Skip to main content

Nanopore Device for Single-Molecule Sensing Method and Its Application

  • Chapter
  • First Online:
Applications of Microfluidic Systems in Biology and Medicine

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 7))

Abstract

Nanopore analysis is very promising for single-molecule sensing platform. The feature of nanopore platform is a simple, high-throughput single-molecule/particle detection of a wide range of analytes at low-cost at single-molecule level. The single-molecule sensing ability of nanopore device have been utilized for single-molecule DNA sequencing, protein, peptide and carbohydrates detection, and so on. Due to recent progress on the improvement of selectivity, molecular control, fabrication technique, the nanopore platform became “smarter”. Therefore, the applicability of nanopore–sensing methodology are expanding not only for basic research fields but also for medical applications, such as disease diagnosis, drug screening, virus detection.

Herein this chapter, background of nanopore studies (Sect. 11.1), principle of nanopore sensing (Sect. 11.2), the nanopore-fabrication technique (Sect. 11.3), application studies of nanopore sensing (Sect. 11.4), the selective and accuracy improvement studies of nanopore-sensing (Sect. 11.5), recent novel nanopore platform studies (Sect. 11.6), and the summary and future of the nanopore-sensing method (Sect. 11.7) are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ai Y, Liu J, Zhang BK, Qian S (2010) Field effect regulation of DNA translocation through a nanopore. Anal Chem 82:8217–8225

    CAS  Google Scholar 

  2. Akeson M, Branton D, Kasianowicz JJ et al (1999) Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys J 77:3227–3233

    CAS  Google Scholar 

  3. Archakov AI, Ivanov YD (2007) Analytical nanobiotechnology for medicine diagnostics. Mol BioSyst 3:336–342

    CAS  Google Scholar 

  4. Ayub M, Bayley H (2012) Individual RNA Base Recognition in Immobilized Oligonucleotides Using a Protein Nanopore. Nano Lett 12:5637–5643

    CAS  Google Scholar 

  5. Ayub M, Hardwick SW, Luisi BF, Bayley H (2013) Nanopore-based identification of individual nucleotides for direct RNA sequencing. Nano Lett 13:6144–6150

    CAS  Google Scholar 

  6. Bacri L et al (2011) Discrimination of neutral oligosaccharides through a nanopore. Biochem Biophys Res Commun 412:561–564

    CAS  Google Scholar 

  7. Bayley H, Martin CR (2000) Resistive-pulse sensing from microbes to molecules. Chem Rev 100:2575

    CAS  Google Scholar 

  8. Belkin M, Maffeo C, Wells DB, Aksimentiev A (2013) Stretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores. ACS Nano 7:6816–6824

    CAS  Google Scholar 

  9. Belkin M, Chao SH, Jonsson MP et al (2015) Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA. ACS Nano 9:10598–10611

    CAS  Google Scholar 

  10. Bell DC, Thomas WK, Murtagh KM, Dionne CA, Graham AC, Anderson JE et al (2012a) DNA base identification by electron microscopy. Microsc Microanal 18:1049–1053

    CAS  Google Scholar 

  11. Bell NAW, Engst CR, Ablay M et al (2012b) DNA origami nanopores. Nano Lett 12:512–517

    CAS  Google Scholar 

  12. Bennett ST, Barnes C, Cox A et al (2005) Toward the $1000 human genome. Pharmacogenomics 6:373–382

    CAS  Google Scholar 

  13. Branton D, Deamer DW, Marziali A et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    CAS  Google Scholar 

  14. Buermans HP, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta Mol basis Dis 1842:1932–1941

    CAS  Google Scholar 

  15. Butler TZ, Pavlenok M, Derrington IM et al (2008) Single-molecule DNA detection with an engineered MspA protein nanopore. Proc Natl Acad Sci U S A 105:20647–20652

    CAS  Google Scholar 

  16. Cai Q, Ledden B, Krueger E, Golovchenko JA, Li J (2006) Nanopore sculpting with noble gas ions. J Appl Phys 100:024914

    Google Scholar 

  17. Chan C, Yi-Tao L (2018) Biological nanopores: confined spaces for electrochemical single-molecule analysis. Acc Chem Res 51:331–341

    Google Scholar 

  18. Chang S, He J, Kibel A, Lee M, Sankey O, Zhang P, Lindsay S (2009) Tunneling readout of hydrogen-bonding based recognition. Nat Nanotechnol 4:297–301

    CAS  Google Scholar 

  19. Chang S, Huang S, He J, Liang F, Zhang P, Li S, Chen X, Sankey O, Lindsay S (2011) Electronic signatures of all four DNA nucleosides in a tunneling gap. Nano Lett 10:1070–1075

    Google Scholar 

  20. Chou T (2009) Enhancement of charged macromolecule capture by nanopores in a salt gradient. Chem Phys 131:034703

    Google Scholar 

  21. Clarke J, Wu HC, Jayasinghe L et al (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270

    CAS  Google Scholar 

  22. Coulter WH (1953) Means for conting paticles suspenedied in a fluid. US Patent No.2656508

    Google Scholar 

  23. Cracknell JA, Japrung D, Bayley H (2013) Translocating kilobase RNA through the staphylococcal α-hemolysin nanopore. Nano Lett 13:2500–2505

    CAS  Google Scholar 

  24. Deamer DW, Akeson M (2000) Nanopores and nucleic acids: prospects for ultrarapid sequencing. Trends Biotechnol 18:147–151

    CAS  Google Scholar 

  25. Deamer DW, Branton D (2002) Characterization of nucleic acids by nanopore analysis. Acc Chem Res 35:817–825

    CAS  Google Scholar 

  26. Dekker C (2007) Solid-state nanopores. Nature Nanotech 2:209–215

    CAS  Google Scholar 

  27. Derrington IM, Butler TZ, Collins MD et al (2010) Nanopore DNA sequencing with MspA. Proc Natl Acd Sci USA 107:16060–16065

    CAS  Google Scholar 

  28. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    CAS  Google Scholar 

  29. Fennouri A, Przybylski C, Pastoriza-Gallego M et al (2012) Single molecule detection of glycosaminoglycan hyaluronic acid oligosaccharides and depolymerization enzyme activity using a protein nanopore. ACS Nano 6:9672–9678

    CAS  Google Scholar 

  30. Fologea D, Gershow M, Ledden B et al (2005a) Detecting single stranded DNA with a solid state nanopore. Nano Lett 5:1905–1909

    CAS  Google Scholar 

  31. Fologea D, Uplinger J et al (2005b) Slowing DNA translocation in a solid-state nanopore. Nano Lett 5:1734–1737

    CAS  Google Scholar 

  32. Franceschini L, Soskine M, Biesemans A, Maglia G (2013) A nanopore machine promotes the vectorial transport of DNA across membranes. Nat Commun 4:2415

    Google Scholar 

  33. Garaj S, Hubbard W, Reina A et al (2010) Graphene as a subnanometre trans-electrode membrane. Nature 467:190–193

    CAS  Google Scholar 

  34. Ghosal S (2007) Effect of salt concentration on the electrophoretic speed of a polyelectrolyte through a nanopore. Phys Rev Lett 98:238104

    Google Scholar 

  35. Gilboa T, Meller A (2015) Optical sensing and analyte manipulation in solid state nanopores. Analyst 140:4733–4747

    CAS  Google Scholar 

  36. Gilboa T, Torfstein C, Juhasz M, Grunwald A, Ebenstein Y, Weinhold E, Meller A (2016) Single-molecule DNA methylation quantification using electro-optical sensing in solid-state nanopores. ACS Nano 10:8861–8870

    CAS  Google Scholar 

  37. Guihua W, Liang W, Yujing H, Shuo Z, Xiyun G (2013) Nanopore stochastic detection: diversity, sensitivity, and beyond. Acc Chem Res 46:2867–2877

    Google Scholar 

  38. Harrer S, Waggoner PS, Luan B, Afzali-Ardakani A, Goldfarb DL, Peng H, Martyna G, Rossnagel SM, Stolovitzky GA (2011) Electrochemical protection of thin film electrodes in solid state nanopores. Nanotechnology 22:275304

    Google Scholar 

  39. Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I et al (2008) Single-molecule DNA sequencing of a viral genome. Science 320:106–109

    CAS  Google Scholar 

  40. Hatlo MM, Panja D, van Roij R (2011) Translocation of DNA molecules through nanopores with salt gradients: the role of osmotic flow. Phys Rev Lett 107:068101

    Google Scholar 

  41. He Y, Tsutsui M, Fan C, Taniguchi M, Kawai T (2011) Controlling DNA translocation through gate modulation of nanopore wall surface charges. ACS Nano 5:5509–5518

    CAS  Google Scholar 

  42. He Y et al (2013a) Thermophoretic manipulation of DNA Translocation through nanopores. ACS Nano 7:538–546

    CAS  Google Scholar 

  43. He Y, Tsutsui M, Scheicher RH, Fan C, Taniguchi M, Kawai T (2013b) Mechanism of how salt-gradient-induced charges affect the translocation of DNA molecules through a nanopore. Biophys J 105:776–782

    CAS  Google Scholar 

  44. Heng JB, Aksimentiev A, Ho C, Dimitrov V, Sorsch TW, Miner JF et al (2005) Beyond the gene-chip. Bell Labs Tech J 10:5–22

    CAS  Google Scholar 

  45. Henley RY, Carson S, Wanunu M (2016) Studies of RNA sequence and structure using nanopores. Prog Mol Biol Transl Sci 139:73–99

    CAS  Google Scholar 

  46. Hernandez-Ainsa S et al (2013) DNA origami nanopores for controlling DNA translocation. ACS Nano 7:6024–6030

    CAS  Google Scholar 

  47. Hernandez-Ainsa S et al (2014) Voltage-dependent properties of DNA origami nanopores. Nano Lett 14:1270–1274

    CAS  Google Scholar 

  48. Hornblower B, Coombs A, Whitaker RD et al (2007) Single-molecule analysis of DNA-protein complexes using nanopores. Nat Methods 4:315–317

    CAS  Google Scholar 

  49. Howorka S, Siwy Z (2009) Nanopore analytics: sensing of single molecules. Chem Soc Rev 38:2360–2384

    CAS  Google Scholar 

  50. Howorka S, Cheley S, Bayley H (2001) Sequence-specific detection of individual DNA strands using engineered nanopores. Nat Biotechnol 19:636–639

    CAS  Google Scholar 

  51. Huang S, He J, Chang S et al (2010) Identifying single bases in a DNA oligomer with electron tunneling. Nat Nanotechnol 5:868–873

    CAS  Google Scholar 

  52. Huang S, Romero-Ruiz M, Castell OK, Bayley H, Wallace MI (2015) High-throughput optical sensing of nucleic acids in a nanopore array. Nat Nanotechnol 10:986–991

    CAS  Google Scholar 

  53. Ivanov AP, Instuli E, McGilvery CM et al (2011) DNA tunneling detector embedded in a nanopore. Nano Lett 11:279–285

    CAS  Google Scholar 

  54. Johnson JB (1928) Thermal agitation of electricity in conductors. Phys Rev 32:97–109

    CAS  Google Scholar 

  55. Joshua Q, Loman NJ, Duraffour S et al (2016) Real-time, portable genome sequencing for Ebola surveillance. Nature 530:228–232

    Google Scholar 

  56. Keyser UF, Koeleman BN, Van Dorp S et al (2006) Direct force measurements on DNA in a solid-state nanopore. Nature Phys 2:473–477

    CAS  Google Scholar 

  57. Kowalczyk SW, Kapinos L, Blosser TR, Magalhaes T, van Nies P, Lim RYH, Dekker C (2011) Single-molecule transport across an individual biomimetic nuclear pore complex. Nat Nanotechnol 6:433–438

    CAS  Google Scholar 

  58. Kowalczyk SW, Wells DB, Aksimentiev A, Dekker C (2012) Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett 12:1038–1044

    CAS  Google Scholar 

  59. Krishnakumar P, Gyarfas B, Song WS, Sen S, Zhang PM, Krstic P, Lindsay S (2013) Slowing DNA translocation through a nanopore using a functionalized electrode. ACS Nano 7:10319–10326

    CAS  Google Scholar 

  60. Kullman L, Winterhalter M, Bezrukov SM (2002) Transport of maltodextrins through maltoporin: a single-channel study. Biophys J 82:803–812

    CAS  Google Scholar 

  61. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    CAS  Google Scholar 

  62. Larkin J, Henley R, Bell DC et al (2013) Slow DNA transport through nanopores in hafnium oxide membranes. ACS Nano 7:10121–10128

    CAS  Google Scholar 

  63. Laszlo AH, Derrington IM, Brinkerhoff H et al (2013) Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc Natl Acad Sci U S A 110:18904–18909

    CAS  Google Scholar 

  64. Leroux A, Destine J, Vanderheyden B, Gracheva ME, Leburton J (2010) SPICE circuit simulation of the electrical response of a semiconductor membrane to a single-stranded DNA translocating through a nanopore. IEEE Trans Nanotechnol 9:322–329

    Google Scholar 

  65. Li J, Stein D, McMullan C et al (2001) Ion-beam sculpting at nanometre length scales. Nature 412:166–169

    CAS  Google Scholar 

  66. Lindsay S et al (2010) Recognition tunneling. Nanotechnology 21:262001

    Google Scholar 

  67. Liu L, Li Y, Li S et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364

    Google Scholar 

  68. Liu K et al (2014) Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8:2504–2511

    CAS  Google Scholar 

  69. Lu B, Hoogerheide DP, Zhao Q, Zhang HB, Zhipeng TP, Yu DP, Goloychenko JA (2013) Pressure-controlled motion of single polymers through solid-state nanopores. Nano Lett 13:3048–3052

    CAS  Google Scholar 

  70. Majd S, Yusko EC, Billeh YN et al (2010) Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr Opin Biotech 21:439–476

    CAS  Google Scholar 

  71. Manrao EA, Derrington IM, Laszlo AH et al (2012) Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol 30:349–353

    CAS  Google Scholar 

  72. McNally B, Singer A, Yu ZL, Sun YJ, Weng ZP, Meller A (2010) Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett 10:2237–2244

    CAS  Google Scholar 

  73. Merchant CA, Healy K, Wanunu M et al (2010) DNA translocation through graphene nanopores. Nano Lett 10:2915–2921

    CAS  Google Scholar 

  74. Miles BN, Ivanov AP, Wilson KA et al (2013) Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. Chem Soc Rev 42:15–28

    CAS  Google Scholar 

  75. Movileanu L, Howorka S, Braha O et al (2000) Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat Biotechnol 18:1091–1095

    CAS  Google Scholar 

  76. Nam SW, Rooks MJ, Kim KB, Rossnagel SM (2009) Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Lett 9:2044–2048

    CAS  Google Scholar 

  77. Neely LA, Patel S, Garver J et al (2006) A single-molecule method for the quantitation of microRNA gene expression. Nat Methods 3:41–46

    CAS  Google Scholar 

  78. Nicoli F, Verschueren D, Klein M et al (2014) DNA translocations through solid-state plasmonic nanopores. Nano Lett 14:6917–6925

    CAS  Google Scholar 

  79. Nivala J, Marks DB, Akeson M (2013) Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat Biotechnol 31:247–250

    CAS  Google Scholar 

  80. Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32:110–113

    CAS  Google Scholar 

  81. Ohshiro T, Umezawa Y (2006) Complementary base-pair-facilitated electron tunneling for electrically pinpointing complementary nucleobases. Proc Natl Acad Sci U S A 103:10–14

    CAS  Google Scholar 

  82. Ohshiro T, Matsubara K, Tsutsui M et al (2012) Single-molecule electrical random resequencing of DNA and RNA. Sci Rep 2:501

    Google Scholar 

  83. Ohshiro T, Tsutsui M, Yokota K, Furuhashi M, Taniguchi M (2014) Detection of post-translational modifications in single peptides using electron tunnelling currents. Nat Nanotechnol 9:835–840

    CAS  Google Scholar 

  84. Ohshiro T, Tsutsui M, Yokota K, Taniguchi M (2018) Quantitative analysis of DNA with single-molecule sequencing. Sci Rep 8:8517

    Google Scholar 

  85. Ohshiro T, Komoto U, Konno M et al (2019) Direct analysis of incorporation of an anticancer drug into DNA at single-molecule resolution. Sci Rep 9:3886

    Google Scholar 

  86. Payet L, Martinho M, Pastoriza-Gallego M, Betton JM, Auvray L, Pelta J, Mathe J (2012) Thermal unfolding of proteins probed at the single molecule level using nanopores. J Anal Chem 84:4071–4076

    CAS  Google Scholar 

  87. Plesa C et al (2014) Ionic permeability and mechanical properties of DNA origami nanoplates on solid-state nanopores. ACS Nano 8:35–43

    CAS  Google Scholar 

  88. Polonsky S, Rossnagel S, Stolovitzky G (2007) Nanopore in metal-dielectric sandwich for DNA position control. Appl Phys Lett 91:153103

    Google Scholar 

  89. Puster M, Rodriguez-Manzo JA, Balan A, Drndic M (2013) Toward sensitive graphene nanoribbon nanopore devices by preventing electronbeam induced damage. ACS Nano 7:11283–11289

    CAS  Google Scholar 

  90. Raillon C et al (2012) Nanopore detection of single molecule RNAP–DNA transcription complex. Nano Lett 12:1157–1164

    CAS  Google Scholar 

  91. Ren R, Zhang Y, Nadappuram BP et al (2017) Nanopore extended field-effect transistor for selective single-molecule biosensing. Nat Commun 8:586

    Google Scholar 

  92. Rodriguez-Larrea D, Bayley H (2013) Multistep protein unfolding during nanopore translocation. Nat Nanotechnol 8:288–295

    CAS  Google Scholar 

  93. Rosen CB, Rodriguez-Larrea D, Bayley H (2014) Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat Biotechnol 32:179–181

    CAS  Google Scholar 

  94. Rosenstein JK et al (2012) Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat Methods 9:487–492

    CAS  Google Scholar 

  95. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    CAS  Google Scholar 

  96. Schneider GF, Dekker C (2012) DNA sequencing with nanopores. Nat Biotechnol 30:326–328

    CAS  Google Scholar 

  97. Schneider GF, Kowalczyk SW, Calado VE et al (2010) DNA translocation through graphene nanopores. Nano Lett 10:3163–3167

    CAS  Google Scholar 

  98. Schneider GF, Xu Q, Hage S et al (2013) Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation. Naure Commun 4:2619

    Google Scholar 

  99. Shasha C et al (2014) Nanopore-based conformational analysis of a viral RNA drug target. ACS Nano 8:6425–6430

    CAS  Google Scholar 

  100. Singer A, Rapireddy S, Ly DH, Meller A (2012) Electronic barcoding of a viral gene at the single-molecule level. Nano Lett 12:1722–1728

    CAS  Google Scholar 

  101. Singh PR, Barcena-Uribarri I, Modi N, Kleinekathofer U, Benz R, Winterhalter M, Mahendran KR (2012) Pulling peptides across nanochannels: resolving peptide binding and translocation through the hetero-oligomeric channel from Nocardia farcinica. ACS Nano 6:10699–10707

    CAS  Google Scholar 

  102. Siwy ZS, Davenport M (2010) Graphene opens up to DNA. Nat Nanotechnol 5:697–698

    CAS  Google Scholar 

  103. Siwy Z, Trofin L, Kohli P, Lane A, Baker LA, Trautmann C, Martin C (2005) Protein biosensors based on biofunctionalized conical gold nanotubes. J Am Chem Soc 127:5000–5001

    CAS  Google Scholar 

  104. Soni GV, Dekker C (2012) Detection of nucleosomal substructures using solid-state nanopores. Nano Lett 12:3180–3186

    CAS  Google Scholar 

  105. Soni GV et al (2010) Synchronous optical and electrical detection of biomolecules traversing through solid-state nanopores. Rev Sci Instrum 81:014301

    Google Scholar 

  106. Stephanie JH, Dekker C (2016) Graphene nanodevices for DNA sequencing. Nat Nanotechnol 11:127–136

    Google Scholar 

  107. Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nature Mater 2:537–540

    CAS  Google Scholar 

  108. Storm AJ et al (2005) Fast DNA translocation through a solid-state nanopore. Nano Lett 5:1193–1197

    CAS  Google Scholar 

  109. Tanaka H, Kawai T (2009) Partial sequencing of a single DNA molecule with a scanning tunnelling microscope. Nat Nanotechnol 4:518–522

    CAS  Google Scholar 

  110. Thamdrup LH, Larsen NB, Kristensen A (2010) Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels. Nano Lett 10:826–832

    CAS  Google Scholar 

  111. The 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Google Scholar 

  112. Tian K, He ZJ, Wang Y, Chen SJ, Gu LQ (2013) Designing a polycationic probe for simultaneous enrichment and detection of microRNAs in a nanopore. ACS Nano 7:3962–3969

    CAS  Google Scholar 

  113. Traversi F, Raillon C, Benameur SM, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A (2013) Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nat Nanotechnol 8:939–945

    CAS  Google Scholar 

  114. Tsutsui M, Taniguchi M, Yokota K et al (2010) Identifying single nucleotides by tunnelling current. Nature Nanotech 5:286–290

    Google Scholar 

  115. Tsutsui M et al (2011a) Single-molecule sensing electrode embedded in-plane nanopore. Sci Rep 1:46

    Google Scholar 

  116. Tsutsui M, Matsubara K, Ohshiro T, Furuhashi M, Taniguchi M, Kawai T (2011b) Electrical detection of single methylcytosines in a DNA oligomer. J Am Chem Soc 133:9124–9128

    CAS  Google Scholar 

  117. Venkatesan BM, Rashid B (2011) Nanopore sensors for nucleic acid analysis. Nature Nanotech 6:615–624

    CAS  Google Scholar 

  118. Venkatesan BM et al (2012) Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA–protein complexes. ACS Nano 6:441–450

    CAS  Google Scholar 

  119. Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351

    CAS  Google Scholar 

  120. Vlassiouk I, Kozel TR, Siwy ZS (2009) Biosensing with Nanofluidic Diodes. J Am Chem Soc 131:8211–8220

    CAS  Google Scholar 

  121. Voelkerding KV, Dames SA, Durtschi JD (2009) Next-Generation Sequencing: From Basic Research to Diagnostics. Clin Chem 55:641–658

    CAS  Google Scholar 

  122. Wang Y, Zheng D, Tan Q, Wang MX, Gu LQ (2011) Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat Nanotechnol 6:668–674

    CAS  Google Scholar 

  123. Wanunu M (2012) Nanopores: A journey towards DNA sequencing. Phys Life Rev 9:125–158

    Google Scholar 

  124. Wanunu M, Sutin J, McNally B, Chow A, Meller A (2008) DNA translocation governed by interactions with solid-state nanopores. Biophys J 95:4716–4725

    CAS  Google Scholar 

  125. Wanunu M, Dadosh T, Ray V et al (2010a) Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat Nanotechnol 5:807–814

    CAS  Google Scholar 

  126. Wanunu M, Morrison W et al (2010b) Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat Nanotechnol 5:160–165

    CAS  Google Scholar 

  127. Wei RS, Martin TG, Rant U, Dietz H (2012a) DNA origami gatekeepers for solid-state nanopores. Angew Chem Int Ed 51:4864–4867

    CAS  Google Scholar 

  128. Wei RS, Gatterdam V, Wieneke R, Tampe R, Rant U (2012b) Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat Nanotechnol 7:257–263

    CAS  Google Scholar 

  129. Wells DB, Belkin M, Comer J et al (2012) Assessing graphene nanopores for sequencing DNA. Nano Lett 12:4117–4123

    CAS  Google Scholar 

  130. Xie P, Xiong QH, Fang Y, Qing Q, Lieber CM (2012) Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat Nanotechnol 7:119–125

    CAS  Google Scholar 

  131. Yen PC, Wang CH, Hwang GJ, Chou YC (2012) Gate effects on DNA translocation through silicon dioxide nanopore. Rev Sci Instrum 83:034301

    Google Scholar 

  132. Yokota K, Tsutsui M, Taniguchi M (2014) Electrode-embedded nanopores for label-free single-molecule sequencing by electric currents. RSC Adv 4:15886–15899

    CAS  Google Scholar 

  133. Yusko E, Jay M, Johnson J, Majd S, Prangkio P, Rollings R, Li J, Yang J, Mayer M (2011) Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat Nanotechnol 6:253–260

    CAS  Google Scholar 

  134. Zhang XY, Wang Y, Fricke BL, Gu LQ (2014) Programming nanopore ion flow for encoded multiplex microRNA detection. ACS Nano 8:3444–3450

    CAS  Google Scholar 

  135. Zhao Y, Ashcroft B, Zhang P et al (2014) Single-molecule spectroscopy of amino acids and peptides by recognition tunneling. Nat Nanotechnol 9:466–473

    CAS  Google Scholar 

  136. Zwolak M, Di Ventra M (2005) Electronic signature of DNA Nucleotides via transverse transport. Nano Lett 5:421–424

    CAS  Google Scholar 

  137. Zwolak M, Di Ventra M (2008) Colloquium: physical approaches to DNA sequencing and detection. Rev Mod Phys 80:141–165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masateru Taniguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taniguchi, M., Ohshiro, T. (2019). Nanopore Device for Single-Molecule Sensing Method and Its Application. In: Tokeshi, M. (eds) Applications of Microfluidic Systems in Biology and Medicine . Bioanalysis, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-13-6229-3_11

Download citation

Publish with us

Policies and ethics