Skip to main content

In Vitro Tissue Construction for Organ-on-a-Chip Applications

  • Chapter
  • First Online:
  • 1739 Accesses

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 7))

Abstract

Functional living tissues, reconstructed in vitro, have been demanded as grafts for regenerative medicine and drug test models for pharmacokinetic study. For the reconstruction of the functional living tissues, cellular structures with the shapes of point, line and plane are attractive building blocks to form macroscopic cellular tissues. Microfluidics are suitable techniques in the preparation of the cellular structures with design flexibility and high productivity. Owing to their shape controllability, the cellular structures are able to be assembled into macroscopic tissues in various dimensions using microfluidic devices. Furthermore, the integration of in vitro constructed cellular tissues and microfluidic devices provides organ-on-a-chips to evaluate the change of cellular functions in response to applied drugs. This chapter introduces microfluidic fabrication methods for cellular structures with the shapes of point, line and plane, and methods to manipulate and assemble the cellular structures for formation of macroscopic cellular tissues. Furthermore, we show that organ-on-a-chip, combination of the cellular tissues and microfluidic devices, can find applications in biological studies and the analysis of pharmacokinetics and toxicology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Bio 8(10):839–845

    CAS  Google Scholar 

  2. Passier R, Orlova V, Mummery C (2016) Complex tissue and disease modeling using hiPSCs. Cell Stem Cell 18(3):309–321

    CAS  Google Scholar 

  3. Morimoto Y, Takeuchi S (2013) Three-dimensional cell culture based on microfluidic techniques to mimic living tissues. Biomater Sci 1(3):257–264

    CAS  Google Scholar 

  4. Groll J, Boland T, Blunk T, Burdick JA, Cho DW, Dalton PD, Derby B, Forgacs G, Li Q, Mironov VA, Moroni L, Nakamura M, Shu WM, Takeuchi S, Vozzi G, Woodfield TBF, Xu T, Yoo JJ, Malda J (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8(1):013001

    Google Scholar 

  5. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351

    CAS  Google Scholar 

  6. Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28(34):5087–5092

    CAS  Google Scholar 

  7. Morimoto Y, Hsiao AY, Takeuchi S (2015) Point-, line-, and plane-shaped cellular constructs for 3D tissue assembly. Adv Drug Deliver Rev 95:29–39

    CAS  Google Scholar 

  8. Chung BG, Lee KH, Khademhosseini A, Lee SH (2011) Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 12(1):45–59

    Google Scholar 

  9. Onoe H, Takeuchi S (2015) Cell-laden microfibers for bottom-up tissue engineering. Drug Discov Today 20(2):236–246

    CAS  Google Scholar 

  10. Mazzitelli S, Capretto L, Quinci F, Piva R, Nastruzzi C (2013) Preparation of cell-encapsulation devices in confined microenvironment. Adv Drug Deliver Rev 65(11–12):1533–1555

    CAS  Google Scholar 

  11. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772

    CAS  Google Scholar 

  12. Perestrelo AR, Aguas ACP, Rainer A, Forte G (2015) Microfluidic organ/body-on-a-Chip devices at the convergence of biology and microengineering. Sensors 15(12):31142–31170

    Google Scholar 

  13. Lin RZ, Chang HY (2008) Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 3(9–10):1172–1184

    CAS  Google Scholar 

  14. Neto AI, Correia CR, Custodio CA, Mano JF (2014) Biomimetic miniaturized platform able to sustain arrays of liquid droplets for high-throughput combinatorial tests. Adv Funct Mater 24(32):5096–5103

    CAS  Google Scholar 

  15. Brajsa K, Trzun M, Zlatar I, Jelic D (2016) Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Period Biol 118(1):59–65

    Google Scholar 

  16. Kato-Negishi M, Tsuda Y, Onoe H, Takeuchi S (2010) A neurospheroid network-stamping method for neural transplantation to the brain. Biomaterials 31(34):8939–8945

    CAS  Google Scholar 

  17. El Assal R, Gurkan UA, Chen P, Juillard F, Tocchio A, Chinnasamy T, Beauchemin C, Unluisler S, Canikyan S, Holman A, Srivatsa S, Kaye KM, Demirci U (2016) 3-D microwell Array system for culturing virus infected tumor cells. Sci Rep 6:39144

    Google Scholar 

  18. Frey O, Misun PM, Fluri DA, Hengstler JG, Hierlemann A (2014) Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat Commun 5:4250

    CAS  Google Scholar 

  19. Patra B, Peng CC, Liao WH, Lee CH, Tung YC (2016) Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device. Sci Rep 6:21061

    CAS  Google Scholar 

  20. Ota H, Yamamoto R, Deguchi K, Tanaka Y, Kazoe Y, Sato Y, Miki N (2010) Three-dimensional spheroid-forming lab-on-a-chip using micro-rotational flow. Sens Actuat B-Chem 147(1):359–365

    CAS  Google Scholar 

  21. Akiyama Y, Morishima K (2011) Label-free cell aggregate formation based on the magneto-Archimedes effect. Appl Phys Lett 98(16):163702

    Google Scholar 

  22. Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696–2701

    CAS  Google Scholar 

  23. Allazetta S, Hausherr TC, Lutolf MP (2013) Microfluidic synthesis of cell-type-specific artificial extracellular matrix hydrogels. Biomacromolecules 14(4):1122–1131

    CAS  Google Scholar 

  24. Wieduwild R, Krishnan S, Chwalek K, Boden A, Nowak M, Drechsel D, Werner C, Zhang Y (2015) Noncovalent hydrogel beads as microcarriers for cell culture. Angew Chem Int Edit 54(13):3962–3966

    CAS  Google Scholar 

  25. Takeuchi S, Garstecki P, Weibel DB, Whitesides GM (2005) An axisymmetric flow-focusing microfluidic device. Adv Mater 17(8):1067–1072

    CAS  Google Scholar 

  26. Morimoto Y, Tan WH, Takeuchi S (2009) Three-dimensional axisymmetric flow-focusing device using stereolithography. Biomed Microdevices 11(2):369–377

    Google Scholar 

  27. Morimoto Y, Tan WH, Tsuda Y, Takeuchi S (2009) Monodisperse semi-permeable microcapsules for continuous observation of cells. Lab Chip 9(15):2217–2223

    CAS  Google Scholar 

  28. Morimoto Y, Kuribayashi-Shigetomi K, Takeuchi S (2011) A hybrid axisymmetric flow-focusing device for monodisperse picoliter droplets. J Micromech Microeng 21(5):054031

    Google Scholar 

  29. Huang SB, Wu MH, Lee GB (2010) Microfluidic device utilizing pneumatic micro-vibrators to generate alginate microbeads for microencapsulation of cells. Sens Actuat B-Chem 147(2):755–764

    CAS  Google Scholar 

  30. Onoe H, Inamori K, Takinoue M, Takeuchi S (2014) Centrifuge-based cell encapsulation in hydrogel microbeads using sub-microliter sample solution. RSC Adv 4(58):30480–30484

    CAS  Google Scholar 

  31. Morimoto Y, Onuki M, Takeuchi S (2017) Mass production of cell-laden calcium alginate particles with centrifugal force. Adv Healthc Mater 6(13):1601375

    Google Scholar 

  32. Maeda K, Onoe H, Takinoue M, Takeuchi S (2012) Controlled synthesis of 3D multi-compartmental particles with centrifuge-based microdroplet formation from a multi-Barrelled capillary. Adv Mater 24(10):1340–1346

    CAS  Google Scholar 

  33. *Matsunaga YT, *Morimoto Y, Takeuchi S (2011) Molding cell beads for rapid construction of macroscopic 3D tissue architecture. Adv Mater 23(12):H90–H94. (*equal contribution)

    CAS  Google Scholar 

  34. Morimoto Y, Tanaka R, Takeuchi S (2013) Construction of 3D, layered skin, microsized tissues by using cell beads for cellular function analysis. Adv Healthc Mater 2(2):261–265

    CAS  Google Scholar 

  35. Dendukuri D, Pregibon DC, Collins J, Hatton TA, Doyle PS (2006) Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater 5(5):365–369

    CAS  Google Scholar 

  36. Le Goff GC, Lee J, Gupta A, Hill WA, Doyle PS (2015) High-throughput contact flow lithography. Adv Sci 2(10):1500149

    Google Scholar 

  37. Sugiura S, Oda T, Aoyagi Y, Satake M, Ohkohchi N, Nakajima M (2008) Tubular gel fabrication and cell encapsulation in laminar flow stream formed by microfabricated nozzle array. Lab Chip 8(8):1255–1257

    CAS  Google Scholar 

  38. Mazzitelli S, Capretto L, Carugo D, Zhang X, Piva R, Nastruzzi C (2011) Optimised production of multifunctional microfibres by microfluidic chip technology for tissue engineering applications. Lab Chip 11(10):1776–1785

    CAS  Google Scholar 

  39. Lee KH, Shin SJ, Kim CB, Kim JK, Cho YW, Chung BG, Lee SH (2010) Microfluidic synthesis of pure chitosan microfibers for bio-artificial liver chip. Lab Chip 10(10):1328–1334

    CAS  Google Scholar 

  40. Jun Y, Kim MJ, Hwang YH, Jeon EA, Kang AR, Lee SH, Lee DY (2013) Microfluidics-generated pancreatic islet microfibers for enhanced immunoprotection. Biomaterials 34(33):8122–8130

    CAS  Google Scholar 

  41. Yamada M, Utoh R, Ohashi K, Tatsumi K, Yamato M, Okano T, Seki M (2012) Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials 33(33):8304–8315

    CAS  Google Scholar 

  42. Kang E, Jeong GS, Choi YY, Lee KH, Khademhosseini A, Lee SH (2011) Digitally tunable physicochemical coding of material composition and topography in continuous microfibers. Nat Mater 10(11):877–883

    CAS  Google Scholar 

  43. Lee KH, Shin SJ, Park Y, Lee SH (2009) Synthesis of cell-laden alginate hollow fibers using microfluidic chips and microvascularized tissue-engineering applications. Small 5(11):1264–1268

    CAS  Google Scholar 

  44. Onoe H, Okitsu T, Itou A, Kato-Negishi M, Gojo R, Kiriya D, Sato K, Mirua S, Iwanaga S, Kuribayashi-Shigetomi K, Matsunaga Y, Shimoyama Y, Takeuchi S (2013) Metre-long cell-laden Microfibres exhibit tissue morphologies and functions. Nat Mater 12:584–590

    CAS  Google Scholar 

  45. Hsiao AY, Okitsu T, Teramae H, Takeuchi S (2016) 3D tissue formation of Unilocular adipocytes in hydrogel microfibers. Adv Healthc Mater 5(5):548–556

    CAS  Google Scholar 

  46. Hsiao AY, Okitsu T, Onoe H, Kiyosawa M, Teramae H, Iwanaga S, Kazama T, Matsumoto T, Takeuchi S (2015) Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell Fiber technology. PLoS One 10(3):e0119010

    Google Scholar 

  47. Ikeda K, Nagata S, Okitsu T, Takeuchi S (2017) Cell fiber-based three-dimensional culture system for highly efficient expansion of human induced pluripotent stem cells. Sci Rep 7:2850

    Google Scholar 

  48. Morimoto Y, Kato-Negishi M, Onoe H, Takeuchi S (2013) Three-dimensional neuron-muscle constructs with neuromuscular junctions. Biomaterials 34(37):9413–9419

    CAS  Google Scholar 

  49. Morimoto Y, Mori S, Sakai F, Takeuchi S (2016) Human induced pluripotent stem cell-derived fiber-shaped cardiac tissue on a chip. Lab Chip 16(12):2295–2301

    CAS  Google Scholar 

  50. Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90(3):e40–e48

    CAS  Google Scholar 

  51. Sekine H, Shimizu T, Sakaguchi K, Dobashi I, Wada M, Yamato M, Kobayashi E, Umezu M, Okano T (2013) In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun 4:1399

    Google Scholar 

  52. Leng L, McAlister A, Zhang B, Radisic M, Cunther A (2012) Mosaic hydrogels: one-step formation of multiscale soft materials. Adv Mater 24(27):3650–3658

    CAS  Google Scholar 

  53. Yuan B, Jin Y, Sun Y, Wang D, Sun JS, Wang Z, Zhang W, Jiang XY (2012) A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues. Adv Mater 24(7):890–896

    CAS  Google Scholar 

  54. Mori N, Morimoto Y, Takeuchi S (2017) Skin integrated with perfusable vascular channels on a chip. Biomaterials 116:48–56

    CAS  Google Scholar 

  55. Khan OF, Voice DN, Leung BM, Sefton MV (2015) A novel high-speed production process to create modular components for the bottom-up assembly of large-scale tissue-engineered constructs. Adv Healthc Mater 4(1):113–120

    Google Scholar 

  56. Kato-Negishi M, Morimoto Y, Onoe H, Takeuchi S (2013) Millimeter-sized neural building blocks for 3D heterogeneous neural network assembly. Adv Healthc Mater 2(12):1564–1570

    CAS  Google Scholar 

  57. Luo H, Chen M, Wang X, Mei Y, Ye Z, Zhou Y, Tan WS (2014) Fabrication of viable centimeter-sized 3D tissue constructs with microchannel conduits for improved tissue properties through assembly of cell-laden microbeads. J Tissue Eng Regen Med 8(6):493–504

    CAS  Google Scholar 

  58. Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917

    CAS  Google Scholar 

  59. Nakamura M, Iwanaga S, Henmi C, Arai K, Nishiyama Y (2010) Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication 2(1):014110

    CAS  Google Scholar 

  60. Bruzewicz DA, McGuigan AP, Whitesides GM (2008) Fabrication of a modular tissue construct in a microfluidic chip. Lab Chip 8(5):663–671

    CAS  Google Scholar 

  61. Yue T, Nakajima M, Takeuchi M, Hu C, Huang Q, Fukuda T (2014) On-chip self-assembly of cell embedded microstructures to vascular-like microtubes. Lab Chip 14(6):1151–1161

    CAS  Google Scholar 

  62. Chung SE, Park W, Shin S, Lee SA, Kwon S (2008) Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat Mater 7(7):581–587

    CAS  Google Scholar 

  63. Mori N, Morimoto Y, Takeuchi S (2016) Vessel-like channels supported by poly-L-lysine tubes. J Biosci Bioeng 122(6):753–757

    CAS  Google Scholar 

  64. Sakai S, Yamaguchi S, Takei T, Kawakami K (2008) Oxidized alginate-cross-linked alginate/gelatin hydrogel fibers for fabricating tubular constructs with layered smooth muscle cells and endothelial cells in collagen gels. Biomacromolecules 9(7):2036–2041

    CAS  Google Scholar 

  65. Harimoto M, Yamato M, Hirose M, Takahashi C, Isoi Y, Kikuchi A, Okano T (2002) Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes. J Biomed Mater Res 62(3):464–470

    CAS  Google Scholar 

  66. Kim C, Bang JH, Kim YE, Lee SH, Kang JY (2012) On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network. Lab Chip 12(20):4135–4142

    CAS  Google Scholar 

  67. Das T, Meunier L, Barbe L, Provencher D, Guenat O, Gervais T, Mes-Masson A-M (2013) Empirical chemosensitivity testing in a spheroid model of ovarian cancer using a microfluidics-based multiplex platform. Biomicrofluidics 7(1):011805

    Google Scholar 

  68. Ruppen J, Cortes-Dericks L, Marconi E, Karoubi G, Schmid RA, Peng R, Marti TM, Guenat OT (2014) A microfluidic platform for chemoresistive testing of multicellular pleural cancer spheroids. Lab Chip 14(6):1198–1205

    CAS  Google Scholar 

  69. Nakao Y, Kimura H, Sakai Y, Fujii T (2011) Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. Biomicrofluidics 5(2):022212

    Google Scholar 

  70. Wagner I, Materne E-M, Brincker S, Süßbier U, Frädrich C, Busek M, Sonntag F, D a S, Trushkin EV, Tonevitsky AG, Lauster R, Marx U (2013) A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13(18):3538–3547

    CAS  Google Scholar 

  71. Ataç B, Wagner I, Horland R, Lauster R, Marx U, Tonevitsky AG, Azar RP, Lindner G (2013) Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion. Lab Chip 13(18):3555–3561

    Google Scholar 

  72. Kimura H, Yamamoto T, Sakai H, Sakai Y, Fujii T (2008) An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip 8(5):741–746

    CAS  Google Scholar 

  73. Kimura H, Ikeda T, Nakayama H, Sakai Y, Fujii T (2015) An on-Chip small intestine-liver model for pharmacokinetic studies. J Lab Autom 20(3):265–273

    CAS  Google Scholar 

  74. Shah P, Fritz JV, Glaab E, Desai MS, Greenhalgh K, Frachet A, Niegowska M, Estes M, Jäger C, Seguin-Devaux C, Zenhausern F, Wilmes P (2016) A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat Commun 7:11535

    CAS  Google Scholar 

  75. Jang K-J, Suh K-Y (2010) A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10(1):36–42

    CAS  Google Scholar 

  76. Jang K-J, Cho HS, Kang DH, Bae WG, Kwon T-H, Suh K-Y (2011) Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integr Biol 3(2):134–141

    CAS  Google Scholar 

  77. Wang YI, Abaci HE, Shuler ML (2017) Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng 114(1):184–194

    CAS  Google Scholar 

  78. Miura S, Sato K, Kato-Negishi M, Teshima T, Takeuchi S (2015) Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat Commun 6:8871

    Google Scholar 

  79. Abaci HE, Gledhill K, Guo Z, Christiano AM, Shuler ML (2015) Pumpless microfluidic platform for drug testing on human skin equivalents. Lab Chip 15(3):882–888

    CAS  Google Scholar 

  80. Ramadan Q, Ting FCW (2016) In vitro micro-physiological immune-competent model of the human skin. Lab Chip 16(10):1899–1908

    CAS  Google Scholar 

  81. Imura Y, Sato K, Yoshimura E (2010) Micro Total bioassay system for ingested substances: assessment of intestinal absorption, hepatic metabolism, and bioactivity. Anal Chem 82(24):9983–9988

    CAS  Google Scholar 

  82. Maschmeyer I, Lorenz AK, Schimek K, Hasenberg T, Ramme AP, Hübner J, Lindner M, Drewell C, Bauer S, Thomas A, Sambo NS, Sonntag F, Lauster R, Marx U (2015) A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15(12):2688–2699

    CAS  Google Scholar 

  83. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a Chip. Science 328(5986):1662–1668

    CAS  Google Scholar 

  84. Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, Thorneloe KS, McAlexander MA, Ingber DE (2012) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4(159):159ra147

    Google Scholar 

  85. Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12(12):2165–2174

    CAS  Google Scholar 

  86. Kim HJ, Ingber DE (2013) Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol 5(9):1130–1140

    CAS  Google Scholar 

  87. Kim HJ, Li H, Collins JJ, Ingber DE (2016) Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci 113(2):E7–E15

    CAS  Google Scholar 

  88. Chrobak KM, Potter DR, Tien J (2006) Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 71(3):185–196

    CAS  Google Scholar 

  89. Price GM, Wong KHK, Truslow JG, Leung AD, Acharya C, Tien J (2010) Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31(24):6182–6189

    CAS  Google Scholar 

  90. Nguyen D-HT, Stapleton SC, Yang MT, Cha SS, Choi CK, P a G, Chen CS (2013) Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci 110(17):6712–6717

    CAS  Google Scholar 

  91. Zheng Y, Chen J, Craven M, Choi NW, Totorica S, Diaz-Santana A, Kermani P, Hempstead B, Fischbach-Teschl C, Lopez JA, Stroock AD (2012) In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci 109(24):9342–9347

    CAS  Google Scholar 

  92. Kim S, Lee H, Chung M, Jeon NL (2013) Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13(8):1489–1500

    CAS  Google Scholar 

  93. Kim J, Chung M, Kim S, Jo DH, Kim JH, Jeon NL (2015) Engineering of a biomimetic Pericyte-covered 3D microvascular network. PLoS One 10(7):e0133880

    Google Scholar 

  94. Lee W, Lee V, Polio S, Keegan P, Lee JH, Fischer K, Park JK, Yoo SS (2010) On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol Bioeng 105(6):1178–1186

    CAS  Google Scholar 

  95. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130

    CAS  Google Scholar 

  96. Lee VK, Kim DY, Ngo H, Lee Y, Seo L, Yoo S-S, Vincent PA, Dai G (2014) Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35(28):8092–8102

    CAS  Google Scholar 

  97. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci 113(12):3179–3184

    CAS  Google Scholar 

  98. Chen Y, Lin Y, Davis KM, Wang Q, Rnjak-Kovacina J, Li C, Isberg RR, Kumamoto CA, Mecsas J, Kaplan DL (2015) Robust bioengineered 3D functional human intestinal epithelium. Sci Rep 5(1):13708

    CAS  Google Scholar 

  99. Hansen A, Eder A, Bönstrup M, Flato M, Mewe M, Schaaf S, Aksehirlioglu B, Schwoerer AP, Schwörer A, Uebeler J, Eschenhagen T (2010) Development of a drug screening platform based on engineered heart tissue. Circ Res 107(1):35–44

    CAS  Google Scholar 

  100. Vollert I, Seiffert M, Bachmair J, Sander M, Eder A, Conradi L, Vogelsang A, Schulze T, Uebeler J, Holnthoner W, Redl H, Reichenspurner H, Hansen A, Eschenhagen T (2014) In vitro perfusion of engineered heart tissue through endothelialized channels. Tissue Eng Part A 20(3–4):854–863

    CAS  Google Scholar 

  101. Abaci HE, Guo Z, Coffman A, Gillette B, Lee W, Sia SK, Christiano AM (2016) Human skin constructs with spatially controlled vasculature using primary and iPSC-derived endothelial cells. Adv Healthc Mater 5(14):1800–1807

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoji Takeuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morimoto, Y., Mori, N., Takeuchi, S. (2019). In Vitro Tissue Construction for Organ-on-a-Chip Applications. In: Tokeshi, M. (eds) Applications of Microfluidic Systems in Biology and Medicine . Bioanalysis, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-13-6229-3_9

Download citation

Publish with us

Policies and ethics