Target Identification of Bioactive Compounds by Photoaffinity Labeling Using Diazido Probes

  • Suguru Yoshida
  • Takamitsu HosoyaEmail author


This chapter reviews a photoaffinity labeling (PAL) method which employs “diazido” probes bearing aromatic and aliphatic azido groups. Since our first report in 2004, the target molecules of various bioactive compounds have been identified by this method. It is a two-step target identification method involving the conjugation of the bioactive diazido probe with the target molecules through the selective photoreaction of the aromatic azido group and subsequent introduction of a detectable tag through a click reaction to the target molecules at the remaining aliphatic azido group. An overview of the history and recent progresses of this method, including facile methods for preparing diverse diazido building blocks, is presented, focusing mainly on the chemical aspects. The relevant methods using a bifunctional probe bearing photoreactive and bioorthogonal groups are also briefly summarized.


Photoaffinity labeling Target identification Azide Diazirine Photoreaction Click reaction 









Connecting group


Copper-catalyzed azide–alkyne cycloaddition




Diisobutylaluminum hydride


Diphenylphosphoryl azide




Functional group


Histone deacetylase


Hydroxymethylglutaryl-coenzyme A reductase


High-throughput screening


Matrix-assisted laser desorption/ionization


Modular approach to software construction operation and test


Mass spectrum




Photoaffinity labeling






Sodium dodecyl sulfate-polyacrylamide gel electrophoresis










Time of flight





This work was supported by Japan Agency for Medical Research and Development (AMED) under Grant Numbers JP18am0101098 (Platform Project for Supporting Drug Discovery and Life Science Research, BINDS) and JP18am0301024 (the Basic Science and Platform Technology Program for Innovative Biological Medicine); JSPS KAKENHI Grant Numbers JP15H03118 and JP18H02104 (B; T. H.), JP16H01133 and JP18H04386 (Middle Molecular Strategy; T. H.), JP17H06414 (Organelle Zone; T. H.), and JP26350971 (C; S. Y.); the Cooperative Research Project of Research Center for Biomedical Engineering; and the Naito Foundation (S. Y.).


  1. 1.
    S. Sato, Y. Kwon, S. Kamisuki, N. Srivastava, Q. Mao, Y. Kawazoe, M. Uesugi, J. Am. Chem. Soc. 129, 873 (2007)CrossRefGoogle Scholar
  2. 2.
    S. Sakamoto, Y. Kabe, M. Hatakeyama, Y. Yamaguchi, H. Handa, Chem. Rec. 9, 66 (2009)CrossRefGoogle Scholar
  3. 3.
    G. Dormán, in Bioorganic Chemistry of Biological Signal Transduction, Topics in Current Chemistry 211, ed. by H. Waldmann (Springer, 2001), p 169Google Scholar
  4. 4.
    S.A. Fleming, Tetrahedron 51, 12479 (1995)CrossRefGoogle Scholar
  5. 5.
    Y. Hatanaka, Y. Sadakane, Curr. Top. Med. Chem. 2, 271 (2002)CrossRefGoogle Scholar
  6. 6.
    J.R. Colca, W.G. McDonald, D.J. Waldon, L.M. Thomasco, R.C. Gadwood, E.T. Lund, G.S. Cavey, W.R. Mathews, L.D. Adams, E.T. Cecil, J.D. Pearson, J.H. Bock, J.E. Mott, D.L. Shinabarger, L. Xiong, A.S. Mankin, J. Biol. Chem. 278, 21972 (2003)CrossRefGoogle Scholar
  7. 7.
    G.W.J. Fleet, R.R. Porter, J.R. Knowles, Nature 224, 511 (1969)CrossRefGoogle Scholar
  8. 8.
    J. Brunner, H. Senn, F.M. Richards, J. Biol. Chem. 255, 3313 (1980)Google Scholar
  9. 9.
    T. Tomohiro, M. Hashimoto, Y. Hatanaka, Chem. Rec. 5, 385 (2005)CrossRefGoogle Scholar
  10. 10.
    R.E. Galardy, L.C. Craig, M.P. Printz, Nat. New. Biol. 242, 127 (1973)CrossRefGoogle Scholar
  11. 11.
    G. Dormán, G.D. Prestwich, Biochemistry 33, 5661 (1994)CrossRefGoogle Scholar
  12. 12.
    E. Ota, K. Usui, K. Oonuma, H. Koshino, S. Nishiyama, G. Hirai, M. Sodeoka, ACS Chem. Biol. 13, 876 (2018)CrossRefGoogle Scholar
  13. 13.
    Y. Hatanaka, M. Hashimoto, Y. Kanaoka, Bioorg. Med. Chem. 2, 1367 (1994)CrossRefGoogle Scholar
  14. 14.
    T. Hosoya, T. Hiramatsu, T. Ikemoto, M. Nakanishi, H. Aoyama, A. Hosoya, T. Iwata, K. Maruyama, M. Endo, M. Suzuki, Org. Biomol. Chem. 2, 637 (2004)CrossRefGoogle Scholar
  15. 15.
    E.M. Sletten, C.R. Bertozzi, Angew. Chem. Int. Ed. 48, 6974 (2009)CrossRefGoogle Scholar
  16. 16.
    J. Lahann (ed.), Click Chemistry for Biotechnology and Materials Science (Wiley, 2009)Google Scholar
  17. 17.
    R. Angerbauer, P. Fey, W. Huebsch, T. Philipps, H. Bischoff, D. Petzinna, D. Schmidt, Patent DE 4040026 (1992)Google Scholar
  18. 18.
    E.S. Istvan, J. Deisenhofer, Science 292, 1160 (2001)CrossRefGoogle Scholar
  19. 19.
    J.A. Tobert, Nat. Rev. Drug Discov. 2, 517 (2003)CrossRefGoogle Scholar
  20. 20.
    E. Saxon, C.R. Bertozzi, Science 287, 2007 (2000)CrossRefGoogle Scholar
  21. 21.
    R. Kohta, Y. Kotake, T. Hosoya, T. Hiramatsu, Y. Otsubo, H. Koyama, Y. Hirokane, Y. Yokoyama, H. Ikeshoji, K. Oofusa, M. Suzuki, S. Ohta, J. Neurochem. 114, 1291 (2010)PubMedGoogle Scholar
  22. 22.
    Y. Kotake, Y. Tasaki, Y. Makino, S. Ohta, M. Hirobe, J. Neurochem. 65, 2633 (1995)CrossRefGoogle Scholar
  23. 23.
    G.R. Lenz, R.A. Lessor, Org. Synth. 70, 139 (1992)CrossRefGoogle Scholar
  24. 24.
    T. Hosoya, H. Aoyama, T. Ikemoto, T. Hiramatsu, Y. Kihara, M. Endo, M. Suzuki, Bioorg. Med. Chem. Lett. 12, 3263 (2002)CrossRefGoogle Scholar
  25. 25.
    T. Hosoya, T. Hiramatsu, T. Ikemoto, H. Aoyama, T. Ohmae, M. Endo, M. Suzuki, Bioorg. Med. Chem. Lett. 15, 1289 (2005)CrossRefGoogle Scholar
  26. 26.
    T. Ikemoto, T. Hosoya, K. Takata, H. Aoyama, T. Hiramatsu, H. Onoe, M. Suzuki, M. Endo, Diabetes 58, 2802 (2009)CrossRefGoogle Scholar
  27. 27.
    T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 60, 7508 (1995)CrossRefGoogle Scholar
  28. 28.
    T. Hosoya, A. Inoue, T. Hiramatsu, H. Aoyama, T. Ikemoto, M. Suzuki, Bioorg. Med. Chem. 17, 2490 (2009)CrossRefGoogle Scholar
  29. 29.
    N. Miyaura, A. Suzuki, Chem. Rev. 95, 2457 (1995)CrossRefGoogle Scholar
  30. 30.
    S. Yoshida, Y. Misawa, T. Hosoya, Eur. J. Org. Chem. 3991 (2014)Google Scholar
  31. 31.
    L.L. Klein, V. Petukhova, Synth. Commun. 43, 2242 (2013)CrossRefGoogle Scholar
  32. 32.
    I.A.I. Mkhalid, J.H. Barnard, T.B. Marder, J.M. Murphy, J.F. Hartwig, Chem. Rev. 110, 890 (2010)CrossRefGoogle Scholar
  33. 33.
    Y. Li, L.-X. Gao, F.-S. Han, Chem. Eur. J. 16, 7969 (2010)CrossRefGoogle Scholar
  34. 34.
    A.S. Thompson, G.R. Humphrey, A.H. DeMarco, D.J. Mathre, E.J.J. Grabowski, J. Org. Chem. 58, 5886 (1993)CrossRefGoogle Scholar
  35. 35.
    T. Hiramatsu, Y. Guo, T. Hosoya, Org. Biomol. Chem. 5, 2916 (2007)CrossRefGoogle Scholar
  36. 36.
    N.S. Kumar, R.N. Young, Bioorg. Med. Chem. 17, 5388 (2009)CrossRefGoogle Scholar
  37. 37.
    A.L. MacKinnon, J. Taunton, Curr. Protoc. Chem. Biol. 1, 55 (2009)PubMedPubMedCentralGoogle Scholar
  38. 38.
    J.S. Cisar, B.F. Cravatt, J. Am. Chem. Soc. 134, 10385 (2012)CrossRefGoogle Scholar
  39. 39.
    C.G. Parker, A. Galmozzi, Y. Wang, B.E. Correia, K. Sasaki, C.M. Joslyn, A.S. Kim, C.L. Cavallaro, R.M. Lawrence, S.R. Johnson, I. Narvaiza, E. Saez, B.F. Cravatt, Cell 168, 527 (2017)CrossRefGoogle Scholar
  40. 40.
    P. Haberkant, R. Raijmakers, M. Wildwater, T. Sachsenheimer, B. Brügger, K. Maeda, M. Houweling, A.-C. Gavin, C. Schultz, G. van Meer, A.J.R. Heck, J.C.M. Holthuis, Angew. Chem. Int. Ed. 52, 4033 (2013)CrossRefGoogle Scholar
  41. 41.
    Z. Li, P. Hao, L. Li, C.Y.J. Tan, X. Cheng, G.Y.J. Chen, S.K. Sze, H.-M. Shen, S.Q. Yao, Angew. Chem. Int. Ed. 52, 8551 (2013)CrossRefGoogle Scholar
  42. 42.
    S. Pan, S.-Y. Jang, D. Wang, S.S. Liew, Z. Li, J.-S. Lee, S.Q. Yao, Angew. Chem. Int. Ed. 56, 11816 (2017)CrossRefGoogle Scholar
  43. 43.
    C.-F. Chang, A. Mfuh, J. Gao, H.-Y. Wu, C.M. Woo, Tetrahedron 74, 3273 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Laboratory of Chemical Bioscience, Institute of Biomaterials and BioengineeringTokyo Medical and Dental University (TMDU)TokyoJapan

Personalised recommendations