Skip to main content

Generation and Phenotyping of Progranulin-Deficient Mice

  • Chapter
  • First Online:
Progranulin and Central Nervous System Disorders
  • 279 Accesses

Abstract

Progranulin (PGRN) is a multifunctional growth factor involved in many physiological and pathological processes in the brain. PGRN is expressed in a wide variety of tissues and organs including neural tissues, reproductive organs, endocrine organs, and gastrointestinal tract. We have previously reported that PGRN is one of the major factors involved in masculinization of the brain of rodents during neonatal period. To further evaluate the masculinizing role of PGRN, we have generated a line of PGRN-deficient mice. Male PGRN-deficient mice showed decreased ejaculation incidence and increased anxiety, implying the disrupted masculinization of the brain. We secondly focused on the PGRN function in the hippocampus and the cerebellum as those are the regions with high expression of PGRN in the brain. In the PGRN-deficient mice, the facilitative effect of voluntary exercise on adult hippocampal neurogenesis was blunted while the suppressive effect of immune challenge was exacerbated. Furthermore, PGRN-deficient mice showed a higher density of Purkinje cell dendrites in the molecular layer of the cerebellum, which possibly leads to the motor dysfunction we detected in those mice. In conclusion, we have demonstrated that PGRN functions to develop and maintain the neuronal circuits not only in the neonatal but also in the manured brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asakura R, Matsuwaki T, Shim JH, Yamanouchi K, Nishihara M (2011) Involvement of progranulin in the enhancement of hippocampal neurogenesis by voluntary exercise. Neuroreport 22(17):881–886

    Article  PubMed  Google Scholar 

  • Asano M, Furukawa K, Kido M, Matsumoto S, Umesaki Y, Kochibe N, Iwakura Y (1997) Growth retardation and early death of β-1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J 16(8):1850–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baba T, Nemoto H, Watanabe K, Arai Y, Gerton GL (1993) Exon/intron organization of the gene encoding the mouse epithelin/granulin precursor (acrogranin). Eur J Biochem 322(2):89–94

    CAS  Google Scholar 

  • Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J, Sadovnick AD, Rollinson S, Cannon A, Dwosh E, Neary D, Melquist S, Richardson A, Dickson D, Berger Z, Eriksen J, Robinson T, Zehr C, Dickey CA, Crook R, McGowan E, Mann D, Boeve B, Feldman H, Hutton M (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919

    Article  CAS  PubMed  Google Scholar 

  • Bakker J, Honda S, Harada N, Balthazart J (2004) Restoration of male sexual behavior by adult exogenous estrogens in male aromatase knockout mice. Horm Behav 46(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Barouk S, Hintz T, Li P, Duffy AM, MacLusky NJ, Scharfman HE (2011) 17β-estradiol increases astrocytic vascular endothelial growth factor (VEGF) in adult female rat hippocampus. Endocrinology 152(5):1745–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateman A, Belcourt D, Bennett H, Lazure C, Solomon S (1990) Granulins, a novel class of peptides from leukocytes. Biochem Biophys Res Commun 173(3):1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Benarroch EE (2005) Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc 80(10):1326–1338

    Article  CAS  PubMed  Google Scholar 

  • Bennett M, Rakheja D (2013) The neuronal ceroid-lipofuscinoses. Dev Disabil Res Rev 17(3):254–259

    Article  PubMed  Google Scholar 

  • Bhandari V, Palfree RG, Bateman A (1992) Isolation and sequence of the granulin precursor cDNA from human bone marrow reveals tandem cysteine-rich granulin domains. Proc Natl Acad Sci U S A 89(5):1715–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boothe RG, Greenough WT, Lund JS, Wrege K (1979) A quantitative investigation of spine and dendrite development of neurons in visual cortex (area 17) of Macaca nemestrina monkeys. J Comp Neurol 186(3):473–489

    Article  CAS  PubMed  Google Scholar 

  • Bremner J, Krystal J, Southwick S, Charney D (1996) Noradrenergic mechanisms in stress and anxiety: I. Preclinical studies. Synapse 23(1):28–38

    Article  CAS  PubMed  Google Scholar 

  • Chiba S, Suzuki M, Yamanouchi K, Nishihara M (2007) Involvement of granulin in estrogen-induced neurogenesis in the adult rat hippocampus. J Reprod Dev 53(2):297–307

    Article  CAS  PubMed  Google Scholar 

  • Chiba S, Matsuwaki T, Yamanouchi K, Nishihara M (2009) Alteration in anxiety with relation to the volume of the locus coeruleus in progranulin-deficient mice. J Reprod Dev 55(5):518–522

    Article  PubMed  Google Scholar 

  • Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, Rademakers R, Vandenberghe R, Dermaut B, Martin JJ, van Duijn C, Peeters K, Sciot R, Santens P, De Pooter T, Mattheijssens M, Van den Broeck M, Cuijt I, Vennekens K, De Deyn PP, Kumar-Singh S, Van Broeckhoven C (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442(7105):920–924

    Article  CAS  PubMed  Google Scholar 

  • Doke M, Matsuwaki T, Yamanouchi K, Nishihara M (2016) Lack of estrogen receptor α in astrocytes of progranulin-deficient mice. J Reprod Dev 62(6):547–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horai R, Asano M, Sudo K, Kanuka H, Suzuki M, Nishihara M, Takahashi M, Iwakura Y (1998) Production of mice deficient in genes for interleukin (IL)-1α, IL-1β, IL-1α/β, and IL-1 receptor antagonist shows that IL-1β is crucial in turpentine-induced fever development and glucocorticoid secretion. J Exp Med 187(9):1463–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu SY, Tai CC, Li YH, Wu JL (2012) Progranulin compensates for blocked IGF-1 signaling to promote myotube hypertrophy in C2C12 myoblasts via the PI3K/Akt/mTOR pathway. FEBS Lett 586(19):3485–3492

    Article  CAS  PubMed  Google Scholar 

  • Ishunina TA, Swaab DF (1999) Vasopressin and oxytocin neurons of the human supraoptic and paraventricular nucleus: size changes in relation to age and sex. J Clin Endocrinol Metab 84(12):4637–4644

    Article  CAS  PubMed  Google Scholar 

  • Kayasuga Y, Chiba S, Suzuki M, Kikusui T, Matsuwaki T, Yamanouchi K, Kotaki H, Horai R, Iwakura Y, Nishihara M (2007) Alteration of behavioural phenotype in mice by targeted disruption of the progranulin gene. Behav Brain Res 185(2):110–118

    Article  CAS  PubMed  Google Scholar 

  • Kikusui T, Takeuchi Y, Mori Y (2004) Early weaning induces anxiety and aggression in adult mice. Physiol Behav 81(1):37–42

    Article  CAS  PubMed  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Tang Y, Feng J (2011) Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system. Life Sci 89(5–6):141–146

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M (2017) Involvement of progranulin in modulating neuroinflammatory responses but not neurogenesis in the hippocampus of aged mice. Mol Neurobiol 54(5):3717–3728

    Article  CAS  PubMed  Google Scholar 

  • Matsuwaki T, Asakura R, Suzuki M, Yamanouchi K, Nishihara M (2011) Age- dependent changes in progranulin expression in the mouse brain. J Reprod Dev 57(1):113–119

    Article  PubMed  Google Scholar 

  • Matsuwaki T, Kobayashi A, Mase K, Nakamura K, Nakano S, Miyoshi T, Yamanouchi K, Nishihara M (2015) Possible involvement of the cerebellum in motor-function impairment in progranulin-deficient mice. Neuroreport 26(14):877–881

    Article  CAS  PubMed  Google Scholar 

  • Mongeau R, Blier P, de Montigny C (1997) The serotonergic and noradrenergic systems of the hippocampus: their interactions and the effects of antidepressant treatments. Brain Res Rev 23(3):145–195

    Article  CAS  PubMed  Google Scholar 

  • Nedachi T, Kawai T, Matsuwaki T, Yamanouchi K, Nishihara M (2011) Progranulin enhances neural progenitor cell proliferation through glycogen synthase kinase 3β phosphorylation. Neuroscience 185:106–115

    Article  CAS  PubMed  Google Scholar 

  • Petkau TL, Neal SJ, Milnerwood A, Mew A, Hill AM, Orban P, Gregg J, Lu G, Feldman HH, Mackenzie IR, Raymond LA, Leavitt BR (2012) Synaptic dysfunction in progranulin-deficient mice. Neurobiol Dis 45(2):711–722

    Article  CAS  PubMed  Google Scholar 

  • Pinos H, Collado P, Rodríguez-Zafra M, Rodríguez C, Segovia S, Guillamón A (2001) The development of sex differences in the locus coeruleus of the rat. Brain Res Bull 56(1):73–78

    Article  CAS  PubMed  Google Scholar 

  • Platania P, Seminara G, Aronica E, Troost D, Vincenza Catania M, Angela Sortino M (2005) 17β-estradiol rescues spinal motoneurons from AMPA-induced toxicity: a role for glial cells. Neurobiol Dis 20(2):461–470

    Article  CAS  PubMed  Google Scholar 

  • Riedl L, Mackenzie IR, Förstl H, Kurz A, Diehl-Schmid J (2014) Frontotemporal lobar degeneration: current perspectives. Neuropsychiatr Dis Treat 10:297–310

    PubMed  PubMed Central  Google Scholar 

  • Rioja J, Santín L, López-Barroso D, Dona A, Ulzurrun E, Aguirre J (2007) 5-HT1A receptor activation counteracted the effect of acute immobilization of noradrenergic neurons in the rat locus coeruleus. Neurosci Lett 412(1):84–88

    Article  CAS  PubMed  Google Scholar 

  • Ryan CL, Baranowski DC, Chitramuthu BP, Malik S, Li Z, Cao M, Minotti S, Durham HD, Kay DG, Shaw CA, Bennett HP, Bateman A (2009) Progranulin is expressed within motor neurons and promotes neuronal cell survival. BMC Neurosci 10:130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, Facchinetti V, Sabatini DM, Ballabio A (2012) A lysosome-to-nucleus signaling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31(5):1095–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M, Rossi G, Pareyson D, Mole SE, Staropoli JF, Sims KB, Lewis J, Lin WL, Dickson DW, Dahl HH, Bahlo M, Berkovic SF (2012) Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet 90(6):1102–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soriano P, Montogomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64(4):693–702

    Article  CAS  PubMed  Google Scholar 

  • Stranahan A, Khalil D, Gould E (2007) Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus 17(11):1017–1022

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Bannai M, Matsumuro M, Furuhata Y, Ikemura R, Kuranaga E, Kaneda Y, Nishihara M, Takahashi M (2000) Suppression of copulatory behavior by intracerebroventricular infusion of antisense oligodeoxynucleotide of granulin in neonatal male rats. Physiol Behav 68(5):707–713

    Article  CAS  PubMed  Google Scholar 

  • Swarup V, Phaneuf D, Bareil C, Robertson J, Rouleau GA, Kriz J, Julien JP (2011) Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain 134(Pt 9):2610–2626

    Article  PubMed  Google Scholar 

  • Tanaka Y, Matsuwaki T, Yamanouchi K, Nishihara M (2013) Increased lysosomal biogenesis in activated microglia and exacerbated neuronal damage after traumatic brain injury in progranulin-deficient mice. Neuroscience 250:8–19

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Chambers JK, Matsuwaki T, Yamanouchi K, Nishihara M (2014) Possible involvement of lysosomal dysfunction in pathological changes of the brain in aged progranulin-deficient mice. Acta Neuropathol Commun 2:78

    Google Scholar 

  • Van Damme P, Van Hoecke A, Lambrechts D, Vanacker P, Bogaert E, van Swieten J, Carmeliet P, Van Den Bosch L, Robberecht W (2008) Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J Cell Biol 181(1):37–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wersinger SR, Sannen K, Villalba C, Lubahn DB, Rissman EF, De Vries GJ (1997) Masculine sexual behavior is disrupted in male and female mice lacking a functional estrogen receptor c gene. Horm Behav 32(3):176–183

    Article  CAS  PubMed  Google Scholar 

  • Xu SL, Bi CW, Choi RC, Zhu KY, Miernisha A, Dong TT, Tsim KW (2013) Flavonoids induce the synthesis and secretion of neurotrophic factors in cultured rat astrocytes: a signaling response mediated by estrogen receptor. Evid Based Complement Alternat Med 2013:127075

    PubMed  PubMed Central  Google Scholar 

  • Yagi T, Nada S, Watanabe N, Tamemoto H, Kohmura N, Ikawa Y, Aizawa S (1993) A novel negative selection for homologous recombinants using diphtheria toxin A fragment gene. Anal Biochem 214(1):77–86

    Article  CAS  PubMed  Google Scholar 

  • Yin F, Dumont M, Banerjee R, Ma Y, Li H, Lin MT, Beal MF, Nathan C, Thomas B, Ding A (2010) Behavioral deficits and progressive neuropathology in progranulin-deficient mice: a mouse model of frontotemporal dementia. FASEB J 24(12):4639–4647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Matsuwaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsuwaki, T. (2019). Generation and Phenotyping of Progranulin-Deficient Mice. In: Hara, H., Hosokawa, M., Nakamura, S., Shimohata, T., Nishihara, M. (eds) Progranulin and Central Nervous System Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-13-6186-9_9

Download citation

Publish with us

Policies and ethics