Skip to main content

Increase the IQE by Improving the Crystalline Quality for DUV LEDs

  • Chapter
  • First Online:
Deep Ultraviolet LEDs

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNANOSCIENCE))

  • 592 Accesses

Abstract

The roadmap for AlGaN based DUV LEDs is similar to that for InGaN based visible LEDs, such that the success of achieving high crystalline-quality epilayers is the precondition for fabricating high-brightness DUV LEDs. This chapter will review the most adopted technologies for growing high-quality Al-rich AlGaN films, which is regarded as the milestone for making high-efficiency DUV LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imura M, Nakano K, Narita G, Fujimoto N, Okada N, Balakrishnan K, Iwaya M, Kamiyama S, Amano H, Akasaki I, Noro T, Takagi T, Bandoh A (2007) Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers. J Cryst Growth 298:257–260. https://doi.org/10.1016/j.jcrysgro.2006.10.043

    Article  CAS  Google Scholar 

  2. Ambacher O (1998) Growth and applications of Group III-nitrides. J Phys D Appl Phys 31(20):2653

    Article  CAS  Google Scholar 

  3. Masataka I, Kiyotaka N, Naoki F, Narihito O, Krishnan B, Motoaki I, Satoshi K, Hiroshi A, Isamu A, Tadashi N, Takashi T, Akira B (2007) Dislocations in AlN epilayers grown on sapphire substrate by high-temperature metal-organic vapor phase epitaxy. Jpn J Appl Phys 46(4A):1458–1462. https://doi.org/10.1143/JJAP.46.1458

    Article  CAS  Google Scholar 

  4. Khan A, Balakrishnan K, Katona T (2008) Ultraviolet light-emitting diodes based on group three nitrides. Nat Photonics 2(2):77–84. https://doi.org/10.1038/nphoton.2007.293

    Article  CAS  Google Scholar 

  5. Shatalov M, Sun W, Lunev A, Hu X, Dobrinsky A, Bilenko Y, Yang J, Shur M, Gaska R, Moe C, Garrett G, Wraback M (2012) AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl Phys Express 5(8):082101. https://doi.org/10.1143/APEX.5.082101

    Article  CAS  Google Scholar 

  6. Kneissl M, Kolbe T, Chua C, Kueller V, Lobo N, Stellmach J, Knauer A, Rodriguez H, Einfeldt S, Yang Z, Johnson NM, Weyers M (2011) Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol 26(1):014036. https://doi.org/10.1088/0268-1242/26/1/014036

    Article  CAS  Google Scholar 

  7. Hirayama H, Norimatsu J, Noguchi N, Fujikawa S, Takano T, Tsubaki K, Kamata N (2009) Milliwatt power 270 nm-band AlGaN deep-UV LEDs fabricated on ELO-AlN templates. Phys Status Solidi C 6:S474–S477. https://doi.org/10.1002/pssc.200880959

    Article  Google Scholar 

  8. Vinod A, Qhalid F, Monirul I, Thomas K, Balakrishnan K, Asif K (2007) Robust 290 nm emission light emitting diodes over pulsed laterally overgrown AlN. Jpn J Appl Phys 46(36–40):L877–L879. https://doi.org/10.1143/JJAP.46.L877

    Article  CAS  Google Scholar 

  9. Kim M, Fujita T, Fukahori S, Inazu T, Pernot C, Nagasawa Y, Hirano A, Ippommatsu M, Iwaya M, Takeuchi T, Kamiyama S, Yamaguchi M, Honda Y, Amano H, Akasaki I (2011) AlGaN-based deep ultraviolet light-emitting diodes fabricated on patterned sapphire substrates. Appl Phys Express 4(9):092102. https://doi.org/10.1143/APEX.4.092102

    Article  CAS  Google Scholar 

  10. Dong P, Yan J, Wang J, Zhang Y, Geng C, Wei T, Cong P, Zhang Y, Zeng J, Tian Y, Sun L, Yan Q, Li J, Fan S, Qin Z (2013) 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Appl Phys Lett 102(24):241113. https://doi.org/10.1063/1.4812237

    Article  CAS  Google Scholar 

  11. Dong P, Yan J, Zhang Y, Wang J, Zeng J, Geng C, Cong P, Sun L, Wei T, Zhao L, Yan Q, He C, Qin Z, Li J (2014) AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency. J Cryst Growth 395:9–13. https://doi.org/10.1016/j.jcrysgro.2014.02.039

    Article  CAS  Google Scholar 

  12. Zhang L, Xu F, Wang J, He C, Guo W, Wang M, Sheng B, Lu L, Qin Z, Wang X, Shen B (2016) High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography. Sci Rep 6:35934. https://doi.org/10.1038/srep35934

    Article  CAS  Google Scholar 

  13. Available: http://www.hexatechinc.com/aln-wafer-sales.html

  14. Hartmann C, Wollweber J, Dittmar A, Irmscher K, Kwasniewski A, Langhans F, Neugut T, Bickermann M (2013) Preparation of bulk AlN seeds by spontaneous nucleation of freestanding crystals. Jpn J Appl Phys 52(8):UNSP 08JA06. https://doi.org/10.7567/jjap.52.08ja06

    Article  Google Scholar 

  15. Herro ZG, Zhuang D, Schlesser R, Sitar Z (2010) Growth of AlN single crystalline boules. J Cryst Growth 312(18):2519–2521. https://doi.org/10.1016/j.jcrysgro.2010.04.005

    Article  CAS  Google Scholar 

  16. Dalmau R, Moody B, Xie J, Collazo R, Sitar Z (2011) Characterization of dislocation arrays in AlN single crystals grown by PVT. Phys Status Solidi a Appl Mater Sci 208(7):1545–1547. https://doi.org/10.1002/pssa.201000957

    Article  CAS  Google Scholar 

  17. Sumathi RR (2013) Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds. CrystEngComm 15(12):2232–2240. https://doi.org/10.1039/c2ce26599k

    Article  CAS  Google Scholar 

  18. Mokhov E, Izmaylova I, Kazarova O, Wolfson A, Nagalyuk S, Litvin D, Vasiliev A, Helava H, Makarov Y (2013) Specific features of sublimation growth of bulk AlN crystals on SiC wafers. Phys Status Solidi C 10(3):445–448. https://doi.org/10.1002/pssc.201200638

    Article  CAS  Google Scholar 

  19. Bondokov RT, Mueller SG, Morgan KE, Slack GA, Schujman S, Wood MC, Smart JA, Schowalter LJ (2008) Large-area AlN substrates for electronic applications: an industrial perspective. J Cryst Growth 310(17):4020–4026. https://doi.org/10.1016/j.jcrysgro.2008.06.032

    Article  CAS  Google Scholar 

  20. Li DB, Jiang K, Sun XJ, Guo CL (2018) AlGaN photonics: recent advances in materials and ultraviolet devices. Adv Opt Photonics 10(1):43–110. https://doi.org/10.1364/AOP.10.000043

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Hui Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, ZH., Chu, C., Tian, K., Zhang, Y. (2019). Increase the IQE by Improving the Crystalline Quality for DUV LEDs. In: Deep Ultraviolet LEDs. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-13-6179-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6179-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6178-4

  • Online ISBN: 978-981-13-6179-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics