High Contrast Ratio Based All-Optical OR and NOR Plasmonic Logic Gate Operating at E Band

  • MainkaEmail author
  • Shivani Sharma
  • Rukhsar Zafar
  • Mohammad Hossein Mahdieh
  • Ghanshyam Singh
  • Mohammad Salim
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 546)


In this paper, we have proposed an all-optical OR and NOR logic gates which is based on Plasmonics metal–insulator–metal (MIM)waveguide. MIM waveguide has the inherent feature to confine light far beyond diffraction limit. Therefore, the structure can be designed with miniaturized size. The performance of the device (gate) is measured by a quantifying parameter which is known as contrast ratio. The proposed NOR logic gate offers a contrast ratio of 12.36 dB for Boolean logic gates of output. The proposed structure opens a solution for future all-optical computing. The optical logic gates are investigated using finite-difference time-domain method.


Metal–insulator–metal waveguide Finite-difference time-domain method Contrast ratio All-optical logic gates Surface plasmon polaritons 


  1. 1.
    Caulfield HJ, Dolev S (2010) Why future supercomputing requires optics. Nat Photon 4(5):261–263CrossRefGoogle Scholar
  2. 2.
    Younis RM, Areed NFF, Obayya SSA, Senior Member (2014) IEEE Fully integrated AND and OR Optical Logic Gates. IEEE Photon Technol Lett 26(19):1900–1903Google Scholar
  3. 3.
    Li Z, Chen Z, Li B (2005) Optical pulse controlled all-optical logic gates in Sige/Si multimode interference. Opt Exp 13(3):1033–1038CrossRefGoogle Scholar
  4. 4.
    Stubkjaer KE (2000) Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE J Sel Topics Quantum Electron 6(6):1428–1435CrossRefGoogle Scholar
  5. 5.
    Liu C-Y, Chen L-W (2005) The analysis of interaction region of elliptical pillars of a directional photonic crystal waveguide coupler. Phys E Low Dim Syst Nanostruct 28(2):185–190Google Scholar
  6. 6.
    Rani P, Kalra Y, Sinha RK (2013) Realization of AND gate in Y shaped photonic crystal waveguide. Opt Commun 298(2):227–231CrossRefGoogle Scholar
  7. 7.
    Rashki Z, Mansouri MA, Rakhshani MR (2013) New design of optical add-drop filter based on triangular lattice photonic crystal ring resonator. Int Res J Appl Basic Sci 4(4):985–989Google Scholar
  8. 8.
    Dash S, Tripathy SK (2012) Y-shaped design in two dimensional photonic crystal structure for applications in integrated photonic circuits. J Lightw Electron Opt 124(18):3649–3650CrossRefGoogle Scholar
  9. 9.
    Ditlbacher H, Krenn J, Schider G, Leitner A, Ausenegg F (2002) Two-dimensional optics with surface plasmon polarition. Appl Phys Lett 81(10):1762–1764CrossRefGoogle Scholar
  10. 10.
    Yarahmadi M, Moravvej-Farshi MK, Yousefi L (IEEE members) (2015) Subwavelength graphene-based plasmonic the switches and logic gates. IEEE Trans Terahertz Sci Technol 5(5):725–731Google Scholar
  11. 11.
    Fu Y, Hu X, Lu C, Yue S, Yang H, Gong Q (2012) All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 12(11):5784–5790Google Scholar
  12. 12.
    Ekmel O (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193Google Scholar
  13. 13.
    Veronis G, Fan S (2005) Bends and splitters in metal-dielectirc-metal subwavelength plasmonic waveguides. Appl Phys Lett 87(13):131102CrossRefGoogle Scholar
  14. 14.
    Sriniwas Rao K, Dattathreya, Tiwari AK (2016) Detection of cancer cell with light wave propagation in optical bio-sensors. In: IEEE conference on recent advances in lightwave technology (CRALT), vol 89, no 2, pp 1–4Google Scholar
  15. 15.
    Sattar ZA, Alan Shore K (2015) Optical feedback effects on the dynamics of semiconductor nano-lasers. In: 11th conference on lasers and electro-optics pacific rim (CLEO-PR), vol 6, no 1, pp 97Google Scholar
  16. 16.
    Ravl DV, Munjani PJ, Mansoori NR (2016) Reference based maximum power point tracking algorithm for photo-voltaic power generation. In: International conference on electric power and energy systems (ICEPES), vol 67, no 5, pp 438–443Google Scholar
  17. 17.
    Zafar Rukhsar, Salim Mohammad (2015) Achievement of large normalized delay bandwidth product by exciting electromagnetic-induced transparency in plasmonic waveguide. IEEE J Quantum Electron 51(10):1–6CrossRefGoogle Scholar
  18. 18.
    Lee KW, Fabian, Chuah H-T (2005) A finite-difference time-domain (FDTD) software for simulation of printed circuit board (PCB) assembly. Progr Electromag Res 50(3):299–335Google Scholar
  19. 19.
    Lembrikov BI, Lanetz D, Ben-Ezra Y (2017) Metal-insulator-metal (MIM) plasmonic waveguide containing a smectic liquid crystal (SALC) layer. In: 19th international conference on transparent optical networks (ICTON), vol 23, no 4, pp 1–4Google Scholar
  20. 20.
    Abadi SM, Ram SB (2015) A dual band-pass plasmonic filter based on stub structureaIn A MIM waveguide at optical channels. Photon North IEEE Conf Publ 45(3):1–1Google Scholar
  21. 21.
    Zafar Rukhsar, Salim Mohammad (2015) Enhanced figure of merit in fano resonance-based plasmonic refractive index sensor. IEEE Sens J 15(11):6313–6317CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Mainka
    • 1
    Email author
  • Shivani Sharma
    • 1
  • Rukhsar Zafar
    • 1
  • Mohammad Hossein Mahdieh
    • 2
  • Ghanshyam Singh
    • 3
  • Mohammad Salim
    • 3
  1. 1.Department of ECESwami Keshvanand Institute of Technology, Management and GramothanJaipurIndia
  2. 2.Department of PhysicsIran University of Science & TechnologyTehranIran
  3. 3.Department of ECEMalaviya National Institute of Technology JaipurJaipurIndia

Personalised recommendations