Skip to main content

Effects of MicroRNAs from Marine Invertebrate Stress Responses to Virus Infection on Tumorigenesis

  • Chapter
  • First Online:
  • 436 Accesses

Abstract

Metabolism is a series of biochemical processes in living organisms that either produces or consumes energy. Generally, cellular metabolism in the virus-infected cells is altered to support virus growth and survival. In nature, the antiviral molecules generated during marine invertebrate stress responses to virus infection function to maintain or restore the metabolic homeostasis of host cells. As well known, tumorigenesis is accompanied with metabolic disturbance, which shares certain similarities in metabolic disorder of organisms with virus infection. Thus, the antiviral molecules may contribute to the antitumor effects in human being by maintaining or restoring the disordered metabolism of tumor cells to the normal metabolic homeostasis. MicroRNAs (miRNAs) have been identified as master regulators of many cellular processes including metabolism and virus infection, which can present different expression profiles and function as antiviral molecules by maintaining the metabolic homeostasis of host cells during virus infection. Besides, a miRNA possesses multiple target genes and can conduct the same or similar functions in different animal species by targeting various mRNAs. Therefore, miRNAs produced in the marine invertebrate stress responses to virus infection may take effects on tumorigenesis of human being.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Arnold PA, Johnson KN, White CR (2013) Physiological and metabolic consequences of viral infection in Drosophila melanogaster. J Exp Biol 216:3350–3357

    Article  CAS  PubMed  Google Scholar 

  • Axtell MJ (2008) Evolution of microRNAs and their targets: are all microRNAs biologically relevant? Biochim Biophys Acta 1779:725–734

    Article  CAS  PubMed  Google Scholar 

  • Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J (2014) MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr 144:1495–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bourguignon LYW, Wong G, Shiina M (2016) Up-regulation of histone methyltransferase, DOT1L, by matrix hyaluronan promotes microRNA-10 expression leading to tumor cell invasion and chemoresistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem 291(20):10571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzon R, Aqeilan RI et al (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A 105:5166–5171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caroline N-X, Carlos R-M, Pablo R, Celine T, Rocio C-M, Lydia T, Rafael P (2011) Dual-specificity MAP kinase phosphatases as targets of cancer treatment. Anti Cancer Agents Med Chem 11:109–132

    Article  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan JK, Blansit K, Kiet T et al (2014) The inhibition of miR-21, promotes apoptosis and chemosensitivity in ovarian cancer. Gynecol Oncol 132(3):739–744

    Article  CAS  PubMed  Google Scholar 

  • Chan J, Hu X, Wang C, Xu Q (2018) miRNA-152 targets GATA1 to regulate erythropoiesis in Chionodraco hamatus. Biochem Biophys Res Commun 501:711–717

    Article  CAS  PubMed  Google Scholar 

  • Chang DL, Wei W, Yu ZP et al (2017) miR-152-5p inhibits proliferation and induces apoptosis of liver cancer cells by up-regulating FOXO expression. Pharmazie 72(6):338–343

    Google Scholar 

  • Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y, Tian C, Gao S, Dong H, Guan D et al (2010) Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res 20:1128–1137

    Article  CAS  PubMed  Google Scholar 

  • Chen IT, Aoki T, Huang YT, Hirono I, Chen TC, Huang JY, Chang GD, Lo CF, Wang HC (2011) White spot syndrome virus induces metabolic changes resembling the Warburg effect in shrimp hemocytes in the early stage of infection. J Virol 85:12919–12928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Li H, Zeng X, Yang P, Liu X, Zhao X, Liang S (2012) Roles of microRNA on cancer cell metabolism. J Transl Med 10:228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhao J, Luo Y et al (2016) Downregulated expression of miRNA-149 promotes apoptosis in side population cells sorted from the TSU prostate cancer cell line. Oncol Rep 36(5):2587

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Zhang S, Cao J et al (2018) Shrimp antiviral mja-miR-35 targets CHI3L1 in human M2 macrophages and suppresses breast cancer metastasis. Front Immunol 9:2071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chinetti G, Fruchart JC, Staels B (2000) Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 49:497–505

    Article  CAS  PubMed  Google Scholar 

  • Chou HY, Huang CY, Wang CH, Chiang HC, Lo CF (1995) Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Dis Aquat Org 23:165–173

    Article  Google Scholar 

  • Costinean S, Zanesi N, Pekarsky Y et al (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A 103(18):7024–7029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Huang T, Zhang X (2015) RNA editing of microRNA prevents RNA-induced silencing complex recognition of target mRNA. Open Biol 5(12):150126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui Y, Yang X, Zhang X. (2017) Shrimp miR-34 from shrimp stress response to virus infection suppresses tumorigenesis of breast cancer. Mol Ther Nucleic Acids 9(C):387–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBerardinis RJ, Thompson CB (2012) Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148:1132–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008a) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    Article  CAS  PubMed  Google Scholar 

  • DeBerardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008b) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18:54–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamond DL, Syder AJ, Jacobs JM et al (2010) Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLos Pathog 6(1):e1000719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding S, Xu Y, Shen L et al (2017) MiR-155 promotes proliferation of human non-small cell lung cancer H460 cells via targeting TP53INP1. Int J Clin Exp Med 10(8):11953–11960

    Google Scholar 

  • Drakesmith H, Prentice A (2008) Viral infection and iron metabolism. Nat Rev Microbiol 6:541–552

    Article  CAS  PubMed  Google Scholar 

  • Eis PS, Tam W, Sun L et al (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 102(10):3627–3632

    Article  CAS  Google Scholar 

  • Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98

    Article  CAS  PubMed  Google Scholar 

  • Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Weidhaas JB, Brown D, Bader AG, Slack FJ (2008) The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle (Georgetown, Tex) 7:759–764

    Article  CAS  PubMed  Google Scholar 

  • Eulalio A, Huntzinger E, Nishihara T et al (2009) Deadenylation is a widespread effect of miRNA regulation. RNA 15:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farh KH, Grimson A, Jan C et al (2006) The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310(5755):1817–1821

    Article  CAS  Google Scholar 

  • Feng S, Pan W, Jin Y et al (2014) MiR-25 promotes ovarian cancer proliferation and motility by targeting LATS2. Tumour Biol 35(12):12339–12344

    Article  CAS  PubMed  Google Scholar 

  • Fort RS, Mathó C, Oliveirarizzo C et al (2018) An integrated view of the role of miR-130b/301b miRNA cluster in prostate cancer. Exp Hematol Oncol 7(1):10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frankel LB, Christoffersen NR, Jacobsen A et al (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283(2):1026–1033

    Article  CAS  PubMed  Google Scholar 

  • Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH, Thompson CB (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16:769–777

    Article  CAS  PubMed  Google Scholar 

  • Fu R, Li C, Shao Z (2014) Aberrant overexpression and regulatory mechanism of Mir-21 in diffuse large B cell lymphoma. Blood 124:5171–5171

    Google Scholar 

  • Galván-Alvarez D, Mendoza-Cano F, Hernández-López J et al (2012) Experimental evidence of metabolic disturbance in the white shrimp Penaeus vannamei, induced by the Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV). J Invertebr Pathol 111(1):60–67

    Article  PubMed  Google Scholar 

  • Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179

    Article  CAS  PubMed  Google Scholar 

  • Gibbons JJ, Abraham RT, Yu K (2009) Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin Oncol 36(Suppl 3):S3–S17

    Article  CAS  PubMed  Google Scholar 

  • Gong Y, He T, Yang L et al (2015a) The role of miR-100 in regulating apoptosis of breast cancer cells. Sci Rep 5:11650

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Ju C, Zhang X (2015b) The miR-1000-p53 pathway regulates apoptosis and virus infection in shrimp. Fish Shellfish Immunol 46:516–522

    Article  CAS  PubMed  Google Scholar 

  • Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH, Chi JT, Braich R, Manoharan M, Soutschek J, Ohler U, Cullen BR (2007) A viral microRNA functions as an orthologue of cellular miR-155. Nature 450:1096–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimson A, Farh KK, Johnston WK et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Y, Yao H, Zheng Z et al (2011) MiR-125b targets BCL3 and suppresses ovarian cancer proliferation. Int J Cancer 128(10):2274–2283

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han F, Xu J, Zhang X (2007) Characterization of an early gene (wsv477) from shrimp white spot syndrome virus (WSSV). Virus Genes 34:193–198

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Hansen TB, Wiklund ED, Bramsen JB et al (2014) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30(21):4414–4422

    Article  CAS  Google Scholar 

  • Hatley ME, Patrick DM, Garcia MR et al (2010) Modulation of K-Ras-dependent lung tumorigenesis by microRNA-21. Cancer Cell 18(3):282–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Zhang X (2012) Comprehensive characterization of viral miRNAs involved in white spot syndrome virus (WSSV) infection. RNA Biol 9:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • He Y, Ma T, Zhang X (2017a) The mechanism of synchronous precise regulation of two shrimp white spot syndrome virus targets by a viral microRNA. Front Immunol 8:1546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He Y, Sun Y, Zhang X (2017b) Noncoding miRNAs bridge virus infection and host autophagy in shrimp in vivo. FASEB J 31:2854–2868

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Chong Y, Lu S et al (2018) MicroRNA 339 promotes development of stem cell leukemia/lymphoma syndrome via downregulation of the BCL2L11 and BAX pro-apoptotic genes. Cancer Res 78(13):3522–3531

    Google Scholar 

  • Huang T, Zhang X (2012) Functional analysis of a crustacean microRNA in host-virus interactions. J Virol 86:12997–13004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang T, Zhang X (2013) Host defense against DNA virus infection in shrimp is mediated by the siRNA pathway. Eur J Immunol 43:137–146

    Article  CAS  PubMed  Google Scholar 

  • Huang T, Xu D, Zhang X (2012) Characterization of host microRNAs that respond to DNA virus infection in a crustacean. BMC Genomics 13:159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang T, Cui Y, Zhang X (2014) Involvement of viral microRNA in the regulation of antiviral apoptosis in shrimp. J Virol 88:2544–2554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang JY, Kang ST, Chen IT et al (2017a) Shrimp miR-10a is co-opted by white spot syndrome virus to increase viral gene expression and viral replication. Front Immunol 8:1084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang Y, Han K, Wang W et al (2017b) Host microRNA-217 promotes white spot syndrome virus infection by targeting tube in the Chinese mitten crab (Eriocheir sinensis). Front Cell Infect Microbiol 7:164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6:111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4:143–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwanaga S (1992) Molecular mechanism of hemolymph clotting system in limulus. Thromb Res 68:1–32

    Article  CAS  PubMed  Google Scholar 

  • Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M (2012) Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. J Dairy Sci 95:4831–4841

    Article  CAS  PubMed  Google Scholar 

  • Jin M, Zhang T, Liu C et al (2014) miRNA-128 suppresses prostate cancer by inhibiting BMI-1 to inhibit tumor-initiating cells. Cancer Res 74(15):4183–4195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HW, Wang F, Wei Q et al (2012) miR-20a promotes migration and invasion by regulating TNKS2 in human cervical cancer cells. FEBS Lett 586(6):897–904

    Article  CAS  PubMed  Google Scholar 

  • Kawabata S (1996) The clotting cascade and defense molecules found in the hemolymph of the horseshoe crab. In: New directions in invertebrate immunology. SOS Publications, Fair Haven, pp 255–283

    Google Scholar 

  • Kawauchi K, Araki K, Tobiume K, Tanaka N (2008) P53 regulates glucose metabolism through an IKK-NF-kappa B pathway and inhibits cell transformation. Nat Cell Biol 10:611–618

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Dang CV (2006) Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 66(18):8927–8930

    Article  CAS  PubMed  Google Scholar 

  • Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozloski GA, Jiang X, Bhatt S et al (2016) miR-181a negatively regulates NF-ΰB signaling and affects activated B-cell-like diffuse large B-cell lymphoma pathogenesis. Blood 127(23):2856–2866

    Article  CAS  PubMed  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  CAS  Google Scholar 

  • LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, Chapman L, Thornburg CD, Telen MJ, Ohler U, Nicchitta CV et al (2012) Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe 12:187–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau K, Lai KP, Bao JY, Zhang N, Tse A, Tong A, Li JW, Lok S, Kong RY, Lui WY et al (2014) Identification and expression profiling of microRNAs in the brain, liver and gonads of marine medaka (Oryzias melastigma) and in response to hypoxia. PLoS One 9:e110698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leung AKL, Sharp PA (2007) microRNAs: a safeguard against turmoil? Cell 130(4):581–585

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2009) Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 284:15676–15684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Liang S, Yu H et al (2010) An inhibitory effect of miR-22 on cell migration and invasion in ovarian cancer. Gynecol Oncol 119(3):543–548

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yuan L, Luo J et al (2013) MiR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1. Clin Exp Med 13(2):109–117

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Zen K, Zhang J, Zhang CY, Chen X (2013) New roles for microRNAs in cross-species communication. RNA Biol 10:367–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YC, Lin JF, Tsai TF et al (2016) Tumor suppressor miRNA-204-5p promotes apoptosis by targeting BCL2 in prostate cancer cells. Asian J Surg 40(5):396–406

    Article  PubMed  Google Scholar 

  • Liu C, Wang J, Zhang X (2014) The involvement of MiR-1-clathrin pathway in the regulation of phagocytosis. PLoS One 9(6):e98747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu C, Wang C, Ji W et al (2016) miR-1297 promotes cell proliferation by inhibiting RB1 in liver cancer. Oncol Lett 12(6):5177–5182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Zhang S, Wang Q et al (2017a) Tumor suppressor miR-1 inhibits tumor growth and metastasis by simultaneously targeting multiple genes. Oncotarget 8(26):42043–42060

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhang Y, Wu H et al (2017b) miR-10a suppresses colorectal cancer metastasis by modulating the epithelial-to-mesenchymal transition and anoikis. Cell Death Dis 8(4):e2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–844

    Article  CAS  PubMed  Google Scholar 

  • Luciano DJ, Mirsky H, Vendetti NJ et al (2004) RNA editing of a miRNA precursor. RNA-a Publ RNA Soc 10(8):1174–1177

    Article  CAS  Google Scholar 

  • Lund AH (2010) miR-10 in development and cancer. Cell Death Differ 17(2):209–214

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Lin J, Qian J et al (2014) MiR-378 promotes the migration of liver cancer cells by down-regulating fus expression. Cell Physiol Biochem 34(6):2266–2274

    Article  CAS  PubMed  Google Scholar 

  • Malizia AP, Wang DZ (2011) miRNA in cardiomyocyte development. Wiley Interdiscip Rev Syst Biol Med 3(2):183

    Google Scholar 

  • Mathupala SP, Heese C, Pedersen PL (1997) Glucose catabolism in cancer cells the type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem 272:22776

    Article  CAS  PubMed  Google Scholar 

  • Mayes P, Bender D (2003) Overview of metabolism. Shimonoseki City Univ Rev 54:51–60

    Google Scholar 

  • Medigeshi GR, Hirsch AJ, Streblow DN, Nikolich-Zugich J, Nelson JA (2008) West Nile virus entry requires cholesterol-rich membrane microdomains and is independent of alpha v beta 3 integrin. J Virol 82:5212–5219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao S, Mao X, Zhao S et al (2017) miR-217 inhibits laryngeal cancer metastasis by repressing AEG-1 and PD-L1 expression. Oncotarget 8(37):62143–62153

    Google Scholar 

  • Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13:1016–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mlotshwa S, Pruss GJ, MacArthur JL, Endres MW, Davis C, Hofseth LJ, Pena MM, Vance V (2015) A novel chemopreventive strategy based on therapeutic microRNAs produced in plants. Cell Res 25:521–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD (2006) Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2:1165–1175

    Article  CAS  Google Scholar 

  • Pacheco AR, Sperandio V (2009) Inter-kingdom signaling: chemical language between bacteria and host. Curr Opin Microbiol 12:192–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang F, Zha R, Zhao Y et al (2014) MiR-525-3p enhances the migration and invasion of liver cancer cells by downregulating ZNF395. PLoS One 9(3):e90867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng Y, Guo JJ, Liu YM et al (2014) MicroRNA-34A inhibits the growth, invasion and metastasis of gastric cancer by targeting PDGFR and MET expression. Biosci Rep 34(3):247–256

    Article  CAS  Google Scholar 

  • Robinzon S, Dafa-Berger A, Dyer MD, Paeper B, Proll SC, Teal TH, Rom S, Fishman D, Rager-Zisman B, Katze MG (2009) Impaired cholesterol biosynthesis in a neuronal cell line persistently infected with measles virus. PLoS Pathog 83:5495–5504

    CAS  Google Scholar 

  • Romero M, Gapihan G, Castrovega LJ et al (2017) Primary mediastinal large B-cell lymphoma: transcriptional regulation by miR-92a through FOXP1 targeting. Oncotarget 8(10):16243–16258

    Article  PubMed  Google Scholar 

  • Ru P, Steele R, Newhall P et al (2012) miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol Cancer Ther 11(5):1166–1173

    Article  CAS  PubMed  Google Scholar 

  • Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    Article  CAS  PubMed  Google Scholar 

  • Santi CD, Greene CM (2015) The biology of microRNA. Springer, Cham, pp 3–19

    Google Scholar 

  • Santos CR, Schulze A (2012) Lipid metabolism in cancer. FEBS J 279:2610–2623

    Article  CAS  PubMed  Google Scholar 

  • Schirle NT, Sheu-Gruttadauria J, Macrae IJ (2014) Gene regulation. Structural basis for microRNA targeting. Science 346(6209):608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyfried TN, Shelton LM (2010) Cancer as a metabolic disease. Nutri Metab 7(1):7–7

    Article  CAS  Google Scholar 

  • Shahid S, Kim G, Johnson NR et al (2018) MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553(7686):82–85

    Article  CAS  PubMed  Google Scholar 

  • Shen Q, Bae HJ, Eun JW et al (2014a) MiR-101 functions as a tumor suppressor by directly targeting nemo-like kinase in liver cancer. Cancer Lett 344(2):204–211

    Article  CAS  PubMed  Google Scholar 

  • Shen W, Song M, Liu J et al (2014b) MiR-26a promotes ovarian cancer proliferation and tumorigenesis. PLoS One 9(1):e86871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi Q, Zhou Z, Ye N et al (2017) MiR-181a inhibits non-small cell lung cancer cell proliferation by targeting CDK1. Cancer Biomark 20(5):1–8

    Google Scholar 

  • Shirasaki T, Honda M, Shimakami T, Horii R, Yamashita T, Sakai Y, Sakai A, Okada H, Watanabe R, Murakami S et al (2013) MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells. J Virol 87:5270–5286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu L, Zhang X (2017) Shrimp miR-12 suppresses white spot syndrome virus infection by synchronously triggering antiviral phagocytosis and apoptosis pathways. Front Immunol 8:855

    Google Scholar 

  • Shu L, Li C, Zhang X (2016) The role of shrimp miR-965 in virus infection. Fish Shellfish Immunol 54:427–434

    Article  CAS  PubMed  Google Scholar 

  • Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26:2799–2803

    Article  CAS  PubMed  Google Scholar 

  • Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC, Baker HV, Renne R (2007) Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 81:12836–12845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song G, Ouyang G, Bao S (2005) The activation of AKT/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperandio V (2004) Striking a balance: inter-kingdom cell-to-cell signaling, friendship or war? Trends Immunol 25:505–507

    Article  CAS  PubMed  Google Scholar 

  • Stark A, Brennecke J, Russell RB, Cohen SM (2003) Identification of Drosophila microRNA targets. PLoS Biol 1:e60

    Article  PubMed  PubMed Central  Google Scholar 

  • Su MA, Huang YT, Chen IT, Lee DY, Hsieh YC, Li CY, Ng TH, Liang SY, Lin SY, Huang SW et al (2014) An invertebrate Warburg effect: a shrimp virus achieves successful replication by altering the host metabolome via the PI3K-Akt-mTOR pathway. PLoS Pathog 10:e1004196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, Sun Z, Zheng X (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 582:1564–1568

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Bai Y, Zhang F et al (2010) miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7. Biochem Biophys Res Commun 391(3):1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Chu Q, Zhao X, Zhou Z, Bi D, Xu T (2018) microRNA-375 modulates the NF-kappaB pathway in miiuy croaker by targeting DUSP1 gene. Dev Comp Immunol 86:196–202

    Article  CAS  PubMed  Google Scholar 

  • Tinay I, Tan M, Gui B et al (2018) Functional roles and potential clinical application of miRNA-345-5p in prostate cancer. Prostate 78(12):927–937

    Article  CAS  PubMed  Google Scholar 

  • Vinogradova IA, Anisimov VN, Bukalev AV, Semenchenko AV, Zabezhinski MA (2009) Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats. Aging 1:855–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker PJ, Winton JR (2010) Emerging viral diseases of fish and shrimp. Vet Res 41:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker PJ, Gudkovs N, Mohan CV, Raj VS, Pradeep B, Sergeant E, Mohan ABC, Ravibabu G, Karunasagar I, Santiago TC (2011) Longitudinal disease studies in small-holder black tiger shrimp (Penaeus monodon) ponds in Andhra Pradesh, India. II. Multiple WSSV genotypes associated with disease outbreaks in ponds seeded with uninfected postlarvae. Aquaculture 319:18–24

    Article  Google Scholar 

  • Wang F, Li Y, Zhou J et al (2011) miR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. Am J Pathol 179(5):2580–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  • Weiler J, Hunziker J, Hall J (2006) Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther 13:496–502

    Article  CAS  PubMed  Google Scholar 

  • Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise DR, Deberardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, Mcmahon SB (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105:18782–18787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Jin H, Yang Z et al (2010) MiR-150 promotes gastric cancer proliferation by negatively regulating the pro-apoptotic gene EGR2. Biochem Biophys Res Commun 392(3):340–345

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zhang J, He Y, Zhou J, Yan J, Jiang M (2017) A metabolic study in hepatopancreas of Litopenaeus vannamei response to white spot syndrome virus. Int Aquat Res 9:195–201

    Article  Google Scholar 

  • Xia B, Yang S, Liu T et al (2015) miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting cyclin D1 and CDK6. Mol Cancer 14(1):1–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie H, Zhao Y, Caramuta S et al (2012) miR-205 expression promotes cell proliferation and migration of human cervical cancer cells. PLoS One 7(10):e46990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Han F, Zhan X (2007) Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA. Antivir Res 73:126–131

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhang W, Lv Q et al (2015) Overexpression of miR-21 promotes the proliferation and migration of cervical cancer cells via the inhibition of PTEN. Oncol Rep 33(6):3108–3116

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Yang L, Zhao Z, Wang J, Zhang X (2012a) Signature miRNAs involved in the innate immunity of invertebrates. PLoS One 7(6):e39015. https://doi.org/10.1371/journal.pone.0039015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Zheng Z, Zhao L et al (2012b) Downregulation of Mdm2 and Mdm4 enhances viral gene expression during adenovirus infection. Cell Cycle 11(3):582–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Li Y, Gao J, Zhang T, Li S, Luo A, Chen H, Ding F, Wang X, Liu Z (2013) MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene 32:4294–4303

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Yang G, Zhang X (2014) The miR-100-mediated pathway regulates apoptosis against virus infection in shrimp. Fish Shellfish Immunol 40:146–153

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Gong Y, Wang Q et al (2015) The role of miR-100-mediated notch pathway in apoptosis of gastric tumor cells. Cell Signal 27(6):1087–1101

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Wei J, Zhang S, Zhang X (2017a) Shrimp miR-S8 suppresses the stemness of human melanoma stem-like cells by targeting the transcription factor YB-1. Cancer Res 77:5543–5553

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Gong Y, Wang Q et al (2017b) miR-100 antagonism triggers apoptosis by inhibiting ubiquitination-mediated p53 degradation. Oncogene 36(8):1023–1037

    Article  CAS  PubMed  Google Scholar 

  • Yekta S, Shih IH, Bartel D (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304(5670):594–596

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Li Z, Gao C et al (2008) miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Investig J Tech Methods and Pathol 88(12):1358

    Article  CAS  Google Scholar 

  • Zhang L, Hou D, Chen X et al (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22(1):107

    Article  CAS  PubMed  Google Scholar 

  • Zhang CM, Zhao J, Deng HY (2013) MiR-155 promotes proliferation of human breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1. J Biomed Sci 20(1):79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Huang F, Wang J et al (2015) MiR-15b mediates liver cancer cells proliferation through targeting BCL-2. Int J Clin Exp Pathol 8(12):15677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Liu X, Liu C, Wei J, Yu H, Dong B (2018) Identification and characterization of microRNAs involved in ascidian larval metamorphosis. BMC Genomics 19:168

    Google Scholar 

  • Zhao H, Cheng Y, Dong S et al (2017) Down regulation of miR-143 promotes radiation – induced thymic lymphoma by targeting B7H1. Toxicol Lett 280:116–124

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Qi T, Yang D et al (2013) microRNA-9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin D1 and Ets1. PLoS One 8(1):e55719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Tian Y, Li J et al (2013) miR-206 is down-regulated in breast cancer and inhibits cell proliferation through the up-regulation of cyclinD2. Biochem Biophys Res Commun 433(2):207–212

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Li X, Liu J et al (2015) Honeysuckle-encoded atypical microRNA2911 directly targets influenza a viruses. Cell Res 25(1):39–49

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Yue Y, Wang R et al (2017) MicroRNA-145 inhibits tumorigenesis and invasion of cervical cancer stem cells. Int J Oncol 50(3):853

    Article  CAS  PubMed  Google Scholar 

  • Zwerschke W, Mazurek S, Massimi P, Banks L, Eigenbrodt E, Jansen-Durr P (1999) Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. Proc Natl Acad Sci U S A 96:1291–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gong, Y., Cui, Y., Zhang, X. (2019). Effects of MicroRNAs from Marine Invertebrate Stress Responses to Virus Infection on Tumorigenesis. In: Zhang, X. (eds) Virus Infection and Tumorigenesis. Springer, Singapore. https://doi.org/10.1007/978-981-13-6198-2_8

Download citation

Publish with us

Policies and ethics