Energy Efficiency and Collaborative Optimization Theory of 5G Heterogeneous Wireless Multi Networks

  • Xiaohu Ge
  • Wuxiong Zhang


In recent years, with the rapid development of the wireless communication industry, wireless communication networks are becoming more effective in the direction of network diversification, high bandwidth, high frequency band, ubiquity, synergy, overlap and application integration and more flexible to meet the needs of people’s different communication services, a variety of mature wireless access technologies are being rapidly deployed in various scenarios.


  1. 1.
    Niebert, N., A. Sehieder, H. Abramowiez, et al. 2004. Ambient networks: An architecture for communication networks beyond 3G. IEEE Wireless Communications 11: 14–22.CrossRefGoogle Scholar
  2. 2.
    Akyildiz, I.F., S. Mohanty, and X. Jiang. 2005. A ubiquitous mobile communication architecture for next-generation heterogeneous wireless systems. IEEE Communication Magazine 43 (6): 329–336.CrossRefGoogle Scholar
  3. 3.
    China Mobile will focus on reducing electricity consumption in 2010, saving electricity by 8 billion degrees [Online]. Available:
  4. 4.
    Beijing Statistics Bureau, Beijing general investigation team of National Bureau of statistics. 2011 Beijing statistical yearbook [Online]. Available:
  5. 5.
    By the end of 2014, the number of 4G base stations in China increased to 1 million [Online]. Available:
  6. 6.
    Lister, D. 2009. An operator’s view on green radio. In Keynote speech, IEEE International Conference on Green Computing and Communications.Google Scholar
  7. 7.
    Hu, R.Q., Y. Qian, S. Kota, and G. Giambene. 2011. Hetnets-a new paradigm for increasing cellular capacity and coverage. IEEE Wireless Communications: 8–9.CrossRefGoogle Scholar
  8. 8.
    China Telecom, Consideration on Multi-RAT coordination schemes and issues, 3GPP TSG-RAN WG3 #83#R3-140039.Google Scholar
  9. 9.
    Richter, F., A. J. Fehske, and G. P. Fettweis. 2009. Energy efficiency aspects of base station deployment strategies for cellular networks. In Proceedings of IEEE Vehicular Technology Conference (VTC Fall): 1–5.Google Scholar
  10. 10.
    Wang, W., and G. Shen. 2010. Energy efficiency of heterogeneous cellular network. In Proceedings of IEEE Vehicular Technology Conference (VTC Fall): 1–5.Google Scholar
  11. 11.
    Soh, Y., and T. Quek. 2013. Energy efficient heterogeneous cellular networks. IEEE Journal of Selected Areas in Communications 31 (5): 840–850.CrossRefGoogle Scholar
  12. 12.
    ECR Initiative: Network and telecom equipment—energy and performance assessment, test procedure and measurement methodology. August 2008.Google Scholar
  13. 13.
    Quek, T., W. C. Cheung, and M. Kountouris. 2011. Energy efficiency analysis of two-tier heterogeneous networks. In Proceedings of IEEE European Wireless Conference, Vienna, Austria, pp. 1–5.Google Scholar
  14. 14.
    Lorincz, J., and T. Matijevic. 2013. Energy-efficiency analyses of heterogeneous macro and microbase station sites. Computers & Electrical Engineering.Google Scholar
  15. 15.
    ITU 2012 executive summary, Measuring the Information Society [Online]. Available:
  16. 16.
    Lee, S., K. Kim, K. Hong, D. Griffith, Y.H. Kim, and N. Golmie. 2009. A probabilistic call admission control algorithm for WLAN in heterogeneous wireless environment. IEEE Transactions on Wireless Communications 8 (4): 1672–1676.CrossRefGoogle Scholar
  17. 17.
    Damnjanovic, A., J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song, and D. Malladi. 2011. A survey on 3gpp heterogeneous networks. IEEE Wireless Communication 18 (3): 10–21.CrossRefGoogle Scholar
  18. 18.
    Haykin, S. 2005. Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications 23 (2): 201–220.CrossRefGoogle Scholar
  19. 19.
    Knisely, D., T. Yoshizawa, and F. Favichia. 2009. Standardization of femtocells in 3GPP. IEEE Communications Magazine 47 (9): 68–75.CrossRefGoogle Scholar
  20. 20.
    Corliano, A., and M. Hufschmid. 2008. Energieverbrauch der mobilen kommunikation. Bundesamt fur Energie, Ittigen, Switzerland, Tech. Rep., in German (Feb 2008).Google Scholar
  21. 21.
    ETSI, Environmental Engineering (EE). 2012. Principles for mobile network level energy efficiency (Nov 2012) [Online]. Available:
  22. 22.
    Mitola, J., and G. Maguire. 1999. Cognitive radio: Making software radios more personal. IEEE Personal Communication 6 (4): 13–18.CrossRefGoogle Scholar
  23. 23.
    Middleton, G., K. Hooli, A. Tolli, and J. Lilleberg. 2006. Inter-operator spectrum sharing in a broadband cellular network. In Proceedings of IEEE 9th International Symposium on Spread Spectrum Techniques & Applications, pp. 376–380.Google Scholar
  24. 24.
    Kamal, H., M. Coupechoux, and P. Godlewski. 2009. Inter-operator spectrum sharing for cellular networks using game theory. In Proceedings of IEEE Symposium Personal, Indoor & Mobile Radio Communication, (PIMRC), pp. 425–429.Google Scholar
  25. 25.
    Wang, X., P. Krishnamurthy, and D. Tipper. 2013. Wireless network virtualization. In Proceedings of International Conference on Computing, Networking and Communication (ICNC), San Diego, CA (January 2013).Google Scholar
  26. 26.
    Meddour, D.-E., T. Rasheed, and Y. Gourhant. 2011. On the role of infrastructure sharing for mobile network operators in emerging markets. Computer Networks 55 (7): 1576–1591.CrossRefGoogle Scholar
  27. 27.
    Hoffmann, M., and M. Staufer. 2011. Network virtualization for future mobile networks: General architecture and applications. In Proceedings of IEEE International Conference on Communication Workshops (ICC), Kyoto (June 2011).Google Scholar
  28. 28.
    3GPP. March 2013. Technical Specification Group services and system aspects; network sharing; architecture and functional description: 3rd generation partnership project (3GPP), TS 23.251 V11.5.0 [Online]. Available:
  29. 29.
    NEC Corporation. 2013. RAN sharing NEC’s approach towards active radio access network sharing: NEC Corporation, Tech. Rep.Google Scholar
  30. 30.
    Networks, N. S. 2013. Nsn nw sharing moran and mocn for 3G: Report.Google Scholar
  31. 31.
    Mobile, C. 2011. C-RAN: The road towards green RAN: Report.Google Scholar
  32. 32.
    V. UK. 2012. Better coverage. Fewer masts. Your complete guide to our network joint venture! [Online]. Available:
  33. 33.
    Kearney. 2012. The rise of the tower business [Online]. Available:
  34. 34.
    Frisanco, T, et al. Infrastructure sharing and shared operations for mobile network operators from a deployment and operations view. In NOMS 2008-2008 IEEE Network Operations and Management Symposium. IEEE, 2008.Google Scholar
  35. 35.
    3GPP. September 2013. Technical specification group services and system aspects; service aspects and requirements for network sharing: 3rd generation partnership project (3GPP), TR 22.951 V11.0.0 [Online]. Available:
  36. 36.
    Panchal, J., Yates, R., and Buddhikot, M. 2013. Mobile network resource sharing options: Performance comparisons. IEEE Transactions Wireless Communications: 1–13.Google Scholar
  37. 37.
    Kokku, R., R. Mahindra, H. Zhang, and S. Rangarajan. 2012. Nvs: A substrate for virtualizing wireless resources in cellular networks. IEEE/ACM Transactions on Networking 20 (5): 1333–1346.CrossRefGoogle Scholar
  38. 38.
    Esteves, R. P., L. Z. Granville, and R. Boutaba. 2013. On the management of virtual networks. IEEE Communications Magazine 51 (7).CrossRefGoogle Scholar
  39. 39.
    ONF Market Education Committee. 2012. Software-defined networking: The new norm for networks. ONF White Paper. Palo Alto, US: Open Networking Foundation.Google Scholar
  40. 40.
    McKeown, N., T. Anderson, H. Balakrishnan, et al. 2008. OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review 38 (2): 69–74.CrossRefGoogle Scholar
  41. 41.
    Qing-Yun, Zuo, et al. 2013. Research on OpenFlow-Based SDN Technologies. Journal of Software 24 (5): 1078–1097. (in Chinese).CrossRefGoogle Scholar
  42. 42.
    Yap, K. K., R. Sherwood, M. Kobayashi, et al. 2010. Blueprint for introducing innovation into wireless mobile networks. In Proceedings of the Second ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and Architectures. ACM, pp. 25–32.Google Scholar
  43. 43.
    Naudts, B., M. Kind, F. J. Westphal, et al. 2012. Techno-economic analysis of software defined networking as architecture for the virtualization of a mobile network. In 2012 European Workshop on Software Defined Networking. IEEE, pp. 67–72.Google Scholar
  44. 44.
    Costa-Perez, X., J. Swetina, T. Guo, et al. 2013. Radio access network virtualization for future mobile carrier networks. IEEE Communications Magazine 51 (7).CrossRefGoogle Scholar
  45. 45.
    Costa-Pérez, X., A. Festag, H.J. Kolbe, et al. 2013. Latest trends in telecommunication standards. ACM SIGCOMM Computer Communication Review 43 (1): 64–71.CrossRefGoogle Scholar
  46. 46.
    Pentikousis, K., Y. Wang, and W. Hu. 2013. Mobileflow: Toward software-defined mobile networks. IEEE Communications Magazine 51 (7).CrossRefGoogle Scholar
  47. 47.
    Kempf, J., B. Johansson, S. Pettersson, et al. 2012. Moving the mobile evolved packet core to the cloud. In IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). IEEE, pp. 784–791.Google Scholar
  48. 48.
    Li, L. E., Z. M. Mao, and J. Rexford. 2012. Toward software-defined cellular networks. In 2012 European Workshop on Software Defined Networking (EWSDN). IEEE, pp. 7–12.Google Scholar
  49. 49.
    Dely, P., A. Kassler, L. Chow, et al. 2013. A software-defined networking approach for handover management with real-time video in WLANs. Journal of Modern Transportation 21: 58–65.CrossRefGoogle Scholar

Copyright information

© Publishing House of Electronics Industry, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xiaohu Ge
    • 1
  • Wuxiong Zhang
    • 2
  1. 1.School of Electronic Information and CommunicationsHuazhong University of Science and TechnologyWuhanChina
  2. 2.Shanghai Research Center for Wireless CommunicationsShanghaiChina

Personalised recommendations