Skip to main content

A New Proposal for Solving Equations of Angular Contact Ball Bearing Using Evolutionary Techniques

  • Conference paper
  • First Online:
  • 597 Accesses

Part of the book series: IFMBE Proceedings ((IFMBE,volume 71))

Abstract

Heat generation in angular contact bearings, dynamic analysis and optimization of high speed spindle bearings require to know the load-displacement values in for bearing components. The equations that describe the relationship among preload, speed, and contact angle are solved usually using iterative methods. A new method that uses genetic algorithms is proposed to solve the algebraic system with multiple dependencies with a good precision in evaluation of angular contact angle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Harris, T.A.: Rolling Bearing Analysis, 4th edn. Wiley, New York (2001)

    Google Scholar 

  2. Cao, Y., Altintas, Y.: A general method for the modeling of spindle-bearing systems. J. Mech. Des. 126, 1089–1104 (2005)

    Article  Google Scholar 

  3. Bossmanns, B., Tu, J.F.: A power flow model for high speed motorized spindles-heat generation characterization. J. Manuf. Sci. Eng. 123, 494–505 (2001)

    Article  Google Scholar 

  4. Brecher, C., Shneor, Y., Neus, S., Bakarinow, K., Fey, M.: Thermal behavior of externally driven spindle: experimental study and modelling. Engineering 7, 73–92 (2015)

    Article  Google Scholar 

  5. Than, V.-T., Huang, J.H.: Nonlinear thermal effects on high-speed spindle bearings subjected to preload. Tribol. Int. 96, 361–372 (2016)

    Article  Google Scholar 

  6. Bossmanns, B., Tu, J.F.: A thermal model for high speed motorized spindles. Int. J. Mach. Tools Manuf. 39, 1345–1366 (1999)

    Article  Google Scholar 

  7. Bossmanns, B.: Thermo-mechanical modeling of motorized spindle systems for high speed milling. Ph.D. thesis, Purdue University (1997)

    Google Scholar 

  8. Samadli, V.: Rotor-bearing system dynamics of a high speed micro end mill spindle. Ph.D. thesis, University of Florida (2006)

    Google Scholar 

  9. Yanfang, D., Zude, Z., Mingyao, L.: A new model based machine tool spindle bearing preload optimization method. Int. J. Eng. Technol. 6(11), 416–423 (2016)

    Google Scholar 

  10. Ben-Israel, A.: A Newton-Raphson method for the solution of systems of equations. J. Math. Anal. Appl. 15(2), 243–252 (1996)

    Article  MathSciNet  Google Scholar 

  11. Antoine, J.-F., Abba, G., Molinari, A.: A new proposal for explicit angle calculation in angular contact ball bearing. J. Mech. Des. 128(2), 468–478 (2005)

    Article  Google Scholar 

  12. Goulianas, K., Margaris, A., Refanidis, I., Diamantaras, K., Papadimitriou, T.: A back propagation-type neural network architecture for solving the complete n × n nonlinear algebraic system of equations. Adv. Pure Math. 6, 455–480 (2016)

    Article  Google Scholar 

  13. Min, Z., Li, Y.: A novel ant colony algorithm of solving nonlinear equations group. IERI Procedia 2, 775–780 (2012)

    Article  Google Scholar 

  14. Jaberipour, M., Khorrama, E., Karimi, B.: Particle swarm algorithm for solving systems of nonlinear equations. Comput. Math. Appl. 62, 566–576 (2011)

    Article  MathSciNet  Google Scholar 

  15. Djerou, L., Khelil, N., Aichouche, S.: Artificial bee colony algorithm for solving initial value problems. Commun. Math. Appl. 8(2), 119–125 (2017)

    Google Scholar 

  16. Pourrajabian, A., Ebrahimi, R., Mirzaei, M., Shams, M.: Applying genetic algorithms for solving nonlinear algebraic equations. Appl. Math. Comput. 219, 11483–11494 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1996)

    Book  Google Scholar 

  18. Goldberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional (1989)

    Google Scholar 

  19. Price, K., Storn, R.M.: Differential Evolution: A Practical Approach to Global Optimization. Springer (2005)

    Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gheorghita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gheorghita, A., Turnea, M., Ilea, M., Rotariu, M., Constantin, G., Arotaritei, D. (2019). A New Proposal for Solving Equations of Angular Contact Ball Bearing Using Evolutionary Techniques. In: Vlad, S., Roman, N. (eds) 6th International Conference on Advancements of Medicine and Health Care through Technology; 17–20 October 2018, Cluj-Napoca, Romania. IFMBE Proceedings, vol 71. Springer, Singapore. https://doi.org/10.1007/978-981-13-6207-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6207-1_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6206-4

  • Online ISBN: 978-981-13-6207-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics