Skip to main content

Neural Stem/Progenitor Cells and Progranulin

  • Chapter
  • First Online:
Progranulin and Central Nervous System Disorders
  • 288 Accesses

Abstract

Progranulin (PGRN) is widely expressed in the body, including the central nervous system (CNS), and controls cell growth, proliferation, differentiation, cell death, etc. In this chapter, I discuss recent findings about the roles of PGRN in neurogenesis, with a focus on its roles in neural stem and progenitor cells (NSPCs). Accumulated evidence clearly suggests that PGRN engages in neurogenesis; however, the precise mechanisms remain largely elusive. One reason is that many different cells in the CNS produce PGRN and can also react to PGRN. This produces a complex challenge to understand PGRN-dependent neurogenesis in vivo. Therefore, I initially introduce recent studies that analyze the roles of PGRN in neurogenesis. Although details about PGRN-dependent signaling in NSPCs are widely unknown, recent studies describe the physiological receptors for PGRN. The reported PGRN receptors also have binding capacities for other factors; therefore, I discuss the potential interaction between PGRN and other growth factors that control the cellular fates of NSPCs. Moreover, levels of PGRN potentially control distribution of the extracellular matrix in the CNS; conversely, the abundance of the extracellular matrix may modulate PGRN action. Therefore, the relationship between PGRN and the microenvironment, or niche, which plays a crucial role in determining the NSPC fates, is also discussed. Overall, recent studies gradually suggest that PGRN directly or indirectly influences NSPCs; however, further experiments are required to unveil the precise contribution of PGRN to neurogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alquézar C, de la Encarnación A, Moreno F, López de Munain A, Martín-Requero Á (2016) Progranulin deficiency induces overactivation of WNT5A expression via TNF-α/NF-κB pathway in peripheral cells from frontotemporal dementia-linked granulin mutation carriers. J Psychiatry Neurosci 41(4):225–239

    Article  PubMed  Google Scholar 

  • Altman J (1962) Are new neurons formed in the brains of adult mammals? Science 135(3509):1127–1128

    Article  CAS  PubMed  Google Scholar 

  • Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y (1999) Perlecan is essential for cartilage and cephalic development. Nat Genet 23:354–358

    Article  CAS  PubMed  Google Scholar 

  • Arikawa-Hirasawa E, Wilcox WR, Le AH, Silverman N, Govindraj P, Hassell JR, Yamada Y (2001) Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene. Nat Genet 27:431–434

    Article  CAS  PubMed  Google Scholar 

  • Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, Engel J, Engvall E, Hohenester E, Jones JC, Kleinman HK, Marinkovich MP, Martin GR, Mayer U, Meneguzzi G, Miner JH, Miyazaki K, Patarroyo M, Paulsson M, Quaranta V, Sanes JR, Sasaki T, Sekiguchi K, Sorokin LM, Talts JF, Tryggvason K, Uitto J, Virtanen I, von der Mark K, Wewer UM, Yamada Y, Yurchenco PD (2005) A simplified laminin nomenclature. Matrix Biol 24(5):326–332

    Article  CAS  PubMed  Google Scholar 

  • Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J, Sadovnick AD, Rollinson S, Cannon A, Dwosh E, Neary D, Melquist S, Richardson A, Dickson D, Berger Z, Eriksen J, Robinson T, Zehr C, Dickey CA, Crook R, McGowan E, Mann D, Boeve B, Feldman H, Hutton M (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919

    Article  CAS  PubMed  Google Scholar 

  • Bothwell M (2014) NGF, BDNF, NT3, and NT4. Handb Exp Pharmacol 220:3–15

    Article  CAS  PubMed  Google Scholar 

  • Cadieux B, Chitramuthu BP, Baranowski D, Bennett HP (2005) The zebrafish progranulin gene family and antisense transcripts. BMC Genomics 6:156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4(4):299–309

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Palmer TD (2013) Differential roles of TNFR1 and TNFR2 signaling in adult hippocampal neurogenesis. Brain Behav Immun 30:45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Chang J, Deng Q, Xu J, Nguyen TA, Martens LH, Cenik B, Taylor G, Hudson KF, Chung J, Yu K, Yu P, Herz J, Farese RV Jr, Kukar T, Tansey MG (2013) Progranulin does not bind tumor necrosis factor (TNF) receptors and is not a direct regulator of TNF-dependent signaling or bioactivity in immune or neuronal cells. J Neurosci 33(21):9202–9213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, Rademakers R, Vandenberghe R, Dermaut B, Martin JJ, van Duijn C, Peeters K, Sciot R, Santens P, De Pooter T, Mattheijssens M, Van den Broeck M, Cuijt I, Vennekens K, De Deyn PP, Kumar-Singh S, Van Broeckhoven C (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Saxe MD, Gallina IS, Gage FH (2009) Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci 29(43):13532–13542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13(5):543–550

    Article  CAS  PubMed  Google Scholar 

  • Domeniconi M, Hempstead BL, Chao MV (2007) Pro-NGF secreted by astrocytes promotes motor neuron cell death. Mol Cell Neurosci 34(2):271–279

    Article  CAS  PubMed  Google Scholar 

  • Dupret D, Revest JM, Koehl M, Ichas F, De Giorgi F, Costet P, Abrous DN, Piazza PV (2008) Spatial relational memory requires hippocampal adult neurogenesis. PLoS One 3(4):e1959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ekblom P, Lonai P, Talts JF (2003) Expression and biological role of laminin-1. Matrix Biol 22(1):35–47

    Article  CAS  PubMed  Google Scholar 

  • Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Friedman WJ, Greene LA (1999) Neurotrophin signaling via Trks and p75. Exp Cell Res 253(1):131–142

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Joselin AP, Wang L, Kar A, Ray P, Bateman A, Goate AM, Wu JY (2010) Progranulin promotes neurite outgrowth and neuronal differentiation by regulating GSK-3β. Protein Cell 1(6):552–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz AK, Scheffler B, Chen HX, Wang S, Suslov O, Xiang H, Brüstle O, Roper SN, Steindler DA (2006) Temporally restricted substrate interactions direct fate and specification of neural precursors derived from embryonic stem cells. Proc Natl Acad Sci U S A 103(29):11063–11068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez EM, Mongiat M, Slater SJ, Baffa R, Iozzo R (2003) V. (2003) A novel interaction between Perlecan protein core and progranulin: potential effects on tumor growth. J Biol Chem 278:38113–38116

    Article  CAS  PubMed  Google Scholar 

  • Gould E, Tanapat P (1999) Stress and hippocampal neurogenesis. Biol Psychiatry 46(11):1472–1479

    Article  CAS  PubMed  Google Scholar 

  • Gullberg D, Ekblom P (1995) Extracellular matrix and its receptors during development. Int J Dev Biol 39(5):845–854

    CAS  PubMed  Google Scholar 

  • Guo F, Lai Y, Tian Q, Lin EA, Kong L, Liu C (2010) Granulin-epithelin precursor binds directly to ADAMTS-7 and ADAMTS-12 and inhibits their degradation of cartilage oligomeric matrix protein. Arthritis Rheum 62:2023–2036

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Bateman A (2003) Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med (Berl) 81(10):600–612

    Article  CAS  Google Scholar 

  • He Z, Ong CH, Halper J, Bateman A (2003) Progranulin is a mediator of the wound response. Nat Med 9(2):225– 229

    Google Scholar 

  • Hempstead BL (2014) Deciphering proneurotrophin actions. Handb Exp Pharmacol 220:17–32

    Article  CAS  PubMed  Google Scholar 

  • Hu F, Padukkavidana T, Vægter CB, Brady OA, Zheng Y, Mackenzie IR, Feldman HH, Nykjaer A, Strittmatter SM (2010) Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 68(4):654–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichikawa N, Iwabuchi K, Kurihara H, Ishii K, Kobayashi T, Sasaki T, Hattori N, Mizuno Y, Hozumi K, Yamada Y, Arikawa-Hirasawa E (2009) Binding of laminin-1 to monosialoganglioside GM1 in lipid rafts is crucial for neurite outgrowth. J Cell Sci 122(Pt 2):289–299

    Article  CAS  PubMed  Google Scholar 

  • Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11(10):1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Jansen P, Giehl K, Nyengaard JR, Teng K, Lioubinski O, Sjoegaard SS, Breiderhoff T, Gotthardt M, Lin F, Eilers A, Petersen CM, Lewin GR, Hempstead BL, Willnow TE, Nykjaer A (2007) Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat Neurosci 10(11):1449–1457

    Google Scholar 

  • Jian J, Zhao S, Tian Q, Gonzalez-Gugel E, Mundra JJ, Uddin SM, Liu B, Richbourgh B, Brunetti R, Liu CJ (2013) Progranulin directly binds to the CRD2 and CRD3 of TNFR extracellular domains. FEBS Lett 587(21):3428–3436

    Article  CAS  PubMed  Google Scholar 

  • Kazanis I, ffrench-Constant C (2011) Extracellular matrix and the neural stem cell niche. Dev Neurobiol 71(11):1006–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazanis I, Lathia JD, Vadakkan TJ, Raborn E, Wan R, Mughal MR, Eckley DM, Sasaki T, Patton B, Mattson MP, Hirschi KK, Dickinson ME, ffrench-Constant C (2010) Quiescence and activation of stem and precursor cell populations in the subependymal zone of the mammalian brain are associated with distinct cellular and extracellular matrix signals. J Neurosci 30(29):9771–9781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386(6624):493–495

    Article  CAS  PubMed  Google Scholar 

  • Kerever A, Schnack J, Vellinga D, Ichikawa N, Moon C, Arikawa-Hirasawa E, Efird JT, Mercier F (2007) Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem Cells 25(9):2146–2157

    Article  CAS  PubMed  Google Scholar 

  • Kerever A, Mercier F, Nonaka R, de Vega S, Oda Y, Zalc B, Okada Y, Hattori N, Yamada Y, Arikawa-Hirasawa E (2014) Perlecan is required for FGF-2 signaling in the neural stem cell niche. Stem Cell Res 12(2):492–505

    Article  CAS  PubMed  Google Scholar 

  • Kim WE, Yue B, Serrero G (2016) Signaling pathway of GP88 (Progranulin) in breast cancer cells: upregulation and phosphorylation of c-myc by GP88/progranulin in Her2-overexpressing breast cancer cells. Breast Cancer (Auckl) 9(Suppl 2):71–77

    Google Scholar 

  • Kleinberger G, Wils H, Ponsaerts P, Joris G, Timmermans JP, Van Broeckhoven C, Kumar-Singh S (2010) Increased caspase activation and decreased TDP-43 solubility in progranulin knockout cortical cultures. J Neurochem 115(3):735–747

    Article  CAS  PubMed  Google Scholar 

  • Kleinman HK, Sephel GC, Tashiro K, Weeks BS, Burrous BA, Adler SH, Yamada Y, Martin GR (1990) Laminin in neuronal development. Ann N Y Acad Sci 580:302–310

    Article  CAS  PubMed  Google Scholar 

  • Lange C, Mix E, Frahm J, Glass A, Müller J, Schmitt O, Schmöle AC, Klemm K, Ortinau S, Hübner R, Frech MJ, Wree A, Rolfs A (2011) Small molecule GSK-3 inhibitors increase neurogenesis of human neural progenitor cells. Neurosci Lett 488(1):36–40

    Article  CAS  PubMed  Google Scholar 

  • Lee WC, Almeida S, Prudencio M, Caulfield TR, Zhang YJ, Tay WM, Bauer PO, Chew J, Sasaguri H, Jansen-West KR, Gendron TF, Stetler CT, Finch N, Mackenzie IR, Rademakers R, Gao FB, Petrucelli L (2014) Targeted manipulation of the sortilin-progranulin axis rescues progranulin haploinsufficiency. Hum Mol Genet 23(6):1467–1478

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Li XX, Gao W, Liu W, Liu DS (2014) Progranulin-derived Atsttrin directly binds to TNFRSF25 (DR3) and inhibits TNF-like ligand 1A (TL1A) activity. PLoS One 9(3):e92743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lü L, Luo L, Lu Y, Chen L, Xu J, Guo K (2013) Progranulin expression in neural stem cells and their differentiated cell lineages: an immunocytochemical study. Mol Med Rep 8(5):1359–1364

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M (2017a) Progranulin protects hippocampal neurogenesis via suppression of neuroinflammatory responses under acute immune stress. Mol Neurobiol 54(5):3717–3728

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M (2017b) Involvement of progranulin in modulating neuroinflammatory responses but not neurogenesis in the hippocampus of aged mice. Exp Gerontol 95:1–8

    Article  PubMed  CAS  Google Scholar 

  • Marín-Burgin A, Schinder AF (2012) Requirement of adult-born neurons for hippocampus-dependent learning. Behav Brain Res 227(2):391–399

    Article  PubMed  Google Scholar 

  • Mercier F, Kitasako JT, Hatton GI (2002) Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J Comp Neurol 451(2):170–188

    Article  PubMed  Google Scholar 

  • Mercier F, Kitasako JT, Hatton GI (2003) Fractones and other basal laminae in the hypothalamus. J Comp Neurol 455(3):324–340

    Article  PubMed  Google Scholar 

  • Miner JH, Yurchenco PD (2004) Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 20:255–284

    Article  CAS  PubMed  Google Scholar 

  • Monami G, Gonzalez EM, Hellman M, Gomella LG, Baffa R, Iozzo RV, Morrione A (2006) Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Res 66(14):7103–7110

    Article  CAS  PubMed  Google Scholar 

  • Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(5651):1760–1765

    Article  CAS  PubMed  Google Scholar 

  • Mori H, Takahashi A, Horimoto A, Hara M (2013) Migration of glial cells differentiated from neurosphere-forming neural stem/progenitor cells depends on the stiffness of the chemically cross-linked collagen gel substrate. Neurosci Lett 555:1–6

    Article  CAS  PubMed  Google Scholar 

  • Nedachi T, Kawai T, Matsuwaki T, Yamanouchi K, Nishihara M (2011) Progranulin enhances neural progenitor cell proliferation through glycogen synthase kinase 3β phosphorylation. Neuroscience 185:106–115

    Article  CAS  PubMed  Google Scholar 

  • Nielsen MS, Madsen P, Christensen EI, Nykjaer A, Gliemann J, Kasper D, Pohlmann R, Petersen CM (2001) The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J 20(9):2180–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, Jacobsen C, Kliemannel M, Schwarz E, Willnow TE, Hempstead BL, Petersen CM (2004) Sortilin is essential for proNGF-induced neuronal cell death. Nature 427(6977):843–848

    Article  CAS  PubMed  Google Scholar 

  • Ong CH, Bateman A (2003) Progranulin (granulin-epithelin precursor, PC-cell derived growth factor, acrogranin) in proliferation and tumorigenesis. Histol Histopathol 18(4):1275–1288

    CAS  PubMed  Google Scholar 

  • Park JH, Choi MR, Park KS, Kim SH, Jung KH, Chai YG (2012) The characterization of gene expression during mouse neural stem cell differentiation in vitro. Neurosci Lett 506(1):50–54

    Article  CAS  PubMed  Google Scholar 

  • Sarret P, Krzywkowski P, Segal L, Nielsen MS, Petersen CM, Mazella J, Stroh T, Beaudet A (2003) Distribution of NTS3 receptor/sortilin mRNA and protein in the rat central nervous system. J Comp Neurol 461(4):483–505

    Article  CAS  PubMed  Google Scholar 

  • Saxe MD, Battaglia F, Wang JW, Malleret G, David DJ, Monckton JE, Garcia AD, Sofroniew MV, Kandel ER, Santarelli L, Hen R, Drew MR (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci U S A 103(46):17501–17506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki T (2003) Microenvironmental elements supporting adult hippocampal neurogenesis. Anat Sci Int 78(2):69–78

    Google Scholar 

  • Shigemoto-Mogami Y, Hoshikawa K, Goldman JE, Sekino Y, Sato K (2014) Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci 34(6):2231–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Yoshida S, Nishihara M, Takahashi M (1998) Identification of a sex steroid-inducible gene in the neonatal rat hypothalamus. Neurosci Lett 242(3):127–130

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Bannai M, Matsumuro M, Furuhata Y, Ikemura R, Kuranaga E, Kaneda Y, Nishihara M, Takahashi M (2000) Suppression of copulatory behavior by intracerebroventricular infusion of antisense oligodeoxynucleotide of granulin in neonatal male rats. Physiol Behav 68(5):707–713

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Matsuwaki T, Yamanouchi K, Nishihara M (2013) Exacerbated inflammatory responses related to activated microglia after traumatic brain injury in progranulin-deficient mice. Neuroscience 231:49–60

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, Liu GY, Syed NM, Lai Y, Lin EA, Kong L, Su J, Yin F, Ding AH, Zanin-Zhorov A, Dustin ML, Tao J, Craft J, Yin Z, Feng JQ, Abramson SB, Yu XP, Liu CJ (2011) The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332(6028):478–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R, Chen ZY, Lee FS, Kraemer RT, Nykjaer A, Hempstead BL (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25(22):5455–5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thurner L, Fadle N, Regitz E, Kemele M, Klemm P, Zaks M, Stöger E, Bette B, Carbon G, Zimmer V, Assmann G, Murawski N, Kubuschok B, Held G, Preuss KD, Pfreundschuh M (2015) The molecular basis for development of proinflammatory autoantibodies to progranulin. J Autoimmun 61:17–28

    Article  CAS  PubMed  Google Scholar 

  • Toh H, Chitramuthu BP, Bennett HP, Bateman A (2011) Structure, function, and mechanism of progranulin; the brain and beyond. J Mol Neurosci 45(3):538–548

    Article  CAS  PubMed  Google Scholar 

  • Tonchev AB (2011) Brain ischemia, neurogenesis, and neurotrophic receptor expression in primates. Arch Ital Biol 149(2):225–231

    PubMed  Google Scholar 

  • van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 96(23):13427–13431

    Article  PubMed  PubMed Central  Google Scholar 

  • van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415(6875):1030–1034

    Article  PubMed  CAS  Google Scholar 

  • Vilar M, Mira H (2016) Regulation of neurogenesis by neurotrophins during adulthood: expected and unexpected roles. Front Neurosci 10:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh CE, Hitchcock PF (2017) Progranulin regulates neurogenesis in the developing vertebrate retina. Dev Neurobiol 77(9):1114–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang BC, Liu H, Talwar A, Jian J (2015) New discovery rarely runs smooth: an update on progranulin/TNFR interactions. Protein Cell 6(11):792–803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winocur G, Wojtowicz JM, Sekeres M, Snyder JS, Wang S (2006) Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus 16(3):296–304

    Article  PubMed  Google Scholar 

  • Xu K, Zhang Y, Ilalov K, Carlson CS, Feng JQ, Di Cesare PE, Liu CJ (2007) Cartilage oligomeric matrix protein associates with granulin-epithelin precursor (GEP) and potentiates GEP-stimulated chondrocyte proliferation. J Biol Chem 282:11347–11355

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku Nedachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nedachi, T. (2019). Neural Stem/Progenitor Cells and Progranulin. In: Hara, H., Hosokawa, M., Nakamura, S., Shimohata, T., Nishihara, M. (eds) Progranulin and Central Nervous System Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-13-6186-9_8

Download citation

Publish with us

Policies and ethics