheart.01072.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zilkens RR, Burke V, Hodgson JM, Barden A, Beilin LJ, Puddey IB (2005) Red wine and beer elevate blood pressure in normotensive men. Hypertension 45(5):874–879. https://doi.org/10.1161/01.HYP.0000164639.83623.76

    Article  CAS  PubMed  Google Scholar 

  220. Zimatkin SM (1991) Histochemical study of aldehyde dehydrogenase in the rat CNS. J Neurochem 56(1):1–11

    Article  CAS  PubMed  Google Scholar 

  221. Zimatkin SM, Buben AL (2007) Ethanol oxidation in the living brain. Alcohol Alcohol 42(6):529–532. https://doi.org/10.1093/alcalc/agm059

    Article  CAS  PubMed  Google Scholar 

  222. Zimatkin SM, Lindros KO (1996) Distribution of catalase in rat brain: aminergic neurons as possible targets for ethanol effects. Alcohol Alcohol 31(2):167–174

    Article  CAS  PubMed  Google Scholar 

  223. Zimatkin SM, Pronko SP, Vasiliou V, Gonzalez FJ, Deitrich RA (2006) Enzymatic mechanisms of ethanol oxidation in the brain. Alcohol Clin Exp Res 30(9):1500–1505. https://doi.org/10.1111/j.1530-0277.2006.00181.x

    Article  CAS  PubMed  Google Scholar 

  224. Zimatkin SM, Rout UK, Koivusalo M, Buhler R, Lindros KO (1992) Regional distribution of low-Km mitochondrial aldehyde dehydrogenase in the rat central nervous system. Alcohol Clin Exp Res 16(6):1162–1167

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ reported studies cited in this book chapter were supported by NIH grants 2R01 AA07839 and 2R01 AA14441 (Abdel-Rahman) and by the Science and Technology Development Fund, Egypt, STDF Grant No. 14895 (El-Mas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel A. Abdel-Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Mas, M.M., Abdel-Rahman, A.A. (2019). Role of Alcohol Oxidative Metabolism in Its Cardiovascular and Autonomic Effects. In: Ren, J., Zhang, Y., Ge, J. (eds) Aldehyde Dehydrogenases. Advances in Experimental Medicine and Biology, vol 1193. Springer, Singapore. https://doi.org/10.1007/978-981-13-6260-6_1

Download citation

Publish with us

Policies and ethics