Skip to main content

Nanobiodevices for Cancer Diagnostics and Stem Cell Therapeutics

  • Chapter
  • First Online:
Applications of Microfluidic Systems in Biology and Medicine

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 7))

  • 1589 Accesses

Abstract

This chapter describes the potential of multifunctional nanobiodevices in combination with quantum dots (QDs) to meet the requirements of diagnostic and theranostic systems. Nanobiodevices are primed to be powerful tools to provide the basis for the detection of small amounts of samples and simple operation. QDs can be utilized in these devices as bio-probes or labels for biological imaging of single molecules and cells. They have developed into new formats of biosensing to push the limits of detection. QDs has been also demonstrated to construct a multifunctional nanoplatform for stem cell transplantation and labeling with diagnostic and therapeutic modalities. The potential clinical applications of QDs have been expanded by the development of considerably low cytotoxicity QDs that do not include cadmium or selenium, as well as the development of longwave fluorescence QDs with strong permeability into the body. It provides the promising applications and further perspectives on future regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    CAS  Google Scholar 

  2. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    CAS  Google Scholar 

  3. Alivisatos P, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    CAS  Google Scholar 

  4. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475

    CAS  Google Scholar 

  5. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    CAS  Google Scholar 

  6. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    CAS  Google Scholar 

  7. Sapsford KE, Pons T, Medintz IL, Mattoussi H (2006) Biosensing with luminescent semiconductor quantum dots. Sensors 6:925–953

    CAS  Google Scholar 

  8. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239

    CAS  Google Scholar 

  9. Clapp AR, Medintz IL, Mattoussi H (2006) Forster resonance energy transfer investigations using quantum-dot fluorophores. ChemPhysChem 7:47–57

    CAS  Google Scholar 

  10. Medintz IL, Mattoussi H (2009) Quantum dot-based resonance energy transfer and its growing application in biology. Phys Chem Chem Phys 11:17–45

    CAS  Google Scholar 

  11. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    CAS  Google Scholar 

  12. Algar WR, Krull UJ (2010) New opportunities in multiplexed optical bioanalyses using quantum dots and donor-acceptor interactions. Anal Bioanal Chem 398:2439–2449

    CAS  Google Scholar 

  13. Seydack M (2005) Nanoparticle labels in immunosensing using optical detection methods. Biosens Bioelectron 20:2454–2469

    CAS  Google Scholar 

  14. Deng Z, Zhang Y, Yue J, Tang F, Wei Q (2007) Green and orange CdTe quantum dots as effective pH-sensitive fluorescent probes for dual simultaneous and independent detection of viruses. J Phys Chem B 111:12024–12031

    CAS  Google Scholar 

  15. Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391:1609–1618

    CAS  Google Scholar 

  16. Algar WR, Krull UJ (2008) Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer. Langmuir 25:633–638

    Google Scholar 

  17. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    CAS  Google Scholar 

  18. Jain KK (2007) Applications of nanobiotechnology in clinical diagnostics. Clin Chem 53:2002–2009

    CAS  Google Scholar 

  19. Wagner M, Li F, Li J, Li X-F, Le X (2010) Use of quantum dots in the development of assays for cancer biomarkers. Anal Bioanal Chem 397:3213–3224

    CAS  Google Scholar 

  20. Liu W, Howarth M, Greytak AB, Zheng Y, Nocera DG, Ting AY, Bawendi MG (2008) Compact biocompatible quantum dots functionalized for cellular imaging. J Am Chem Soc 130:1274–1284

    CAS  Google Scholar 

  21. Algar WR, Krull UJ (2009) Toward a multiplexed solid-phase hybridization assay using quantum dots as donors in fluorescence resonance energy transfer. Anal Chem 81:4113–4120

    CAS  Google Scholar 

  22. Whitesides GM (2006) The origins and the future of microfluidics. Nature 441:368–373

    Google Scholar 

  23. Chen L, Algar WR, Tavares AJ, Krull UJ (2011) Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer. Anal Bioanal Chem 399:133–141

    CAS  Google Scholar 

  24. Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377:159–169

    CAS  Google Scholar 

  25. Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145–150

    CAS  Google Scholar 

  26. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    CAS  Google Scholar 

  27. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249–255

    CAS  Google Scholar 

  28. Verma A, Uzun O, Hu Y, Hu Y, Han H-S, Watson N, Chen S, Irvine DJ, Stellacci F (2008) Surface-structure-regulated cell-membrane penetration by monolayerprotected nanoparticles. Nat Mater 7:588–595

    CAS  Google Scholar 

  29. Nel AE, Mäadler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    CAS  Google Scholar 

  30. Nirmal M, Brus L (1999) Luminescence photophysics in semiconductor nanocrystals. Acc Chem Res 32:407–414

    CAS  Google Scholar 

  31. Norris DJ, Bawendi MG (1996) Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys Rev B Condens Matter 53:16338–16346

    CAS  Google Scholar 

  32. Correa-Duarte MA, Giersig M, Liz-Marzan LM (1998) Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure. Chem Phys Lett 286:497–501

    CAS  Google Scholar 

  33. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    CAS  Google Scholar 

  34. Chu TC, Shieh F, Lavery LA, Levy M, Richards-Kortum R, Korgel BA, Ellington AD (2006) Labeling tumor cells with fluorescent nanocrystal-aptamer bioconjugates. Biosens Bioelectron 21:1859–1866

    CAS  Google Scholar 

  35. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    CAS  Google Scholar 

  36. Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4:826–831

    CAS  Google Scholar 

  37. Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 99:12617–12621

    CAS  Google Scholar 

  38. Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares- Erijman EA, Jovin TM (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22:198–203

    CAS  Google Scholar 

  39. Wang G, Zeng G, Wang C, Wang H, Yang B, Guan F, Li D, Feng X (2015) Biocompatibility of quantum dots (CdSe/ZnS) in human amnioticmembrane-derived mesenchymal stem cells in vitro. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 159:227–233

    Google Scholar 

  40. Yang HN, Park JS, Jeon SY, Park W, Na K, Park KH (2014) The effect of quantum dot size and poly(ethylenimine) coating on the efficiency of gene delivery into human mesenchymal stem cells. Biomaterials 35:8439–8449

    Google Scholar 

  41. Narayanan K, Yen SK, Dou Q, Padmanabhan P, Sudhaharan T, Ahmed S, Ying JY, Selvan ST (2013) Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots. Sci Rep 3:2184

    Google Scholar 

  42. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    CAS  Google Scholar 

  43. Bakalova R, Zhelev Z, Ohba H, Baba Y (2005) Quantum dot-conjugated hybridization probes for preliminary screening of siRNA sequences. J Am Chem Soc 127:11328–11335

    CAS  Google Scholar 

  44. Qian ZS, Shan XY, Chai LJ, Ma JJ, Chen JR, Feng H (2014) DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens Bioelectron 60:64–70

    CAS  Google Scholar 

  45. Onoshima D, Kaji N, Tokeshi M, Baba Y (2008) Nuclease tolerant FRET probe based on DNA-quantum dot conjugation. Anal Sci 24:181–183

    CAS  Google Scholar 

  46. Lee JA, Hung A, Mardyani S, Rhee A, Klostranec J, Mu Y, Li D, Chan WCW (2007) Toward the accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer. Adv Mater 19:3113–3118

    CAS  Google Scholar 

  47. Liu KK, Wu RG, Chuang YJ, Khoo HS, Huang SH, Tseng FG (2010) Microfluidic systems for biosensing. Sensors 10:6623–6661

    CAS  Google Scholar 

  48. Yeo LY, Chang H-C, Chan PPY, Friend JR (2011) Microfluidic devices for bioapplications. Small 7:12–48

    CAS  Google Scholar 

  49. Choi S, Goryll M, Sin L, Wong P, Chae J (2011) Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. Microfluid Nanofluid 10:231–247

    CAS  Google Scholar 

  50. Rivet C, Lee H, Hirsch A, Hamilton S, Lu H (2011) Microfluidics for medical diagnostics and biosensors. Chem Eng Sci 66:1490–1507

    CAS  Google Scholar 

  51. Dittrich PS, Manz A (2005) Single-molecule fluorescence detection in microfluidic channels — the holy grail in μTAS? Anal Bioanal Chem 382:1771–1782

    CAS  Google Scholar 

  52. Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76

    CAS  Google Scholar 

  53. Gorman J, Plys AJ, Visnapuu ML, Alani E, Greene EC (2010) Visualizing onedimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice. Nat Struct Mol Biol 17:932–938

    CAS  Google Scholar 

  54. Kim S, Gottfried A, Lin RR, Dertinger T, Kim AS, Chung S, Colyer RA, Weinhold E, Weiss S, Ebenstein Y (2012) Enzymatically incorporated genomic tags for optical mapping of DNA-binding proteins. Angew Chem Int Ed 51:3578–3581

    CAS  Google Scholar 

  55. Michaeli Y, Shahal T, Torchinsky D, Grunwald A, Hocha R, Ebenstein Y (2013) Optical detection of epigenetic marks: sensitive quantification and direct imaging of individual hydroxymethylcytosine bases. Chem Commun 49:8599–8601

    CAS  Google Scholar 

  56. Onoshima D, Kaji N, Tokeshi M, Baba Y (2014) On-chip analysis of intermittent molecular encounters in nuclease digestion of specific DNA sequence. Biophys J 103:699a–700a

    Google Scholar 

  57. Smith AM, Dave S, Nie SM, True L, Gao XH (2006) Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev Mol Diagn 6:231–244

    CAS  Google Scholar 

  58. Srivastava S, Srivastava R-G (2005) Proteomics in the forefront of cancer biomarker discovery. J Proteome Res 4:1098–1103

    CAS  Google Scholar 

  59. Cissell KA, Rahimi Y, Shrestha S, Hunt EA, Deo SK (2008) Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. Anal Chem 80:2319–2325

    CAS  Google Scholar 

  60. Wagner M, Li F, Li JJ, Li X-F, Le XC (2010) Quantum dot based assays for cancer biomarkers. Anal Bioanal Chem 397:3213–3224

    CAS  Google Scholar 

  61. Wang HZ, Wang HY, Liang RQ, Ruan KC (2004) Detection of tumor marker CA125 in ovarian carcinoma using quantum dots. Acta Biochim Biophys Sin 36:681–686

    CAS  Google Scholar 

  62. Chen C, Peng J, Xia HS, Yang GF, Wu QS, Chen LD, Zeng LB, Zhang ZL, Pang DW, Li Y (2009) Quantumdots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials 30:2912–2918

    CAS  Google Scholar 

  63. Barua S, Reqe K (2009) Cancer-cell-phenotype-dependent differential intracellular trafficking of unconjugated quantum dots. Small 5:370–376

    CAS  Google Scholar 

  64. Tian J, Zhou L, Zhao Y, Wang Y, Peng Y, Zhao S (2012) Multiplexed detection of tumor markers with multicolor quantum dots based on fluorescence polarization immunoassay. Talanta 92:72–77

    CAS  Google Scholar 

  65. Han M, Gao X, Su J, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    CAS  Google Scholar 

  66. Zhang Y, Zhang C-Y (2012) Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. Anal Chem 84:224–231

    CAS  Google Scholar 

  67. Medintz IL, Mattoussi H, Clapp AR (2008) Potential clinical applications of quantum dots. Int J Nanomedicine 3:151–167

    CAS  Google Scholar 

  68. Mulligan RC (1993) The basic science of gene therapy. Science 260:926–932

    CAS  Google Scholar 

  69. Chen X, Deng Y, Lin Y, Pang DW, Qing H, Qu F, Xie HY (2008) Quantum dot-labeled aptamer nanoprobes specifically targeting glioma cells. Nanotechnology 19:235105

    Google Scholar 

  70. Erogbogbo F, Yong K-T, Roy I, Xu G, Prasad PN, Swihart MT (2008) Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2:873–878

    CAS  Google Scholar 

  71. Kirchhausen T (2000) Three ways to make a vesicle. Nat Rev Mol Cell Biol 1:187–198

    CAS  Google Scholar 

  72. Parak WJ, Boudreau R, Le Gros M, Gerion D, Zanchet D, Micheel CM, Williams SC, Alivisatos AP, Larabell C (2002) Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks. Adv Mater 14:882–885

    CAS  Google Scholar 

  73. Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16:961–966

    CAS  Google Scholar 

  74. Delehanty JB, Mattoussi H, Medintz IL (2009) Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem 393:1091–1105

    CAS  Google Scholar 

  75. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221

    CAS  Google Scholar 

  76. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    CAS  Google Scholar 

  77. Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, Yamanaka S, Yamashita JK (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118:498–506

    Google Scholar 

  78. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    CAS  Google Scholar 

  79. Hsieh SC, Wang FF, Hung SC, Chen YJ, Wang YJ (2006) The internalized CdSe/ZnS quantum dots impair the chondrogenesis of bone marrow mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 79:95–101

    Google Scholar 

  80. Shah BS, Clark PA, Moioli EK, Stroscio MA, Mao JJ (2007) Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett 7:3071–3079

    CAS  Google Scholar 

  81. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    CAS  Google Scholar 

  82. Seo MJ, Suh SY, Bae YC, Jung JS (2005) Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 328:258–264

    CAS  Google Scholar 

  83. Amariglio N, Hirshberg A, Scheithauer BW (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 6:e29

    Google Scholar 

  84. Menasche P (2009) Stem cell therapy for heart failure: are arrhythmias a real safety concern? Circulation 119:2735–2740

    Google Scholar 

  85. Strong M, Farrugia A, Rebulla P (2009) Stem cell and cellular therapy developments. Biologicals 37:103–107

    CAS  Google Scholar 

  86. Nguyen PK, Nag D, Wu JC (2010) Methods to assess stem cell lineage, fate and function. Adv Drug Deliv Rev 62:1175–1186

    CAS  Google Scholar 

  87. Li SC, Tachiki LML, Luo J, Dethlefs BA, Chen Z, Loudon WG (2010) A biological global positioning system: considerations for tracking stem cell behaviors in the whole body. Stem Cell Rev Rep 6:317–333

    Google Scholar 

  88. Wang Y, Xu C, Ow H (2013) Commercial nanoparticles for stem cell labeling and tracking. Theranostics 3:544–560

    Google Scholar 

  89. Rosenzweig A (2006) Cardiac cell therapy:mixed results frommixed cells. N Engl JMed 355:1274–1277

    CAS  Google Scholar 

  90. Yukawa H, Kagami Y, Watanabe M, Kaji N, Okamoto Y, Tokeshi M, Noguchi H, Miyamoto Y, Baba Y, Hamajima N, Hayashi S (2010) Quantum dots labeling using octaarginine peptides for imaging of adipose tissue-derived stem cells. Biomaterials 31:4094–4103

    CAS  Google Scholar 

  91. Slotkin JR, Chakrabarti L, Dai HN (2007) In vivo quantum dot labeling of mammalian stem and progenitor cells. Dev Dyn 236:3393–3401

    CAS  Google Scholar 

  92. Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba Y (2004) Quantum dots as photosensitizers? Nat Biotechnol 22:1360–1361

    CAS  Google Scholar 

  93. Yukawa H, Mizufune S, Mamori C, Kagami Y, Oishi K, Kaji N, Okamoto Y, Tokeshi M, Noguchi H, Hamaguchi M, Hamajima N, Baba Y, Hayashi S (2009) Quantum dots for labeling adipose tissue-derived stem cells. Cell Transplant 18:591–599

    Google Scholar 

  94. Sun C, Cao Z, Wu M, Lu C (2014) Intracellular tracking of single native molecules with electroporation-delivered quantum dots. Anal Chem 86:11403–11409

    CAS  Google Scholar 

  95. Chang JC, Su HL, Hsu SH (2008) The use of peptide-delivery to protect human adiposederived adult stem cells from damage caused by the internalization of quantum dots. Biomaterials 29:925–936

    CAS  Google Scholar 

  96. Toita S, Hasegawa U, Koga H, Sekiya I, Muneta T, Akiyoshi K (2008) Protein-conjugated quantum dots effectively delivered into living cells by a cationic nanogel. J Nanosci Nanotechnol 8:2279–2285

    CAS  Google Scholar 

  97. Lagerholm BC (2007) Peptide-mediated intracellular delivery of quantum dots. Methods Mol Biol 374:105–112

    CAS  Google Scholar 

  98. Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16:961–964

    CAS  Google Scholar 

  99. Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ (1995) Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 270:18997–19007

    CAS  Google Scholar 

  100. Biju V, Itoh T, Ishikawa M (2010) Delivering quantum dots to cells: bioconjugated quantumdots for targeted and nonspecific extracellular and intracellular imaging. Chem Soc Rev 39:3031–3056

    CAS  Google Scholar 

  101. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNAtransfection procedure. Proc Natl Acad Sci U S A 84:7413–7417

    CAS  Google Scholar 

  102. Hsieh SC, Wang FF, Lin CS, Chen YJ, Hung SC, Wang YJ (2006) The inhibition of osteogenesis with human bone marrow mesenchymal stem cells by CdSe/ZnS quantum dot labels. Biomaterials 27:1656–1664

    CAS  Google Scholar 

  103. Lagerholm BC, Wang MM, Ernst LA, Ly DH, Liu HJ, Bruchez MP, Waggoner AS (2004) Multicolor coding of cells with cationic peptide coated quantum dots. Nano Lett 4:2019–2022

    CAS  Google Scholar 

  104. Yukawa H, Noguchi H, Oishi K, Miyamoto Y, Nakase K, Futaki S, Hamaguchi M, Hamajima N, Hayashi S (2010) Transduction of cell-penetrating peptide into iPS cells. Cell Transplant 19:901–909

    Google Scholar 

  105. Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J (1994) Tatmediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A 91:664–668

    CAS  Google Scholar 

  106. Wadia JS, Stan RV, Dowdy SF (2004) Transducible TAT–HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10:310–315

    CAS  Google Scholar 

  107. Elliott G, O’Hare P (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88:223–233

    CAS  Google Scholar 

  108. Schwarze SR, Hruska KA, Dowdy SF (2000) Protein transduction: unrestricted delivery into all cells? Trends Cell Biol 10:290–295

    CAS  Google Scholar 

  109. Silver J, Ou W (2005) Photoactivation of quantum dot fluorescence following endocytosis. Nano Lett 5:1445–1449

    CAS  Google Scholar 

  110. Delehanty JB, Medintz IL, Pons T, Brunel FM, Dawson PE, Mattoussi H (2006) Selfassembled quantum dot-peptide bioconjugates for selective intracellular delivery. Bioconjug Chem 17:920–927

    CAS  Google Scholar 

  111. Takasaki Y, Watanabe M, Yukawa H, Sabarudin A, Inagaki K, Kaji N, Okamoto Y, Tokeshi M, Miyamoto Y, Noguchi H, Umemura T, Hayashi S, Baba Y, Haraguchi H (2011) Estimation of the distribution of intravenously injected adipose tissue-derived stem cells labeled with quantum dots in mice organs through the determination of their metallic components by ICPMS. Anal Chem 83:8252–8258

    CAS  Google Scholar 

  112. Miyazaki Y, Yukawa H, Nishi H, Okamoto Y, Kaji N, Torimoto T, Baba Y (2013) Adipose tissue-derived stem cell imaging using cadmium-free quantum dots. Cell Med 6:91–97

    Google Scholar 

  113. Noguchi H, Matsumoto S (2006) Protein transduction technology: a novel therapeutic perspective. Acta Med Okayama 60:1–11

    CAS  Google Scholar 

  114. Lei Y, Tang H, Yao L, Yu R, Feng M, Zou B (2008) Applications of mesenchymal stem cells labeled with tat peptide conjugated quantum dots to cell tracking in mouse body. Bioconjug Chem 19:421–427

    CAS  Google Scholar 

  115. Chang JC, Hsu SH, Su HL (2009) The regulation of the gap junction of human mesenchymal stemcells through the internalization of quantumdots. Biomaterials 30:1937–1946

    CAS  Google Scholar 

  116. Yukawa H, Suzuki K, Kano Y, Yamada T, Kaji N, Ishikawa T, Baba T (2013) Induced pluripotent stemcell labeling using quantumdots. Cell Med 2013(6):83–90

    Google Scholar 

  117. Chen B, Liu QL, Zhang YL, Xu L, Fang XH (2008) Transmembrane delivery of the cellpenetrating peptide conjugated semiconductor quantum dots. Langmuir 24:11866–11871

    CAS  Google Scholar 

  118. Phelps ME (2000) Inaugural article: positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A 97:9226–9233

    CAS  Google Scholar 

  119. Wu AM, Yazaki PJ, Tsai S et al (2000) High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. Proc Natl Acad Sci U S A 97:8495–8500

    CAS  Google Scholar 

  120. Lee H, Kim IK, Park TG (2010) Intracellular trafficking and unpacking of siRNA/quantum dot-PEI complexes modified with and without cell penetrating peptide: confocal and flow cytometric FRET analysis. Bioconjug Chem 21:289–295

    CAS  Google Scholar 

  121. Hsieh YH, Liu SJ, Chen HW, Lin YK, Liang KS, Lai LJ (2010) Highly sensitive rare cell detection based on quantum dot probe fluorescence analysis. Anal Bioanal Chem 396:1135–1141

    CAS  Google Scholar 

  122. Prasuhn DE, Blanco-Canosa JB, Vora GJ, Delehanty JB, Susumu K, Mei BC, Dawson PE, Medintz IL (2010) Combining chemoselective ligation with polyhistidinedriven self-assembly for the modular display of biomolecules on quantum dots. ACS Nano 4:267–278

    CAS  Google Scholar 

  123. Yukawa H, Watanabe M, Kaji N, Okamoto Y, Tokeshi M, Miyamoto Y, Noguchi H, Baba Y, Hayashi S (2012) Monitoring transplanted adipose tissue-derived stem cells combined with heparin in the liver by fluorescence imaging using quantum dots. Biomaterials 33:2177–2186

    CAS  Google Scholar 

  124. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43:737–962

    Google Scholar 

  125. Lin S, Xie X, Patel MR (2007) Quantum dot imaging for embryonic stem cells. BMC Biotechnol 7:67

    Google Scholar 

  126. Seleverstov O, Zabirnyk O, Zscharnack M, Bulavina L, Nowicki M, Heinrich JM (2006) Quantum dots for human mesenchymal stem cells labeling: a size-dependent autophagy activation. Nano Lett 6:2826–2832

    CAS  Google Scholar 

  127. Zhang T, Stilwell JL, Gerion D, Ding I, Elboudwarej O, Cooke PA (2006) Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett 6:800–808

    CAS  Google Scholar 

  128. Zhang Y, He J, Wang PN, Chen JY, Lu ZJ, Lu DR (2006) Time-dependent photoluminescence blue shift of the quantum dots in living cells: effect of oxidation by singlet oxygen. J Am Chem Soc 128:13396–13401

    CAS  Google Scholar 

  129. Powles R (2010) 50 years of allogeneic bone-marrow transplantation. Lancet Oncol 11:305–306

    Google Scholar 

  130. Kim YS, Kim JY, Shin DM, Huh JW, Lee SW, Oh YM (2014) Tracking intravenous adipose-derivedmesenchymal stemcells in a model of elastase-induced emphysema. Tuberc Respir Dis (Seoul) 77:116–123

    Google Scholar 

  131. Wen X, Wang Y, Zhang F, Zhang X, Lu L, Shuai X, Shen J (2014) In vivo monitoring of neural stem cells after transplantation in acute cerebral infarction with dual-modal MR imaging and optical imaging. Biomaterials 35:4627–4635

    CAS  Google Scholar 

  132. Shinchi H, Wakao M, Nagata N, Sakamoto M, Mochizuki E, Uematsu T, Kuwabata S, Suda Y (2014) Cadmium-free sugar-chain-immobilized fluorescent nanoparticles containing low-toxicity ZnS–AgInS2 cores for probing lectin and cells. Bioconjug Chem 25:286–295

    CAS  Google Scholar 

  133. Subramaniam P, Lee SJ, Shah S, Patel S, Starovoytov V, Lee KB (2012) Generation of a library of non-toxic quantum dots for cellular imaging and siRNA delivery. Adv Mater 24:4014–4019

    CAS  Google Scholar 

  134. Ozturk SS, Selcuk F, Acar HY (2010) Development of color tunable aqueous CdScysteine quantum dots with improved efficiency and investigation of cytotoxicity. J Nanosci Nanotechnol 10:2479–2488

    CAS  Google Scholar 

  135. Kawashima N, Nakayama K, Itoh K, Itoh T, Ishikawa M, Biju V (2010) Reversible dimerization of EGFR revealed by single-molecule fluorescence imaging using quantum dots. Chem Eur J 16:1186–1192

    CAS  Google Scholar 

  136. Burns AA, Vider J, Ow H, Herz E, Medina OP, Baumgart M, Larson SM, Wiesner U, Bradbury M (2008) Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett 9:442–448

    Google Scholar 

  137. Onoshima D, Yukawa H, Baba Y (2015) Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Adv Drug Deliv Rev 95:2–14

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daisuke Onoshima or Hiroshi Yukawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Onoshima, D., Yukawa, H., Baba, Y. (2019). Nanobiodevices for Cancer Diagnostics and Stem Cell Therapeutics. In: Tokeshi, M. (eds) Applications of Microfluidic Systems in Biology and Medicine . Bioanalysis, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-13-6229-3_10

Download citation

Publish with us

Policies and ethics