Skip to main content

Introduction to Electrochemical Energy Storage

  • Chapter
  • First Online:
  • 1556 Accesses

Abstract

Facing the challenge from a fast growth in global primary energy consumption during the last two decades, energy conversion and storage with high efficiency and sustainability is demanded. This chapter intends to discuss the broad picture of world energy utilization, and introduce various types of energy storage technologies, their advantages/disadvantages, research at the present stage and sustainability for the future. Specifically, this chapter will introduce the basic working principles of crucial electrochemical energy storage devices (e.g., primary batteries, rechargeable batteries, pseudocapacitors and fuel cells), and key components/materials for these devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

EDLC:

Electrical double-layer capacitor

SMES:

Superconducting magnetic energy storage

NEC:

Nippon Electric Company

DC:

Direct current

EES:

Electrochemical energy storage

TES:

Thermal energy storage

NiCd:

Nickel-cadmium

NiMH:

Nickel-metal hydride

SHE:

Standard hydrogen electrode

VB:

Valence band

CB:

Conduction band

LUMO:

Lowest unoccupied molecular orbital

HOMO:

Highest occupied molecular orbital

References

  1. Anonymous. (2018). BP statistical review of world energy (pp. 1–56). London, UK: BP p.l.c.

    Google Scholar 

  2. Sato, M. (1990). Thermochemistry of the formation of fossil fuels. In R. J. Spencer & I.-M. Chou (Eds.), Fluid–mineral interactions: A tribute to H. P. Eugster (pp. 271–283). Geochemical Society.

    Google Scholar 

  3. Gőğűş, Y. A. (2009). Mechanical energy storage. In Y. Gogus (Ed.), Energy storage systems: Encyclopedia of life support systems (pp. 190–226). EOLSS Publishers/UNESCO.

    Google Scholar 

  4. Dunn, B., Kamath, H., & Tarascon, J.-M. (2011). Electrical energy storage for the grid: A battery of choices. Science, 334, 928–935.

    Article  CAS  Google Scholar 

  5. Rehman, S., Al-Hadhrami, L. M., & Alam, M. M. (2015). Pumped hydro energy storage system: A technological review. Renewable and Sustainable Energy Reviews, 44, 586–598.

    Article  Google Scholar 

  6. Yang, C.-J. (2016). Pumped hydroelectric storage. In T. M. Letcher (Ed.), Storing energy: With special reference to renewable energy sources (pp. 25–38). Elsevier.

    Google Scholar 

  7. Venkataramani, G., Parankusam, P., Ramalingam, V., et al. (2016). A review on compressed air energy storage—A pathway for smart grid and polygeneration. Renewable and Sustainable Energy Reviews, 62, 895–907.

    Article  Google Scholar 

  8. Luo, X., Wang, J., Dooner, M., et al. (2014). Overview of current development in compressed air energy storage technology. Energy Procedia, 62, 603–611.

    Article  Google Scholar 

  9. Amiryar, M. E., & Pullen, K. R. (2017). A review of flywheel energy storage system technologies and their applications. Applied Sciences, 7, 286.

    Article  Google Scholar 

  10. Mousavi, G. S. M., Faraji, F., Majazi, A., et al. (2017). A comprehensive review of Flywheel Energy Storage System technology. Renewable and Sustainable Energy Reviews, 67, 477–490.

    Article  Google Scholar 

  11. Burt, R., Birkett, G., & Zhao, X. S. (2014). A review of molecular modelling of electric double layer capacitors. Physical Chemistry Chemical Physics, 16, 6519–6538.

    Article  CAS  Google Scholar 

  12. Tixador, P. (2008). Superconducting magnetic energy storage: Status and perspective. Paper presented at: IEEE/CSC & ESAS European Superconductivity News Forum (ESNF).

    Google Scholar 

  13. Vulusala, G. V. S., & Madichetty, S. (2018). Application of superconducting magnetic energy storage in electrical power and energy systems: A review. International Journal of Energy Research, 42, 358–368.

    Google Scholar 

  14. Pandolfo, T., Ruiz, V., Sivakkumar, S., et al. (2013). General properties of electrochemical capacitors. In F. Beguin & E. Frackowiak (Eds.), Supercapacitors: Materials, systems, and applications (pp. 69–109). Wiley.

    Google Scholar 

  15. Shao, Y., El-Kady, M. F., Sun, J., et al. (2018). Design and mechanisms of asymmetric supercapacitors. Chemical Reviews, 118, 9233–9280.

    Article  CAS  Google Scholar 

  16. Ho, J., Jow, T. R., & Boggs, S. (2010). Historical introduction to capacitor technology. IEEE Electrical Insulation Magazine, 26, 20–25.

    Article  Google Scholar 

  17. Both, J. (2015). Electrolytic capacitors, 1890 to 1925: Early history and basic principle. IEEE Electrical Insulation Magazine, 31, 22–29.

    Article  Google Scholar 

  18. Ulaby, F. T., & Ravaioli, U. (2015). Fundamentals of applied electromagnetics (7th ed.). Pearson Education Dorling Kindersley.

    Google Scholar 

  19. Simon, P., & Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7, 845–854.

    Article  CAS  Google Scholar 

  20. Helmholtz, H. V. (1853). On the conservation of force. Annals of Physics, 165, 211.

    Article  Google Scholar 

  21. Gouy, G. (1910). Constitution of the electric charge at the surface of an electrolyte. Comptes Rendus, 149, 654–657.

    CAS  Google Scholar 

  22. Chapman, D. L. (1913). A contribution to the theory of electrocapillarity. Philosophical Magazine, 25, 475–481.

    Google Scholar 

  23. Stern, O. Z. (1924). Theory of the electrical double layer. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie, 30, 508–516.

    CAS  Google Scholar 

  24. Grahame, D. C. (1947). The electrical double layer and the theory of electrocapillarity. Chemical Reviews, 41, 441–501.

    Article  CAS  Google Scholar 

  25. Becker, H. I. (1957). Low voltage electrolytic capacitor. U.S. Patent No. 2,800,616. United States: General Electric Co.

    Google Scholar 

  26. Rightmire, R. A. (1966). Electrical energy storage apparatus. U.S. Patent No. 3,288,641. United States: Standard Oil Co.

    Google Scholar 

  27. File, J., & Mills, R. G. (1963). Observation of persistent current in a superconducting solenoid. Physical Review Letters, 10, 93–96.

    Article  Google Scholar 

  28. Buckles, W., & Hassenzahl, W. V. (2000). Superconducting magnetic energy storage. IEEE Power Engineering Review, 20, 16–20.

    Article  Google Scholar 

  29. Luongo, C. A. (1996). Superconducting storage systems: An overview. IEEE Transactions on Magnetics, 32, 2214–2223.

    Article  Google Scholar 

  30. Scrosati, B. (2011). History of lithium batteries. Journal of Solid State Electrochemistry, 15, 1623–1630.

    Article  CAS  Google Scholar 

  31. Trasatti, S., & Buzzanca, G. (1971). Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 29, A1–A5.

    Article  Google Scholar 

  32. Conway, B. E. (1991). Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. Journal of the Electrochemical Society, 138, 1539–1548.

    Article  CAS  Google Scholar 

  33. Augustyn, V., Simon, P., & Dunn, B. (2014). Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 7, 1597–1614.

    Article  CAS  Google Scholar 

  34. Conway, B. E., Birss, V., & Wojtowicz, J. (1997). The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources, 66, 1–14.

    Article  CAS  Google Scholar 

  35. Miller, J. R. (2013). Market and applications of electrochemical capacitors. In F. Béguin & E. Frąckowiak (Eds.), Supercapacitors: Materials, systems, and applications (pp. 509–526). Wiley.

    Google Scholar 

  36. Yang, Z., Zhang, J., Kintner-Meyer, M. C. W., et al. (2011). Electrochemical energy storage for green grid. Chemical Reviews, 111, 3577–3613.

    Article  CAS  Google Scholar 

  37. Goodenough, J. B. (2013). Evolution of strategies for modern rechargeable batteries. Accounts of Chemical Research, 46, 1053–1061.

    Article  CAS  Google Scholar 

  38. Goodenough, J. B., & Kim, Y. (2010). Challenges for rechargeable Li batteries. Chemistry of Materials, 22, 587–603.

    Article  CAS  Google Scholar 

  39. Armand, M., & Tarascon, J. M. (2008). Building better batteries. Nature, 451, 652–657.

    Article  CAS  Google Scholar 

  40. Manzetti, S., & Mariasiu, F. (2015). Electric vehicle battery technologies: From present state to future systems. Renewable and Sustainable Energy Reviews, 51, 1004–1012.

    Article  CAS  Google Scholar 

  41. Kim, J., Kumar, R., Bandodkar, A. J., et al. (2017). Advanced materials for printed wearable electrochemical devices: A review. Advanced Electronic Materials, 3, 1600260.

    Article  CAS  Google Scholar 

  42. You, Y., Celio, H., Li, J., et al. (2018). Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries. Angewandte Chemie International Edition, 57, 6480–6485.

    Article  CAS  Google Scholar 

  43. You, Y., & Manthiram, A. (2018). Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Advanced Energy Materials, 8, 1701785.

    Article  CAS  Google Scholar 

  44. Zhang, Y.-C., You, Y., Xin, S., et al. (2016). Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy, 25, 120–127.

    Article  CAS  Google Scholar 

  45. Yin, Y.-X., Xin, S., Wan, L.-J., et al. (2011). Electrospray synthesis of silicon/carbon nanoporous microspheres as improved anode materials for lithium-ion batteries. The Journal of Physical Chemistry C, 115, 14148–14154.

    Article  CAS  Google Scholar 

  46. Xu, R., Wang, G., Zhou, T., et al. (2017). Rational design of Si@carbon with robust hierarchically porous custard-apple-like structure to boost lithium storage. Nano Energy, 39, 253–261.

    Article  CAS  Google Scholar 

  47. Xu, Q., Sun, J.-K., Yu, Z.-L., et al. (2018). SiOx encapsulated in graphene bubble film: An ultrastable Li-ion battery anode. Advanced Materials, 30, 1707430.

    Article  CAS  Google Scholar 

  48. Yin, Y.-X., Xin, S., Guo, Y.-G., et al. (2013). Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angewandte Chemie International Edition, 52, 13186–13200.

    Article  CAS  Google Scholar 

  49. Xin, S., Gu, L., Zhao, N.-H., et al. (2012). Smaller sulfur molecules promise better lithium-sulfur batteries. Journal of the American Chemical Society, 134, 18510–18513.

    Article  CAS  Google Scholar 

  50. Xin, S., Yin, Y.-X., Guo, Y.-G., et al. (2014). A high-energy room-temperature sodium-sulfur battery. Advanced Materials, 26, 1261–1265.

    Article  CAS  Google Scholar 

  51. You, Y., Yao, H.-R., Xin, S., et al. (2016). Subzero-temperature cathode for a sodium-ion battery. Advanced Materials, 28, 7243–7248.

    Article  CAS  Google Scholar 

  52. Jin, S., Xin, S., Wang, L., et al. (2016). Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li–S batteries. Advanced Materials, 28, 9094–9102.

    Article  CAS  Google Scholar 

  53. Xin, S., Yin, Y.-X., Wan, L.-J., et al. (2013). Encapsulation of sulfur in a hollow porous carbon substrate for superior Li–S batteries with long lifespan. Particle & Particle Systems Characterization, 30, 321–325.

    Article  CAS  Google Scholar 

  54. Xin, S., Yu, L., You, Y., et al. (2016). The electrochemistry with lithium versus sodium of selenium confined to slit micropores in carbon. Nano Letters, 16, 4560–4568.

    Article  CAS  Google Scholar 

  55. Xin, S., Guo, Y.-G., Chang, Z., et al. (2016). Progress of rechargeable lithium metal batteries based on conversion reactions. National Science Review, 4, 54–70.

    Google Scholar 

  56. Wang, Z., You, Y., Yuan, J., et al. (2016). Nickel-doped La0.8Sr0.2Mn1−xNixO3 nanoparticles containing abundant oxygen vacancies as an optimized bifunctional catalyst for oxygen cathode in rechargeable lithium-air batteries. ACS Applied Materials & Interfaces, 8, 6520–6528.

    Article  CAS  Google Scholar 

  57. Xue, L., Gao, H., Zhou, W., et al. (2016). Liquid K-Na alloy anode enables dendrite-free potassium batteries. Advanced Materials, 28, 9608–9612.

    Article  CAS  Google Scholar 

  58. Gao, H., Xue, L., Xin, S., et al. (2017). A plastic-crystal electrolyte interphase for all-solid-state sodium batteries. Angewandte Chemie International Edition, 56, 5541–5545.

    Article  CAS  Google Scholar 

  59. Zhou, W., Xue, L., Lü, X., et al. (2016). NaxMV(PO4)3 (M = Mn, Fe, Ni) structure and properties for sodium extraction. Nano Letters, 16, 7836–7841.

    Article  CAS  Google Scholar 

  60. Du, X.-L., You, Y., Yan, Y., et al. (2016). Conductive carbon network inside a sulfur-impregnated carbon sponge: A bioinspired high-performance cathode for Li–S battery. ACS Applied Materials & Interfaces, 8, 22261–22269.

    Article  CAS  Google Scholar 

  61. Chen, Z.-H., Du, X.-L., He, J.-B., et al. (2017). Porous coconut shell carbon offering high retention and deep lithiation of sulfur for lithium-sulfur batteries. ACS Applied Materials & Interfaces, 9, 33855–33862.

    Article  CAS  Google Scholar 

  62. Xin, S., You, Y., Li, H.-Q., et al. (2016). Graphene sandwiched by sulfur-confined mesoporous carbon nanosheets: A kinetically stable cathode for Li–S batteries. ACS Applied Materials & Interfaces, 8, 33704–33711.

    Article  CAS  Google Scholar 

  63. Xu, D.-W., Xin, S., You, Y., et al. (2016). Built-in carbon nanotube network inside a biomass-derived hierarchically porous carbon to enhance the performance of the sulfur cathode in a Li–S battery. ChemNanoMat, 2, 712–718.

    Article  CAS  Google Scholar 

  64. Gao, H., Xin, S., Xue, L., et al. (2018). Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte. Chem, 4, 833–844.

    Article  CAS  Google Scholar 

  65. Gao, H., Xue, L., Xin, S., et al. (2018). A high-energy-density potassium battery with a polymer-gel electrolyte and a polyaniline cathode. Angewandte Chemie International Edition, 57, 5449–5453.

    Article  CAS  Google Scholar 

  66. Zhang, J., Zhang, C., Li, W., et al. (2018). Nitrogen-doped perovskite as a bifunctional cathode catalyst for rechargeable lithium-oxygen batteries. ACS Applied Materials & Interfaces, 10, 5543–5550.

    Article  CAS  Google Scholar 

  67. Xue, L., Zhou, W., Xin, S., et al. (2018). Room-temperature liquid Na–K anode membranes. Angewandte Chemie International Edition, 57, 14184–14187.

    Article  CAS  Google Scholar 

  68. Gao, H., Seymour, I. D., Xin, S., et al. (2018). Na3MnZr(PO4)3: A high-voltage cathode for sodium batteries. Journal of the American Chemical Society, 140, 18192–18199.

    Article  CAS  Google Scholar 

  69. Wu, N., Yang, Z.-Z., Yao, H.-R., et al. (2015). Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. Angewandte Chemie International Edition, 54, 5757–5761.

    Article  CAS  Google Scholar 

  70. Hu, X.-C., Shi, Y., Lang, S.-Y., et al. (2018). Direct insights into the electrochemical processes at anode/electrolyte interfaces in magnesium-sulfur batteries. Nano Energy, 49, 453–459.

    Article  CAS  Google Scholar 

  71. Denholm, P., King, J. C., Kutcher, C. F., et al. (2012). Decarbonizing the electric sector: Combining renewable and nuclear energy using thermal storage. Energy Policy, 44, 301–311.

    Article  Google Scholar 

  72. O’Sullivan, M., Yeh, A., & Mannington, W. (2010). Renewability of geothermal resources. Geothermics, 39, 314–320.

    Article  Google Scholar 

  73. Rezaie, B., Reddy, B. V., & Rosen, M. A. (2017). Assessment of the thermal energy storage in Friedrichshafen district energy systems. Energy Procedia, 116, 91–105.

    Article  Google Scholar 

  74. Edwards, J., Bindra, H., & Sabharwall, P. (2016). Exergy analysis of thermal energy storage options with nuclear power plants. Annals of Nuclear Energy, 96, 104–111.

    Article  CAS  Google Scholar 

  75. Miró, L., Brückner, S., & Cabeza, L. F. (2015). Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries. Renewable and Sustainable Energy Reviews, 51, 847–855.

    Article  Google Scholar 

  76. Pantaleo, A. M., Camporeale, S. M., Miliozzi, A., et al. (2017). Thermo-economic assessment of an externally fired hybrid CSP/biomass gas turbine and organic rankine combined cycle. Energy Procedia, 105, 174–181.

    Article  Google Scholar 

  77. Alva, G., Lin, Y., & Fang, G. (2018). An overview of thermal energy storage systems. Energy, 144, 341–378.

    Article  Google Scholar 

  78. Cabeza, L. F., Martorell, I., Miró, L., et al. (2015). Introduction to thermal energy storage (TES) systems. In L. F. Cabeza (Ed.), Advances in thermal energy storage systems (pp. 1–28). Woodhead Publishing.

    Google Scholar 

  79. Kolpak, A. M., & Grossman, J. C. (2011). Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels. Nano Letters, 11, 3156–3162.

    Article  CAS  Google Scholar 

  80. Atkins, P., & Paula, J. D. (2014). Physical chemistry: Thermodynamics, structure, and change (10th ed.). New York: W. H. Freeman and Company.

    Google Scholar 

  81. Linden, D. (2001). Primary batteries—Introduction. In D. Linden & T. B. Reddy (Eds.), Handbook of batteries (pp. 1–21). McGraw-Hill Education.

    Google Scholar 

  82. Linden, D., & Reddy, T. B. (2010). An introduction to primary batteries. In T. B. Reddy (Ed.), Linden’s handbook of batteries (pp. 1–18). McGraw-Hill Education.

    Google Scholar 

  83. Brooke Schumm, J. (2010). Zinc-carbon batteries—Leclanché and zinc chloride cell systems. In T. B. Reddy (Ed.), Linden’s handbook of batteries (pp. 1–41). McGraw-Hill Education.

    Google Scholar 

  84. Sayilgan, E., Kukrer, T., Civelekoglu, G., et al. (2009). A review of technologies for the recovery of metals from spent alkaline and zinc–carbon batteries. Hydrometallurgy, 97, 158–166.

    Article  CAS  Google Scholar 

  85. Scarr, R. F., Hunter, J. C., & Slezak, P. J. (2001). Alkaline-manganese dioxide batteries. In D. Linden & T. B. Reddy (Eds.), Handbook of batteries (pp. 1–32). McGraw-Hill Education.

    Google Scholar 

  86. Kozawa, A., & Powers, R. A. (1972). Electrochemical reactions in batteries. Emphasizing the MnO2 cathode of dry cells. Journal of Chemical Education, 49, 587–591.

    Article  CAS  Google Scholar 

  87. Goodenough, J. B., & Park, K.-S. (2013). The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 135, 1167–1176.

    Article  CAS  Google Scholar 

  88. May, G. J., Davidson, A., & Monahov, B. (2018). Lead batteries for utility energy storage: A review. Journal of Energy Storage, 15, 145–157.

    Article  Google Scholar 

  89. Bergstrom, S. (1952). Fiftieth anniversary: Anniversary issue on storage batteries: Nickel-cadmium batteries—Pocket type. Journal of the Electrochemical Society, 99, 248C–250C.

    Article  CAS  Google Scholar 

  90. Gogotsi, Y., & Penner, R. M. (2018). Energy storage in nanomaterials—Capacitive, pseudocapacitive, or battery-like? ACS Nano, 12, 2081–2083.

    Article  CAS  Google Scholar 

  91. El-Kady, M. F., Shao, Y., & Kaner, R. B. (2016). Graphene for batteries, supercapacitors and beyond. Nature Reviews Materials, 1, 16033.

    Article  CAS  Google Scholar 

  92. Conway, B. E. (1999). Electrochemical capacitors based on pseudocapacitance. In B. E. Conway (Ed.), Electrochemical supercapacitors: Scientific fundamentals and technological applications (pp. 221–257). Springer.

    Google Scholar 

  93. Kim, J. W., Augustyn, V., & Dunn, B. (2012). The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Advanced Energy Materials, 2, 141–148.

    Article  CAS  Google Scholar 

  94. Augustyn, V., Come, J., Lowe, M. A., et al. (2013). High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials, 12, 518–522.

    Article  CAS  Google Scholar 

  95. Kirubakaran, A., Jain, S., & Nema, R. K. (2009). A review on fuel cell technologies and power electronic interface. Renewable and Sustainable Energy Reviews, 13, 2430–2440.

    Article  CAS  Google Scholar 

  96. Smitha, B., Sridhar, S., & Khan, A. A. (2005). Solid polymer electrolyte membranes for fuel cell applications—A review. Journal of Membrane Science, 259, 10–26.

    Article  CAS  Google Scholar 

  97. Peighambardoust, S. J., Rowshanzamir, S., & Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 35, 9349–9384.

    Article  CAS  Google Scholar 

  98. Liu, H., Song, C., Zhang, L., et al. (2006). A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources, 155, 95–110.

    Article  CAS  Google Scholar 

  99. Khan, S. U. M., Kainthla, R. C., & Bockris, J. O. M. (1987). The redox potential and the Fermi level in solution. The Journal of Physical Chemistry, 91, 5974–5977.

    Article  CAS  Google Scholar 

  100. Kittel, C. (2004). Introduction to solid state physics (8th ed.). Wiley.

    Google Scholar 

  101. Schmickler, W., & Santos, E. (2010). Metal and semiconductor electrodes. In Interfacial electrochemistry (pp. 9–18). Springer.

    Google Scholar 

  102. Gao, J., Shi, S.-Q., & Li, H. (2016). Brief overview of electrochemical potential in lithium ion batteries. Chinese Physics B, 25, 018210.

    Article  CAS  Google Scholar 

  103. Guo, Y.-G., Hu, J.-S., & Wan, L.-J. (2008). Nanostructured materials for electrochemical energy conversion and storage devices. Advanced Materials, 20, 2878–2887.

    Article  CAS  Google Scholar 

  104. Maier, J. (2005). Nanoionics: Ion transport and electrochemical storage in confined systems. Nature Materials, 4, 805–815.

    Article  CAS  Google Scholar 

  105. Xin, S., You, Y., Wang, S., et al. (2017). Solid-state lithium metal batteries promoted by nanotechnology: Progress and prospects. ACS Energy Letters, 2, 1385–1394.

    Article  CAS  Google Scholar 

  106. Rustomji, C. S., Yang, Y., Kim, T. K., et al. (2017). Liquefied gas electrolytes for electrochemical energy storage devices. Science, 356, eaal4263.

    Article  CAS  Google Scholar 

  107. Lee, H., Yanilmaz, M., Toprakci, O., et al. (2014). A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science, 7, 3857–3886.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xin, S., Gao, H., Li, Y., Guo, YG. (2019). Introduction to Electrochemical Energy Storage. In: Nanostructures and Nanomaterials for Batteries. Springer, Singapore. https://doi.org/10.1007/978-981-13-6233-0_1

Download citation

Publish with us

Policies and ethics