Advertisement

Substitution of Allylic Picolinates with Various Copper Reagents and Synthetic Applications

  • Yuichi KobayashiEmail author
  • Miwa Shimoda
Chapter

Abstract

Allylic substitution of secondary allylic picolinates of a (Z)-R1CH=CHCH(OCOPy)R2 structure is summarized. This substitution proceeds with copper reagents derived from Grignard reagents and organolithiums, furnishing anti SN2′ products in good yields, with high regio- and stereoselectivity. Alkyl as well as less reactive alkenyl and aryl copper reagents are suitable reagents. Under optimized reaction conditions, the substitution proceeds with heteroaryl and alkynyl reagents, which are much less nucleophilic than aryl reagents. Picolinates possessing an additional substituent on the olefinic carbon, i.e., R1R2C=CHCH(OCOPy)R3, and cyclohexylidene picolinates, produce quaternary carbons on acyclic and cyclohexane carbons. In the latter case, the stereochemical course is determined by the equatorial attack of the reagent to the stable chair conformer. Synthetic application using allylic substitution is presented as well.

Keywords

Allylic substitution Picolinate Copper reagent Quaternary carbon Biologically active compound 

Notes

Acknowledgments

This work was supported by Grant-in-Aids for Scientific Research from MEXT and in part by a Grant-in-Aid for Young Scientists from JSPS.

References

  1. 1.
    J. Tsuji, Palladium Reagents and catalysts (Wiley, Chichester, Chapter 4, 2004), pp. 431–517Google Scholar
  2. 2.
    B. Breit, Y. Schmidt, Chem. Rev. 108, 2928 (2008)CrossRefGoogle Scholar
  3. 3.
    Z. Lu, S. Ma, Angew. Chem. Int. Ed. 47, 258 (2008)CrossRefGoogle Scholar
  4. 4.
    S.R. Harutyunyan, T. den Hartog, K. Geurts, A.J. Minnaard, B.L. Feringa, Chem. Rev. 108, 2824 (2008)CrossRefGoogle Scholar
  5. 5.
    A. Kar, N.P. Argade, Synthesis 2995 (2005)CrossRefGoogle Scholar
  6. 6.
    A. Alexakis, J.E. Bäckvall, N. Krause, O. Pàmies, M. Diéguez, Chem. Rev. 108, 2796 (2008)CrossRefGoogle Scholar
  7. 7.
    C.A. Falciola, A. Alexakis, Eur. J. Org. Chem. 3765 (2008)CrossRefGoogle Scholar
  8. 8.
    K. Geurts, S.P. Fletcher, A.W. van Zijl, A.J. Minnaard, B.L. Feringa, Pure Appl. Chem. 80, 1025 (2008)CrossRefGoogle Scholar
  9. 9.
    N. Harrington-Frost, H. Leuser, M.I. Calaza, F.F. Kneisel, P. Knochel, Org. Lett. 5, 2111 (2003)CrossRefGoogle Scholar
  10. 10.
    M.I. Calaza, X. Yang, D. Soorukram, P. Knochel, Org. Lett. 6, 529 (2004)CrossRefGoogle Scholar
  11. 11.
    B. Breit, P. Demel, Adv. Synth. Cat. 343, 429 (2001)CrossRefGoogle Scholar
  12. 12.
    B. Breit, C. Herber, Angew. Chem. Int. Ed. 43, 3790 (2004)CrossRefGoogle Scholar
  13. 13.
    B. Breit, P. Demel, D. Grauer, C. Studte, Chem. Asian J. 1, 586 (2006)CrossRefGoogle Scholar
  14. 14.
    C. Spino, C. Beaulieu, J. Am. Chem. Soc. 120, 11832 (1998)CrossRefGoogle Scholar
  15. 15.
    M. Ito, M. Matsuumi, M.G. Murugesh, Y. Kobayashi, J. Org. Chem. 66, 5881 (2001)CrossRefGoogle Scholar
  16. 16.
    K. Nakata, Y. Kiyotsuka, T. Kitazume, Y. Kobayashi, Org. Lett. 10, 1345 (2008)CrossRefGoogle Scholar
  17. 17.
    T. Ainai, M. Ito, Y. Kobayashi, Tetrahedron Lett. 44, 3983 (2003)CrossRefGoogle Scholar
  18. 18.
    Y. Kobayashi, K. Nakata, T. Ainai, Org. Lett. 7, 183 (2005)CrossRefGoogle Scholar
  19. 19.
    K. Nakata, Y. Kobayashi, Org. Lett. 7, 1319 (2005)CrossRefGoogle Scholar
  20. 20.
    Y. Kiyotsuka, H.P. Acharya, Y. Katayama, T. Hyodo, Y. Kobayashi, Org. Lett. 10, 1719 (2008)CrossRefGoogle Scholar
  21. 21.
    Y. Kiyotsuka, Y. Katayama, H.P. Acharya, T. Hyodo, Y. Kobayashi, J. Org. Chem. 74, 1939 (2009)CrossRefGoogle Scholar
  22. 22.
    Y. Kiyotsuka, Y. Kobayashi, Tetrahedron Lett. 49, 7256 (2008)CrossRefGoogle Scholar
  23. 23.
    Y. Kiyotsuka, Y. Kobayashi, Tetrahedron 66, 676 (2010)CrossRefGoogle Scholar
  24. 24.
    Y. Kobayashi, Y. Kiyotsuka, Y. Sugihara, K. Wada, Tetrahedron 71, 6481 (2015)CrossRefGoogle Scholar
  25. 25.
    B.H. Lipshutz, M. Koerner, D.A. Parker, Tetrahedron Lett. 28, 945 (1987)CrossRefGoogle Scholar
  26. 26.
    B.H. Lipshutz, J.A. Kozlowski, D.A. Parker, S.L. Nguyen, K.E. McCarthy, J. Organometal. Chem. 285, 437 (1985)CrossRefGoogle Scholar
  27. 27.
    E.J. Corey, D.J. Beames, J. Am. Chem. Soc. 94, 7210 (1972)CrossRefGoogle Scholar
  28. 28.
    J.S. Ng, J.R. Behling, A.L. Campbell, D. Nguyen, B. Lipshutz, Tetrahedron Lett. 29, 3045 (1988)CrossRefGoogle Scholar
  29. 29.
    N.A. Koorbanally, M. Randrianarivelojosia, D.A. Mulholland, L.Q. Van Ufford, A.J.J. van den Berg, J. Nat. Prod. 65, 1349 (2002)CrossRefGoogle Scholar
  30. 30.
    Y. Takashima, Y. Kobayashi, Tetrahedron Lett. 49, 5156 (2008)CrossRefGoogle Scholar
  31. 31.
    R.S. Muthyala, Y.H. Ju, S. Sheng, L.D. Williams, D.R. Doerge, B.S. Katzenellenbogen, W.G. Helferich, J.A. Katzenellenbogen, Bioorg. Med. Chem. 12, 1559 (2004)CrossRefGoogle Scholar
  32. 32.
    T. Jikihara, T. Shirasaka, K. Suzuki, H. Suzuki, M.Taniguchi, S. Inoue, Eur. Pat. Appl. 1994, EP 0591830 A1 19940413. Chem. Abstr. 123, 9465 (1995)Google Scholar
  33. 33.
    K. Matsumura, S. Hashiguchi, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 119, 8738 (1997)Google Scholar
  34. 34.
    Y. Kobayashi, P. Lalitnorasate, Y. Kaneko, Y. Kiyotsuka, Y. Endo, Tetrahedron Lett. 51, 6018 (2010)CrossRefGoogle Scholar
  35. 35.
    K. Matsuda, Y. Tanaka, S. Ushiyama, K. Ohnishi, M. Yamazaki, Biochem. Pharmacol., 33, 2473 (1984)CrossRefGoogle Scholar
  36. 36.
    T. Hyodo, Y. Kiyotsuka, Y. Kobayashi, Org. Lett. 11, 1103 (2009)CrossRefGoogle Scholar
  37. 37.
    Y. Kobayashi, C. Feng, A. Ikoma, N. Ogawa, T. Hirotsu, Org. Lett., 16, 760 (2014)CrossRefGoogle Scholar
  38. 38.
    Y. Kiyotsuka, Y. Kobayashi, J. Org. Chem. 74, 7489 (2009)CrossRefGoogle Scholar
  39. 39.
    Q. Wang, Y. Kobayashi, Org. Lett. 13, 6252 (2011)CrossRefGoogle Scholar
  40. 40.
    G. Stork, M. Isobe, J. Am. Chem. Soc. 97, 4745 (1975)CrossRefGoogle Scholar
  41. 41.
    K.W. Quasdorf, L.E. Overman, Nature 516, 181 (2014)CrossRefGoogle Scholar
  42. 42.
    C. Feng,Y. Kobayashi, J. Org. Chem. 78, 3755 (2013)CrossRefGoogle Scholar
  43. 43.
    T. Ozaki, Y. Kobayashi, Synlett 27, 611 (2016)Google Scholar
  44. 44.
    C. Feng, Y. Kaneko, Y. Kobayashi, Tetrahedron Lett. 54, 4629 (2013)CrossRefGoogle Scholar
  45. 45.
    N.P. Gericke, W.B.-E. Van, PCT Int. Appl, WO9746234, 1997. Chem. Abstr 128, 80030 (1998)Google Scholar
  46. 46.
    A.L. Harvey, L.C. Young, A.M. Viljoen, N.P. Gericke, J. Ethnopharmacol. 137, 1124 (2011)CrossRefGoogle Scholar
  47. 47.
    T. Ozaki, Y. Kobayashi, Org. Chem. Front. 2, 328 (2015)CrossRefGoogle Scholar
  48. 48.
    S.C. Stinson, Chem. Eng. News September 27, 38 (1993)CrossRefGoogle Scholar
  49. 49.
    Y. Kobayashi, R. Saeki, Y. Nanba, Y. Suganuma, M. Morita, K. Nishimura, Synlett 28, 2655 (2017)CrossRefGoogle Scholar
  50. 50.
    R. Tordera, Q. Pei, M. Newson, K. Gray, M. Sprakes, T. Sharp, Neuropharmacol. 44, 893 (2003)CrossRefGoogle Scholar
  51. 51.
    Y. Kobayashi, K. Yamaguchi, M. Morita, Tetrahedron 74, 1826 (2018)CrossRefGoogle Scholar
  52. 52.
    Y. Kaneko, Y. Kiyotsuka, H.P. Acharya, Y. Kobayashi, Chem. Commun. 46, 5482 (2010)CrossRefGoogle Scholar
  53. 53.
    C.N. Backhouse, C.L. Delporte, R.E. Negrete, B.K. Cassels, C. Schneider, E. Breitmaier, A.S. Feliciano, Phytochemistry 40, 325 (1995)CrossRefGoogle Scholar
  54. 54.
    H. Kawashima, Y. Kaneko, M. Sakai, Y. Kobayashi, Chem, Eur. J. 20, 272 (2014)CrossRefGoogle Scholar
  55. 55.
    H. Kawashima, M. Sakai, Y. Kaneko, Y. Kobayashi, Tetrahedron 71, 2387 (2015)CrossRefGoogle Scholar
  56. 56.
    M.A. Battiste, L. Strekowski, D.P. Vanderbilt, M. Visnick, R.W. King, Tetrahedron Lett. 24, 2611 (1983)Google Scholar
  57. 57.
    K. Wada, M. Sakai, H. Kawashima, N. Ogawa, Y. Kobayashi, Synlett 27, 1428 (2016)CrossRefGoogle Scholar
  58. 58.
    M. Visnick, L. Strekowski, M.A. Battiste, Synthesis 284 (1983)CrossRefGoogle Scholar
  59. 59.
    T. Kiguchi, Y. Tsurusaki, S. Yamada, M. Aso, M. Tanaka, K. Sakai, H. Suemune, Chem. Pharm. Bull. 48, 1536 (2000)CrossRefGoogle Scholar
  60. 60.
    T. Ozaki, Y. Kobayashi, Synlett 26, 1085 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyTokyo Institute of TechnologyMidori-ku, YokohamaJapan

Personalised recommendations