Skip to main content

Microfluidic Devices for Gamete Processing and Analysis, Fertilization and Embryo Culture and Characterization

  • Chapter
  • First Online:
Applications of Microfluidic Systems in Biology and Medicine

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 7))

Abstract

Assisted reproductive technologies (ART) include all techniques used to achieve pregnancies not only in case of human infertility, but also for the in vitro production of embryos in the livestock industry, and for the conservation of endangered species. Focusing on human ART only, the total number of babies born worldwide has been estimated to more than 7 million, and ART are more and more utilized as a consequence of an increase in human infertility. However, at the same time, even if ART are now used as routine clinical treatments, the success rate remains low, with less than 30% clinical pregnancies. Furthermore, the ART pregnancy rates are now stagnating, showing a need for new improvements. Finally, current protocols are lacking standardization and automation, and they are still dependent on the skills of highly trained personnel. In that context, microfluidics can offer a new paradigm in the ART field, by providing integrated and automated platforms. Furthermore, the use of microfluidics can introduce new approaches by performing some steps of the entire protocol. In this chapter, we summarize and discuss microfluidic developments in the field of ART, and specifically devices for gamete analysis, selection and processing, fertilization and embryo culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dyer S, Chambers GM, de Mouzon J, Nygren KG, Zegers-Hochschild F, Mansour R, Ishihara O, Banker M, Adamson GD (2016) International committee for monitoring assisted reproductive technologies world report: assisted reproductive technology 2008, 2009 and 2010. Hum Reprod 31(7):1588–1609. https://doi.org/10.1093/humrep/dew082

    Article  CAS  Google Scholar 

  2. European IVFMCftESoHR, Embryology, Calhaz-Jorge C, de Geyter C, Kupka MS, de Mouzon J, Erb K, Mocanu E, Motrenko T, Scaravelli G, Wyns C, Goossens V (2016) Assisted reproductive technology in Europe, 2012: results generated from European registers by ESHRE. Hum Reprod 31(8):1638–1652. https://doi.org/10.1093/humrep/dew151

    Article  Google Scholar 

  3. Blondin P (2015) Status of embryo production in the world. Anim Reprod 12(3):356–358

    Google Scholar 

  4. Ferraretti AP, Goossens V, de Mouzon J, Bhattacharya S, Castilla JA, Korsak V, Kupka M, Nygren KG, Nyboe Andersen A, European IVFm, Consortium for European Society of Human R, Embryology (2012) Assisted reproductive technology in Europe, 2008: results generated from European registers by ESHRE. Hum Reprod 27(9):2571–2584. https://doi.org/10.1093/humrep/des255

    Article  CAS  Google Scholar 

  5. Balaban B, Sakkas D, Gardner DK (2014) Laboratory procedures for human in vitro fertilization. Semin Reprod Med 32(4):272–282. https://doi.org/10.1055/s-0034-1375179

    Article  Google Scholar 

  6. Gardner DK, Reed L, Linck D, Sheehan C, Lane M (2005) Quality control in human in vitro fertilization. Semin Reprod Med 23(4):319–324. https://doi.org/10.1055/s-2005-923389

    Article  Google Scholar 

  7. Swain JE (2015) Optimal human embryo culture. Semin Reprod Med 33(2):103–117. https://doi.org/10.1055/s-0035-1546423

    Article  Google Scholar 

  8. Bjorndahl L, Kvist U (2003) Sequence of ejaculation affects the spermatozoon as a carrier and its message. Reprod Biomed Online 7(4):440–448

    Article  Google Scholar 

  9. WHO (2010) WHO laboratory manual for the examination and processing of human semen. Cambridge University Press, Cambridge

    Google Scholar 

  10. Mortimer D (1994) Sperm recovery techniques to maximize fertilizing capacity. Reprod Fertil Dev 6(1):25–31

    Article  CAS  Google Scholar 

  11. Nordhoff V (2015) How to select immotile but viable spermatozoa on the day of intracytoplasmic sperm injection? an embryologist’s view. Andrology-US 3(2):156–162. https://doi.org/10.1111/andr.286

    Article  CAS  Google Scholar 

  12. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373. https://doi.org/10.1038/nature05058

    Article  CAS  Google Scholar 

  13. Le Gac S, van den Berg A (2010) Single cells as experimentation units in lab-on-a-chip devices. Trends Biotechnol 28(2):55–62. https://doi.org/10.1016/j.tibtech.2009.10.005

    Article  CAS  Google Scholar 

  14. Sims CE, Allbritton NL (2007) Analysis of single mammalian cells on-chip. Lab Chip 7(4):423–440. https://doi.org/10.1039/b615235j

    Article  CAS  Google Scholar 

  15. Young EWK, Beebe DJ (2010) Fundamentals of microfluidic cell culture in controlled microenvironments. Chem Soc Rev 39(3):1036–1048. https://doi.org/10.1039/b909900j

    Article  CAS  Google Scholar 

  16. Lee PJ, Hung PJ, Rao VM, Lee LP (2006) Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol Bioeng 94(1):5–14. https://doi.org/10.1002/bit.20745

    Article  CAS  Google Scholar 

  17. Tourovskaia A, Figueroa-Masot X, Folch A (2005) Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab Chip 5(1):14–19. https://doi.org/10.1039/b405719h

    Article  CAS  Google Scholar 

  18. Keenan TM, Folch A (2008) Biomolecular gradients in cell culture systems. Lab Chip 8(1):34–57. https://doi.org/10.1039/b711887b

    Article  CAS  Google Scholar 

  19. Meseguer M, Kruhne U, Laursen S (2012) Full in vitro fertilization laboratory mechanization: toward robotic assisted reproduction? Fertil Steril 97(6):1277–1286. https://doi.org/10.1016/j.fertnstert.2012.03.013

    Article  Google Scholar 

  20. Harper J, Magli MC, Lundin K, Barratt CL, Brison D (2012) When and how should new technology be introduced into the IVF laboratory? Hum Reprod 27(2):303–313. https://doi.org/10.1093/humrep/der414

    Article  Google Scholar 

  21. Zerinque HC, Beebe DJ, Wheeler MB (2001) Removal of cumulus from mammalian zygotes using microfluidic techniques. Biomed Microdevices 3(3):219–224. https://doi.org/10.1023/A:1011463330597

    Article  Google Scholar 

  22. Zeringue HC, Rutledge JJ, Beebe DJ (2005a) Early mammalian embryo development depends on cumulus removal technique. Lab Chip 5(1):86–90. https://doi.org/10.1039/b316494m

    Article  CAS  Google Scholar 

  23. Yanez LZ, Camarillo DB (2017) Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies. Mol Hum Reprod 23(4):235–247. https://doi.org/10.1093/molehr/gaw071

    Article  CAS  Google Scholar 

  24. Wacogne B, Pieralli C, Roux C, Gharbi T (2008) Measuring the mechanical behaviour of human oocytes with a very simple SU-8 micro-tool. Biomed Microdevices 10(3):411–419. https://doi.org/10.1007/s10544-007-9150-7

    Article  Google Scholar 

  25. Luo Z, Guven S, Gozen I, Chen P, Tasoglu S, Anchan RM, Bai B, Demirci U (2015) Deformation of a single mouse oocyte in a constricted microfluidic channel. Microfluid Nanofluid 19(4):883–890. https://doi.org/10.1007/s10404-015-1614-0

    Article  CAS  Google Scholar 

  26. Choi W, Kim JS, Lee DH, Lee KK, Koo DB, Park JK (2008) Dielectrophoretic oocyte selection chip for in vitro fertilization. Biomed Microdevices 10(3):337–345. https://doi.org/10.1007/s10544-007-9141-8

    Article  Google Scholar 

  27. Vidberg F, Zeggari R, Pieralli C, Amiot C, Roux C, Wacogne B (2011) Measurement of oocyte temporal maturation process by means of a simple optical micro-system. Sensor Actuat B-Chem 157(1):19–25. https://doi.org/10.1016/j.snb.2011.03.021

    Article  CAS  Google Scholar 

  28. Zeggari R, Wacogne B, Pieralli C, Roux C, Gharbi T (2007) A full micro-fluidic system for single oocyte manipulation including an optical sensor for cell maturity estimation and fertilisation indication. Sensor Actuat B-Chem 125(2):664–671. https://doi.org/10.1016/j.snb.2007.02.045

    Article  CAS  Google Scholar 

  29. Hwang H, Lee DH, Choi W, Park JK (2009) Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force. Biomicrofluidics 3(1):14103. https://doi.org/10.1063/1.3086600

    Article  CAS  Google Scholar 

  30. Sadani Z, Wacogne B, Pieralli C, Roux C, Gharbi T (2005) Microsystems and microfluidic device for single oocyte transportation and trapping: toward the automation of in vitro fertilising. Sensor Actuat A-Phys 121(2):364–372. https://doi.org/10.1016/j.sna.2005.03.004

    Article  CAS  Google Scholar 

  31. Nakahara K, Sakuma S, Hayakawa T, Arai F (2015) On-chip transportation and measurement of mechanical characteristics of oocytes in an open environment. Micromachines-Basel 6(5):648–659. https://doi.org/10.3390/mi6050648

    Article  Google Scholar 

  32. Jurema MW, Nogueira D (2006) In vitro maturation of human oocytes for assisted reproduction. Fertil Steril 86(5):1277–1291. https://doi.org/10.1016/j.fertnstert.2006.02.126

    Article  Google Scholar 

  33. Berenguel-Alonso M, Sabes-Alsina M, Morato R, Ymbern O, Rodriguez-Vazquez L, Tallo-Parra O, Alonso-Chamarro J, Puyol M, Lopez-Bejar M (2017) Rapid prototyping of a cyclic olefin copolymer microfluidic device for automated oocyte culturing. SLAS Technol 22(5):507–517. https://doi.org/10.1177/2472555216684625

    Article  Google Scholar 

  34. Auger J, Eustache F, Andersen AG, Irvine DS, Jorgensen N, Skakkebaek NE, Suominen J, Toppari J, Vierula M, Jouannet P (2001) Sperm morphological defects related to environment, lifestyle and medical history of 1001 male partners of pregnant women from four European cities. Hum Reprod 16(12):2710–2717

    Article  CAS  Google Scholar 

  35. Kovac JR, Smith RP, Cajipe M, Lamb DJ, Lipshultz LI (2017) Men with a complete absence of normal sperm morphology exhibit high rates of success without assisted reproduction. Asian J Androl 19(1):39–42. https://doi.org/10.4103/1008-682X.189211

    Article  Google Scholar 

  36. Tandara M, Bajic A, Tandara L, Bilic-Zulle L, Sunj M, Kozina V, Goluza T, Jukic M (2014) Sperm DNA integrity testing: big halo is a good predictor of embryo quality and pregnancy after conventional IVF. Andrology-US 2(5):678–686. https://doi.org/10.1111/j.2047-2927.2014.00234.x

    Article  CAS  Google Scholar 

  37. Pandey CM, Augustine S, Kumar S, Kumar S, Nara S, Srivastava S, Malhotra BD (2018) Microfluidics based point-of-care diagnostics. Biotechnol J 13(1). https://doi.org/10.1002/biot.201700047

  38. Knowlton SM, Sadasivam M, Tasoglu S (2015) Microfluidics for sperm research. Trends Biotechnol 33(4):221–229. https://doi.org/10.1016/j.tibtech.2015.01.005

    Article  CAS  Google Scholar 

  39. Nosrati R, Graham PJ, Zhang B, Riordon J, Lagunov A, Hannam TG, Escobedo C, Jarvi K, Sinton D (2017) Microfluidics for sperm analysis and selection. Nat Rev Urol 14(12):707–730. https://doi.org/10.1038/nrurol.2017.175

    Article  Google Scholar 

  40. Segerink LI, Sprenkels AJ, ter Braak PM, Vermes I, van den Berg A (2010) On-chip determination of spermatozoa concentration using electrical impedance measurements. Lab Chip 10(8):1018–1024. https://doi.org/10.1039/b923970g

    Article  CAS  Google Scholar 

  41. de Wagenaar B, Dekker S, de Boer HL, Bomer JG, Olthuis W, van den Berg A, Segerink LI (2016) Towards microfluidic sperm refinement: impedance-based analysis and sorting of sperm cells. Lab Chip 16(8):1514–1522. https://doi.org/10.1039/c6lc00256k

    Article  Google Scholar 

  42. Chen CY, Chiang TC, Lin CM, Lin SS, Jong DS, Tsai VF, Hsieh JT, Wo AM (2013) Sperm quality assessment via separation and sedimentation in a microfluidic device. Analyst 138(17):4967–4974. https://doi.org/10.1039/c3an00900a

    Article  CAS  Google Scholar 

  43. Yu S, Rubin M, Geevarughese S, Pino JS, Rodriguez HF, Asghar W (2018) Emerging technologies for home-based semen analysis. Andrology-US 6(1):10–19. https://doi.org/10.1111/andr.12441

    Article  CAS  Google Scholar 

  44. Kanakasabapathy MK, Sadasivam M, Singh A, Preston C, Thirumalaraju P, Venkataraman M, Bormann CL, Draz MS, Petrozza JC, Shafiee H (2017) An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci Transl Med 9(382). https://doi.org/10.1126/scitranslmed.aai7863

  45. Nosrati R, Gong MM, San Gabriel MC, Pedraza CE, Zini A, Sinton D (2016) Paper-based quantification of male fertility potential. Clin Chem 62(3):458–465. https://doi.org/10.1373/clinchem.2015.250282

    Article  CAS  Google Scholar 

  46. Gong MM, Nosrati R, San Gabriel MC, Zini A, Sinton D (2015) Direct DNA analysis with paper-based ion concentration polarization. J Am Chem Soc 137(43):13913–13919. https://doi.org/10.1021/jacs.5b08523

    Article  CAS  Google Scholar 

  47. Suarez SS, Pacey AA (2006) Sperm transport in the female reproductive tract. Hum Reprod Update 12(1):23–37. https://doi.org/10.1093/humupd/dmi047

    Article  CAS  Google Scholar 

  48. Henkel R (2012) Sperm preparation: state-of-the-art--physiological aspects and application of advanced sperm preparation methods. Asian J Androl 14(2):260–269. https://doi.org/10.1038/aja.2011.133

    Article  CAS  Google Scholar 

  49. Zini A, Mak V, Phang D, Jarvi K (1999) Potential adverse effect of semen processing on human sperm deoxyribonucleic acid integrity. Fertil Steril 72(3):496–499

    Article  CAS  Google Scholar 

  50. Cho BS, Schuster TG, Zhu X, Chang D, Smith GD, Takayama S (2003) Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem 75(7):1671–1675

    Article  CAS  Google Scholar 

  51. Nosrati R, Vollmer M, Eamer L, San Gabriel MC, Zeidan K, Zini A, Sinton D (2014) Rapid selection of sperm with high DNA integrity. Lab Chip 14(6):1142–1150. https://doi.org/10.1039/c3lc51254a

    Article  CAS  Google Scholar 

  52. Asghar W, Velasco V, Kingsley JL, Shoukat MS, Shafiee H, Anchan RM, Mutter GL, Tuzel E, Demirci U (2014) Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv Healthc Mater 3(10):1671–1679. https://doi.org/10.1002/adhm.201400058

    Article  CAS  Google Scholar 

  53. Cohen-Dayag A, Tur-Kaspa I, Dor J, Mashiach S, Eisenbach M (1995) Sperm capacitation in humans is transient and correlates with chemotactic responsiveness to follicular factors. Proc Natl Acad Sci U S A 92(24):11039–11043

    Article  CAS  Google Scholar 

  54. Bahat A, Tur-Kaspa I, Gakamsky A, Giojalas LC, Breitbart H, Eisenbach M (2003) Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract. Nat Med 9(2):149–150. https://doi.org/10.1038/nm0203-149

    Article  CAS  Google Scholar 

  55. Miki K, Clapham DE (2013) Rheotaxis guides mammalian sperm. Curr Biol 23(6):443–452. https://doi.org/10.1016/j.cub.2013.02.007

    Article  CAS  Google Scholar 

  56. Ko YJ, Maeng JH, Lee BC, Lee S, Hwang SY, Ahn Y (2012) Separation of progressive motile sperm from mouse semen using on-chip chemotaxis. Anal Sci Int J Jpn Soc Anal Chem 28(1):27–32

    Article  CAS  Google Scholar 

  57. Xie L, Ma R, Han C, Su K, Zhang Q, Qiu T, Wang L, Huang G, Qiao J, Wang J, Cheng J (2010) Integration of sperm motility and chemotaxis screening with a microchannel-based device. Clin Chem 56(8):1270–1278. https://doi.org/10.1373/clinchem.2010.146902

    Article  CAS  Google Scholar 

  58. Ma R, Xie L, Han C, Su K, Qiu T, Wang L, Huang G, Xing W, Qiao J, Wang J, Cheng J (2011) In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development. Anal Chem 83(8):2964–2970. https://doi.org/10.1021/ac103063g

    Article  CAS  Google Scholar 

  59. Li Z, Liu W, Qiu T, Xie L, Chen W, Liu R, Lu Y, Mitchelson K, Wang J, Qiao J, Cheng J (2014) The construction of an interfacial valve-based microfluidic chip for thermotaxis evaluation of human sperm. Biomicrofluidics 8(2):024102. https://doi.org/10.1063/1.4866851

    Article  Google Scholar 

  60. Wu JK, Chen PC, Lin YN, Wang CW, Pan LC, Tseng FG (2017) High-throughput flowing upstream sperm sorting in a retarding flow field for human semen analysis. Analyst 142(6):938–944. https://doi.org/10.1039/c6an02420c

    Article  CAS  Google Scholar 

  61. de Wagenaar B, Berendsen JT, Bomer JG, Olthuis W, van den Berg A, Segerink LI (2015) Microfluidic single sperm entrapment and analysis. Lab Chip 15(5):1294–1301. https://doi.org/10.1039/c4lc01425a

    Article  Google Scholar 

  62. Garcia MM, Ohta AT, Walsh TJ, Vittinghof E, Lin G, Wu MC, Lue TF (2010) A noninvasive, motility independent, sperm sorting method and technology to identify and retrieve individual viable nonmotile sperm for intracytoplasmic sperm injection. J Urol 184(6):2466–2472. https://doi.org/10.1016/j.juro.2010.08.026

    Article  Google Scholar 

  63. Samuel R, Badamjav O, Murphy KE, Patel DP, Son J, Gale BK, Carrell DT, Hotaling JM (2016) Microfluidics: the future of microdissection TESE? Syst Biol Reprod Med 62(3):161–170. https://doi.org/10.3109/19396368.2016.1159748

    Article  Google Scholar 

  64. Shields CW, Reyes CD, Lopez GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5):1230–1249. https://doi.org/10.1039/c4lc01246a

    Article  Google Scholar 

  65. Saliba AE, Saias L, Psychari E, Minc N, Simon D, Bidard FC, Mathiot C, Pierga JY, Fraisier V, Salamero J, Saada V, Farace F, Vielh P, Malaquin L, Viovy JL (2010) Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc Natl Acad Sci U S A 107(33):14524–14529. https://doi.org/10.1073/pnas.1001515107

    Article  Google Scholar 

  66. Clark SG, Haubert K, Beebe DJ, Ferguson CE, Wheeler MB (2005) Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization. Lab Chip 5(11):1229–1232. https://doi.org/10.1039/b504397m

    Article  CAS  Google Scholar 

  67. Suh RS, Zhu X, Phadke N, Ohl DA, Takayama S, Smith GD (2006) IVF within microfluidic channels requires lower total numbers and lower concentrations of sperm. Hum Reprod 21(2):477–483. https://doi.org/10.1093/humrep/dei323

    Article  Google Scholar 

  68. Sano H, Matsuura K, Naruse K, Funahashi H (2010) Application of a microfluidic sperm sorter to the in-vitro fertilization of porcine oocytes reduced the incidence of polyspermic penetration. Theriogenology 74(5):863–870. https://doi.org/10.1016/j.theriogenology.2010.04.011

    Article  Google Scholar 

  69. Zeringue HC, Wheeler MB, Beebe DJ (2005b) A microfluidic method for removal of the zona pellucida from mammalian embryos. Lab Chip 5(1):108–110. https://doi.org/10.1039/b406703g

    Article  CAS  Google Scholar 

  70. Ichikawa A, Sakuma S, Sugita M, Shoda T, Tamakoshi T, Akagi S, Arai F (2014) On-chip enucleation of an oocyte by untethered microrobots. J Micromech Microeng 24(9). https://doi.org/10.1088/0960-1317/24/9/095004

  71. Le Gac S, Nordhoff V (2017) Microfluidics for mammalian embryo culture and selection: where do we stand now? Mol Hum Reprod 23(4):213–226. https://doi.org/10.1093/molehr/gaw061

    Article  CAS  Google Scholar 

  72. Swain JE, Lai D, Takayama S, Smith GD (2013) Thinking big by thinking small: application of microfluidic technology to improve ART. Lab Chip 13(7):1213–1224. https://doi.org/10.1039/c3lc41290c

    Article  CAS  Google Scholar 

  73. Swain JE, Smith GD (2011) Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Hum Reprod Update 17(4):541–557. https://doi.org/10.1093/humupd/dmr006

    Article  CAS  Google Scholar 

  74. Vajta G, Korosi T, Du Y, Nakata K, Ieda S, Kuwayama M, Nagy ZP (2008) The well-of-the-well system: an efficient approach to improve embryo development. Reprod Biomed Online 17(1):73–81

    Article  Google Scholar 

  75. Esteves TC, van Rossem F, Nordhoff V, Schlatt S, Boiani M, Le Gac S (2013) A microfluidic system supports single mouse embryo culture leading to full-term development. RSC Adv 3(48):26451–26458. https://doi.org/10.1039/c3ra44453h

    Article  CAS  Google Scholar 

  76. Huang HY, Shen HH, Tien CH, Li CJ, Fan SK, Liu CH, Hsu WS, Yao DJ (2015) Digital microfluidic dynamic culture of mammalian embryos on an electrowetting on dielectric (EWOD) chip. Plos One 10(5). https://doi.org/10.1371/journal.pone.0124196

  77. Hickman DL, Beebe DJ, Rodriguez-Zas SL, Wheeler MB (2002) Comparison of static and dynamic medium environments for culturing of pre-implantation mouse embryos. Comp Med 52(2):122–126

    CAS  Google Scholar 

  78. Kim MS, Bae CY, Wee G, Han YM, Park JK (2009) A microfluidic in vitro cultivation system for mechanical stimulation of bovine embryos. Electrophoresis 30(18):3276–3282. https://doi.org/10.1002/elps.200900157

    Article  CAS  Google Scholar 

  79. Raty S, Walters EM, Davis J, Zeringue H, Beebe DJ, Rodriguez-Zas SL, Wheeler MB (2004) Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip 4(3):186–190. https://doi.org/10.1039/b316437c

    Article  CAS  Google Scholar 

  80. Kieslinger DC, Hao ZX, Vergouw CG, Kostelijk EH, Lambalk CB, Le Gac S (2015) In vitro development of donated frozen-thawed human embryos in a prototype static microfluidic device: a randomized controlled trial. Fertil Steril 103(3):680–U393. https://doi.org/10.1016/j.fertnstert.2014.12.089

    Article  Google Scholar 

  81. Melin J, Lee A, Foygel K, Leong DE, Quake SR, Yao MWM (2009) In vitro embryo culture in defined, sub-microliter volumes. Dev Dynam 238(4):950–955. https://doi.org/10.1002/dvdy.21918

    Article  Google Scholar 

  82. Heo YS, Cabrera LM, Bormann CL, Shah CT, Takayama S, Smith GD (2010) Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum Reprod 25(3):613–622. https://doi.org/10.1093/humrep/dep449

    Article  CAS  Google Scholar 

  83. Paria BC, Dey SK (1990) Preimplantation embryo development Invitro – cooperative interactions among embryos and role of growth-factors. Proc Natl Acad Sci USA 87(12):4756–4760. https://doi.org/10.1073/pnas.87.12.4756

    Article  CAS  Google Scholar 

  84. Han C, Zhang QF, Ma R, Xie L, Qiu TA, Wang L, Mitchelson K, Wang JD, Huang GL, Qiao J, Cheng J (2010) Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device. Lab Chip 10(21):2848–2854. https://doi.org/10.1039/c005296e

    Article  CAS  Google Scholar 

  85. Walker GM, Beebe DJ (2002) A passive pumping method for microfluidic devices. Lab Chip 2(3):131–134. https://doi.org/10.1039/b204381e

    Article  CAS  Google Scholar 

  86. Fauci LJ, Dillon R (2006) Biofluidmechanics of reproduction. Annu Rev Fluid Mech 38:371–394. https://doi.org/10.1146/annurev.fluid.37.061903.175725

    Article  Google Scholar 

  87. Xie YF, Wang FF, Zhong WJ, Puscheck E, Shen HL, Rappolee DA (2006) Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis. Biol Reprod 75(1):45–55. https://doi.org/10.1095/biolreprod.105.049791

    Article  CAS  Google Scholar 

  88. Liu Q, Wu C, Cai H, Hu N, Zhou J, Wang P (2014) Cell-based biosensors and their application in biomedicine. Chem Rev 114(12):6423–6461. https://doi.org/10.1021/cr2003129

    Article  CAS  Google Scholar 

  89. Gao D, Wei H, Guo GS, Lin JM (2010) Microfluidic cell culture and metabolism detection with electrospray ionization quadrupole time-of-flight mass spectrometer. Anal Chem 82(13):5679–5685. https://doi.org/10.1021/ac101370p

    Article  CAS  Google Scholar 

  90. Le Gac S, Rolando C, Arscott S (2006) An open design microfabricated nib-like nanoelectrospray emitter tip on a conducting silicon substrate for the application of the ionization voltage. J Am Soc Mass Spectrom 17(1):75–80. https://doi.org/10.1016/j.jasms.2005.09.003

    Article  CAS  Google Scholar 

  91. Kalfe A, Telfah A, Lambert J, Hergenroder R (2015) Looking into living cell systems: planar waveguide microfluidic NMR detector for in vitro metabolomics of tumor spheroids. Anal Chem 87(14):7402–7410. https://doi.org/10.1021/acs.analchem.5b01603

    Article  CAS  Google Scholar 

  92. Houghton FD, Thompson JG, Kennedy CJ, Leese HJ (1996) Oxygen consumption and energy metabolism of the early mouse embryo. Mol Reprod Dev 44(4):476–485

    Article  CAS  Google Scholar 

  93. Mills RM, Brinster RL (1967) Oxygen consumption of preimplantation mouse embryos. Exp Cell Res 47(1–2):337–344. https://doi.org/10.1016/0014-4827(67)90236-4

    Article  Google Scholar 

  94. Wu CC, Saito T, Yasukawa T, Shiku H, Abe H, Hoshi H, Matsue T (2007) Microfluidic chip integrated with amperometric detector array for in situ estimating oxygen consumption characteristics of single bovine embryos. Sensor Actuat B-Chem 125(2):680–687. https://doi.org/10.1016/j.snb.2007.03.017

    Article  CAS  Google Scholar 

  95. Date Y, Takano S, Shiku H, Ino K, Ito-Sasaki T, Yokoo M, Abe H, Matsue T (2011) Monitoring oxygen consumption of single mouse embryos using an integrated electrochemical microdevice. Biosens Bioelectron 30(1):100–106. https://doi.org/10.1016/j.bios.2011.08.037

    Article  CAS  Google Scholar 

  96. Shiku H, Shiraishi T, Aoyagi S, Utsumi Y, Matsudaira M, Abe H, Hoshi H, Kasai S, Ohya H, Matsue T (2004) Respiration activity of single bovine embryos entrapped in a cone-shaped microwell monitored by scanning electrochemical microscopy. Anal Chim Acta 522(1):51–58. https://doi.org/10.1016/j.aca.2004.06.054

    Article  CAS  Google Scholar 

  97. Ruggi A, van Leeuwen FWB, Velders AH (2011) Interaction of dioxygen with the electronic excited state of Ir(III) and Ru(II) complexes: principles and biomedical applications. Coordin Chem Rev 255(21–22):2542–2554. https://doi.org/10.1016/j.ccr.2011.05.012

    Article  CAS  Google Scholar 

  98. O’Donovan C, Twomey E, Alderman J, Moore T, Papkovsky D (2006) Development of a respirometric biochip for embryo assessment. Lab Chip 6(11):1438–1444. https://doi.org/10.1039/b607622j

    Article  CAS  Google Scholar 

  99. Komori K, Fujii S, Montagne K, Nakamura H, Kimura H, Otake K, Fujii T, Sakai Y (2012) Development of a well-of-the-well system-based embryo culture plate with an oxygen sensing photoluminescent probe. Sensor Actuat B-Chem 162(1):278–283. https://doi.org/10.1016/j.snb.2011.12.078

    Article  CAS  Google Scholar 

  100. Urbanski JP, Johnson MT, Craig DD, Potter DL, Gardner DK, Thorsen T (2008) Noninvasive metabolic profiling using microfluidics for analysis of single preimplantation embryos. Anal Chem 80(17):6500–6507. https://doi.org/10.1021/ac8010473

    Article  CAS  Google Scholar 

  101. Heo YS, Cabrera LM, Bormann CL, Smith GD, Takayama S (2012) Real time culture and analysis of embryo metabolism using a microfluidic device with deformation based actuation. Lab Chip 12(12):2240–2246. https://doi.org/10.1039/c2lc21050a

    Article  CAS  Google Scholar 

  102. Chung YH, Hsiao YH, Kao WL, Hsu CH, Yao DJ, Chen CC (2015) Microwells support high-resolution time-lapse imaging and development of preimplanted mouse embryos. Biomicrofluidics 9(2). https://doi.org/10.1063/1.4918642

  103. Hashimoto S, Kato N, Saeki K, Morimoto Y (2012) Selection of high-potential embryos by culture in poly(dimethylsiloxane) microwells and time-lapse imaging. Fertil Steril 97(2):332–337. https://doi.org/10.1016/j.fertnstert.2011.11.042

    Article  Google Scholar 

  104. Sugimura S, Akai T, Somfai T, Hirayama M, Aikawa Y, Ohtake M, Hattori H, Kobayashi S, Hashiyada Y, Konishi K, Imai K (2010) Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos. Biol Reprod 83(6):970–978. https://doi.org/10.1095/biolreprod.110.085522

    Article  CAS  Google Scholar 

  105. Ferraz M, Rho HS, Delahaye J, Pinheiro N, Henning H, Stout T, Gadella B, Le Gac S (2017) Mimicking the bovine oviduct in a microfluidic device for advanced embryo in vitro culture systems. In: MicroTAS 2017, Savannah, GA, USA, 22–26 Oct. 2017

    Google Scholar 

  106. Ferraz MAMM, Rho HS, Hemerich D, Henning HHW, van Tol HTA, Hölker M, Besenfelder U, Mokry M, Vos PLAM, Stout TAE, Le Gac S, Gadella BM (2018) An oviduct-on-a-chip provides an enhanced in vitro environment for zygote genome reprogramming. Nat Commun 9(1):4934. https://doi.org/10.1038/s41467-018-07119-8

    Article  CAS  Google Scholar 

  107. Komeya M, Hayashi K, Nakamura H, Yamanaka H, Sanjo H, Kojima K, Sato T, Yao M, Kimura H, Fujii T, Ogawa T (2017) Pumpless microfluidic system driven by hydrostatic pressure induces and maintains mouse spermatogenesis in vitro. Sci Rep 7. https://doi.org/10.1038/S41598-017-15799-3

  108. Komeya M, Kimura H, Nakamura H, Yokonishi T, Sato T, Kojima K, Hayashi K, Katagiri K, Yamanaka H, Sanjo H, Yao M, Kamimura S, Inoue K, Ogonuki N, Ogura A, Fujii T, Ogawa T (2016) Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Sci Rep 6. https://doi.org/10.1038/Srep21472

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Séverine Le Gac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Le Gac, S., Nordhoff, V., Venzac, B. (2019). Microfluidic Devices for Gamete Processing and Analysis, Fertilization and Embryo Culture and Characterization. In: Tokeshi, M. (eds) Applications of Microfluidic Systems in Biology and Medicine . Bioanalysis, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-13-6229-3_7

Download citation

Publish with us

Policies and ethics