Skip to main content

Highly Sensitive Octagonal Photonic Crystal Fiber for Ethanol Detection

  • Conference paper
  • First Online:
Optical and Wireless Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 546))

Abstract

In this article, an octagonal photonic crystal fiber for ethanol detection is suggested. Birefringence, confinement loss, and relative sensitivity have been explored theoretically. The numerical investigation is done utilizing the finite element method (FEM). It is discovered that the existence of elliptical holes in the center region leads to high values of birefringence along with low confinement loss and high sensitivity. Our study shows that at a wavelength of 1.33 μm, the birefringence, relative sensitivity, and confinement loss of the suggested PCF are 0.0016, 57.91%, and \( 1.6 \times 10^{ - 3} \) dB per m, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luan N, Wang R, Lv W, Lu Y, Yao J (2014) Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires. Sensors 14(9):16035–16045

    Article  Google Scholar 

  2. Birks TA, Knight JC, Russell PSJ (1997) Endlessly single-mode photonic crystal fiber. Opt Lett 22(13):961–963

    Article  Google Scholar 

  3. Singh G, Sahu S, Chaurasia P (2012) Modeling of photonic crystal fibers with fibonacci-patterned circular and elliptical air holes. Opt Eng 51(11):115001–115006. https://doi.org/10.1117/1.OE.51.11.115001

    Article  Google Scholar 

  4. Ebendorff-Heidepriem H, Petropoulos P, Asimakis S, Finazzi V, Moore R, Frampton K, Koizumi F, Richardson D, Monro T (2004) Bismuth glass holey fibers with high nonlinearity. Opt Express 12(21):5082–5087

    Article  Google Scholar 

  5. Arif MFH, Ahmed K, Asaduzzaman S, Azad MAK (2016) Design and optimization of photonic crystal fiber for liquid sensing applications. Photonic Sens 6(3):279–288

    Article  Google Scholar 

  6. Sahu S, Ali J, Singh G (2017) Refractive index biosensor using sidewall gratings in dual-slot waveguide. Opt Commun 402:408–412. https://doi.org/10.1016/j.optcom.2017.06.051

    Article  Google Scholar 

  7. Sahu S, Kozadaev KV, Singh G (2016) Michelson interferometer based refractive index biosensor. In: 13th international conference on fiber optics and photonics, Photonic-16, IIT Kanpur, 04–08 December 2016, OSA Technical Digest, paper Th3A.60. https://doi.org/10.1364/photonics.2016.th3a.60. ISBN: 978-1-943580-22-4

  8. Sahu S, Singh G (2016) Modeling of phase shift Bragg grating biosensor for non invasive detection of blood components. In: IEEE international conference, ICRAIE-2016, Jaipur, India, 23–25 December 2016, IEEE Xplore Digital Library. https://doi.org/10.1109/icraie.2016.7939565. Print ISBN: 5090-2806

  9. Sahu S, Singh G (2017) Modeling of grating slot waveguide for high-Q based refractive index sensor. In: IEEE international conference COMPTELIX-2017, 1–2 July 2017, Jaipur, IEEE Xplore Digital Library, pp 394–396. https://doi.org/10.1109/comptelix.2017.8004001

  10. Reeves W, Knight J, Russell P, Roberts P (2002) Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt Express 10(14):609–613

    Article  Google Scholar 

  11. Tyagi HK, Schmidt MA, Sempere LP, Russell PSJ (2008) Optical properties of photonic crystal fiber with integral micron-sized Ge wire. Opt Express 16(22):17227–17236

    Article  Google Scholar 

  12. Lee HW, Schmidt MA, Tyagi HK, Sempere LP, Russell PSJ (2008) Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl Phys Lett 93(11):111102

    Article  Google Scholar 

  13. Nagasaki A, Saitoh K, Koshiba M (2011) Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes. Opt Express 19(4):3799–3808

    Article  Google Scholar 

  14. Akowuah EK, Gorman T, Ademgil H, Haxha S, Robinson GK, Oliver JV (2012) Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J Quantum Electron 48(11):1403–1410

    Article  Google Scholar 

  15. Zheng S, Zhu Y, Krishnaswamy S (2012) Nanofilm-coated photonic crystal fiber long-period gratings with modal transition for high chemical sensitivity and selectivity. In: SPIE smart structures and materials + nondestructive evaluation and health monitoring, pp 83460D–83460D

    Google Scholar 

  16. Monro TM, Belardi W, Furusawa K, Baggett JC, Broderick NGR, Richardson DJ (2001) Sensing with microstructured optical fibres. Meas Sci Technol 12(7):854

    Article  Google Scholar 

  17. Cordeiro CM, Franco MA, Chesini G, Barretto EC, Lwin R, Cruz CB, Large MC (2006) Microstructured-core optical fibre for evanescent sensing applications. Opt Express 14(26):13056–13066

    Article  Google Scholar 

  18. Ahmed K, Morshed M (2016) Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications. Sens Bio-Sens Res 7:1–6

    Article  Google Scholar 

  19. Asaduzzaman S, Arif MFH, Ahmed K, Dhar P (2015) Highly sensitive simple structure circular photonic crystal fiber based chemical sensor. In: 2015 IEEE international WIE conference on electrical and computer engineering (WIECON-ECE), pp 151–154

    Google Scholar 

  20. Asaduzzaman S, Ahmed K, Arif MFH, Morshed M (2015) Proposal of a simple structure photonic crystal fiber for lower indexed chemical sensing. In: 2015 18th international conference on computer and information technology (ICCIT), pp 127–131

    Google Scholar 

  21. Arif MFH, Ahmed K, Asaduzzaman S (2015) A comparative analysis of two different PCF structures for gas sensing application. In: 2015 international conference on advances in electrical engineering (ICAEE), pp 247–250

    Google Scholar 

  22. Morshed M, Hassan MI, Roy TK, Uddin MS, Razzak SA (2015) Microstructure core photonic crystal fiber for gas sensing applications. Appl Opt 54(29):8637–8643

    Article  Google Scholar 

  23. Wang W, Yang B, Song H, Fan Y (2013) Investigation of high birefringence and negative dispersion photonic crystal fiber with hybrid crystal lattice. Optik Int J Light Electron Opt 124(17):2901–2903

    Article  Google Scholar 

  24. Asaduzzaman S, Ahmed K, Bhuiyan T, Farah T (2016) Hybrid photonic crystal fiber in chemical sensing. SpringerPlus 5(1):748

    Article  Google Scholar 

  25. Pang M, Xiao LM, Jin W et al (2012) Birefringence of hybrid PCF and its sensitivity to strain and temperature. J Lightwave Technol 30(10):1422–1432

    Article  Google Scholar 

  26. Ma P, Song N, Jin J, Song J, Xu X (2012) Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers. Opt Laser Technol 44(6):1829–1833

    Article  Google Scholar 

  27. Ademgil H, Haxha S (2015) PCF based sensor with high sensitivity, “high birefringence and low confinement losses for liquid analyte sensing applications”. Sensors 15(12):31833–31842

    Article  Google Scholar 

  28. Ademgil H, Haxha S (2016) Highly birefringent nonlinear PCF for optical sensing of analytes in aqueous solutions. Optik Int J Light Electron Opt 127(16):6653–6660

    Article  Google Scholar 

  29. Ademgil H (2014) Highly sensitive octagonal photonic crystal fiber based sensor. Optik Int J Light Electron Opt 125(20):6274–6278

    Article  Google Scholar 

  30. Arif MFH, Biddut MJH (2017) Enhancement of relative sensitivity of photonic crystal fiber with high birefringence and low confinement loss. Optik Int J Light Electron Opt 131:697–704

    Article  Google Scholar 

  31. Huang Y, Xu Y, Yariv A (2004) Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl Phys Lett 85(22):5182–5184

    Article  Google Scholar 

  32. Gerosa RM, Spadoti DH, de Matos CJ, de L, Menezes S, Franco MA (2011) Efficient and short-range light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber. Opt Express 19(24):24687–24698

    Article  Google Scholar 

  33. Bise RT, Trevor DJ (2005) Sol-gel derived microstructured fiber: fabrication and characterization. In: Optical fiber communications conference (OFC), vol 3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kumar Ghunawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghunawat, A.K., Sharma, S., Sahu, S., Singh, G. (2020). Highly Sensitive Octagonal Photonic Crystal Fiber for Ethanol Detection. In: Janyani, V., Singh, G., Tiwari, M., d’Alessandro, A. (eds) Optical and Wireless Technologies . Lecture Notes in Electrical Engineering, vol 546. Springer, Singapore. https://doi.org/10.1007/978-981-13-6159-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6159-3_48

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6158-6

  • Online ISBN: 978-981-13-6159-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics