Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

The organization and arrangement of irrelated or distributed elements in a system or an object is defined as mechanical structure. The elements in a mechanical structure can exhibit the characteristics of different parameters. In order to investigate the feature of a mechanical structure many factors should be considered and defined. This chapter aims to introduce a basic definition of mechanical structures with focusing on vehicle and its suspension system as the main mechanical structure target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.R. Singiresu, Mechanical Vibrations (Addison Wesley, 1995)

    Google Scholar 

  2. J.G. Eisenhauer, Degrees of freedom. Teaching Statistics 30(3), 75–78 (2008)

    Article  Google Scholar 

  3. R.F. Steidel, An introduction to mechanical vibrations (Wiley, New York, 1979)

    MATH  Google Scholar 

  4. G.R. Fowles, G.L. Cassiday, Analytical Mechanics (Saunders College, 1999)

    Google Scholar 

  5. A.P. French, Vibrations and Waves (CRC press, 1971)

    Google Scholar 

  6. W. Matthaeus, M. Goldstein, Low-frequency 1 f noise in the interplanetary magnetic field. Phys. Rev. Lett. 57(4), 495 (1986)

    Article  Google Scholar 

  7. S. Sarkani, L.D. Lutes, Stochastic Analysis of Structural and Mechanical Vibrations (Prentice Hall, 1997)

    Google Scholar 

  8. M. Feldman, Hilbert transform in vibration analysis. Mech. Syst. Signal Process. 25(3), 735–802 (2011)

    Article  Google Scholar 

  9. A.G. Phadke, J. S. Thorp, Synchronized Phasor Measurements and Their Applications (Springer, 2008)

    Google Scholar 

  10. C.C. Fuller, S. Elliott, P.A. Nelson, Active Control of Vibration (Academic Press, 1996)

    Google Scholar 

  11. A.K. Chopra, Dynamics of Structures. Theory and Applications to Earthquake Engineering (2017)

    Google Scholar 

  12. K. Ogata, System Dynamics (Prentice Hall, Upper Saddle River, NJ, 1998)

    MATH  Google Scholar 

  13. S.C. Arya, M.W. O’neill, G. Pincus, Design of Structures and Foundations for Vibrating Machines (Gulf Publishing Company, Books Division, 1979)

    Google Scholar 

  14. M.M. Fateh, S.S. Alavi, Impedance control of an active suspension system. Mechatronics 19(1), 134–140 (2009)

    Article  Google Scholar 

  15. J. Tamboli, S. Joshi, Optimum design of a passive suspension system of a vehicle subjected to actual random road excitations. J. Sound Vib. 219(2), 193–205 (1999)

    Article  Google Scholar 

  16. C.L. Phillips, H.T. Nagle, Digital Control System Analysis and Design (Prentice Hall Press, 2007)

    Google Scholar 

  17. A. Ahmad, Y.M. Sam, N.M.A. Ghani, F.K. Elektrik, An Observer Design for Active Suspension System (Universiti Teknologi Malaysia, 2005)

    Google Scholar 

  18. X. Xue et al., in Study of Art of Automotive Active Suspensions. Power Electronics Systems and Applications (PESA), 2011 4th International Conference on (IEEE, 2011), pp. 1–7

    Google Scholar 

  19. N. Yagiz, Y. Hacioglu, Backstepping control of a vehicle with active suspensions. Control Eng. Pract. 16(12), 1457–1467 (2008)

    Article  Google Scholar 

  20. A. Agharkakli, G.S. Sabet, A. Barouz, Simulation and analysis of passive and active suspension system using quarter car model for different road profile. Int. J. Eng. Trends Technol. 3(5), 636–644 (2012)

    Google Scholar 

  21. A. Gupta, J. Jendrzejczyk, T. Mulcahy, J. Hull, Design of electromagnetic shock absorbers. Int. J. Mech. Mater. Des. 3(3), 285–291 (2006)

    Article  Google Scholar 

  22. Q. Zhou, Research and Simulation on New Active Suspension Control System (2013)

    Google Scholar 

  23. A. Azizi, Computer-based analysis of the stochastic stability of mechanical structures driven by white and colored noise. Sustainability 10(10), 3419 (2018)

    Article  Google Scholar 

  24. A. Ashkzari, A. Azizi, Introducing genetic algorithm as an intelligent optimization technique, in Applied Mechanics and Materials, vol. 568 (Trans Tech Publications, 2014), pp. 793–797

    Google Scholar 

  25. A. Azizi, Introducing a novel hybrid artificial intelligence algorithm to optimize network of industrial applications in modern manufacturing. Complexity 2017 (2017)

    Article  MathSciNet  Google Scholar 

  26. A. Azizi, Hybrid artificial intelligence optimization technique, in Applications of Artificial Intelligence Techniques in Industry 4.0 (Springer, 2019), pp. 27–47

    Google Scholar 

  27. A. Azizi, Modern Manufacturing, in Applications of Artificial Intelligence Techniques in Industry 4.0 (Springer, 2019), pp. 7–17

    Google Scholar 

  28. A. Azizi, RFID Network Planning, in Applications of Artificial Intelligence Techniques in Industry 4.0 (Springer, 2019), pp. 19–25

    Google Scholar 

  29. A. Azizi, Applications of Artificial Intelligence Techniques in Industry 4.0 (Springer)

    Google Scholar 

  30. A. Azizi, F. Entesari, K.G. Osgouie, M. Cheragh, Intelligent Mobile Robot Navigation in an Uncertain Dynamic Environment, in Applied Mechanics and Materials, vol. 367(Trans Tech Publications, 2013), pp. 388–392

    Google Scholar 

  31. A. Azizi, F. Entessari, K.G. Osgouie, A.R. Rashnoodi, Introducing neural networks as a computational intelligent technique, in Applied Mechanics and Materials, vol. 464 (Trans Tech Publications, 2014), pp. 369–374

    Google Scholar 

  32. A. Azizi, N. Seifipour, Modeling of Dermal wound Healing-Remodeling Phase by Neural Networks, in Computer Science and Information Technology-Spring Conference, 2009. IACSITSC’09. International Association of (IEEE, 2009), pp. 447–450

    Google Scholar 

  33. A. Azizi, A. Vatankhah Barenji, M. Hashmipour, Optimizing radio frequency identification network planning through ring probabilistic logic neurons. Adv. Mech. Eng. 8(8), 1687814016663476 (2016)

    Article  Google Scholar 

  34. A. Azizi, P.G. Yazdi, M. Hashemipour, Interactive design of storage unit utilizing virtual reality and ergonomic framework for production optimization in manufacturing industry. Int. J. Interact. Des. Manuf. (IJIDeM), 1–9 (2018)

    Google Scholar 

  35. M. Koopialipoor, A. Fallah, D.J. Armaghani, A. Azizi, E.T. Mohamad, Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Eng. Comput., 1–14 (2018)

    Google Scholar 

  36. K.G. Osgouie, A. Azizi, in Optimizing Fuzzy Logic Controller for Diabetes Type I by Genetic Algorithm. Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on, vol. 2 (IEEE, 2010), pp. 4–8

    Google Scholar 

  37. S. Rashidnejhad, A.H. Asfia, K.G. Osgouie, A. Meghdari, A. Azizi, Optimal trajectory planning for parallel robots considering time-jerk, in Applied Mechanics and Materials, vol. 390 (Trans Tech Publications, 2013), pp. 471–477

    Google Scholar 

  38. J. Wang, W. Wang, K. Atallah, D. Howe, in Design of a Linear Permanent Magnet Motor for Active Vehicle Suspension. Electric Machines and Drives Conference, 2009. IEMDC’09. IEEE International (IEEE, 2009), pp. 585–591

    Google Scholar 

  39. J. Wang, W. Wang, K. Atallah, A linear permanent-magnet motor for active vehicle suspension. IEEE Trans. Veh. Technol. 60(1), 55–63 (2011)

    Article  Google Scholar 

  40. M.S. Kumar, Development of active Suspension System for Automobiles Using PID Controller (2008)

    Google Scholar 

  41. M. Zhou, H. Jin, W. Wang, A review of vehicle fuel consumption models to evaluate eco-driving and eco-routing. Transp. Res. D: Transp. Environ. 49, 203–218 (2016)

    Article  Google Scholar 

  42. M.A. Nekoui, P. Hadavi, in Optimal Control of an Active Suspension System. Power Electronics and Motion Control Conference (EPE/PEMC), 2010 14th International (IEEE, 2010), pp. T5-60–T5-63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydin Azizi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azizi, A., Ghafoorpoor Yazdi, P. (2019). Mechanical Structures: Mathematical Modeling. In: Computer-Based Analysis of the Stochastic Stability of Mechanical Structures Driven by White and Colored Noise. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-6218-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6218-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6217-0

  • Online ISBN: 978-981-13-6218-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics