Design and Analysis of Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber (DC-PCF) with Rectangular Air Hole Lattice Structure

  • Vishal ChaudharyEmail author
  • Dharmendra Kumar
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 546)


We have proposed a refractive index sensor, which is based on dual-core photonic crystal fiber (PCF) with a rectangular air-hole lattice structure. The two fiber cores of the PCF are separated by single air-hole filled with the analyte liquid and the refractive index of the analyte liquid (na) varies from 1.33 to 1.41. The highest sensitivity of 9,400 nm/RIU (Refractive index unit) can be acheived when na is 1.41 in the simulated results and lowest sensitivity is up to 5,940 nm/RIU when na is 1.33.


Dual-core PCF Refractive index (RI) sensor Mode coupling Sensitivity 


  1. 1.
    Birks TA, Knight JC, Russell PSJ (1997) Endlessly singlemode photonic crystal fiber. Opt Lett 22:961–963CrossRefGoogle Scholar
  2. 2.
    Ju J, Jin W et al (2003) Properties of a highly birefringent photonic crystal fiber. IEEE Photon Technol Lett 15:1375–1377CrossRefGoogle Scholar
  3. 3.
    Ranka JK, Windeler RS, Stentz AJ (2000) Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt Lett 25:25–27CrossRefGoogle Scholar
  4. 4.
    Knight JC, Arriaga J, Birks TA et al (2000) Anomalous dispersion in photonic crystal fiber. IEEE Photon Technol Lett 12:807–809CrossRefGoogle Scholar
  5. 5.
    Sinha RK, Varshney SK (2003) Dispersion properties of photonic crystal fibers. Microw optical Technol Lett 37:129–132CrossRefGoogle Scholar
  6. 6.
    Liu Z, Tse ML, Wu C, Chen D, Lu C, Tam HY (2012) Intermodal coupling of supermodes in a twin core photonic crystal fiber and its application as a pressure sensor. Opt Express 20:21749–21757CrossRefGoogle Scholar
  7. 7.
    Dhara P, Singh VK (2015) Effect of MMF stub on the sensitivity of a photonic crystal fiber interferometer sensor at 1550 nm. Opt Fiber Technol 21:154–159CrossRefGoogle Scholar
  8. 8.
    Rindorf L, Bang O (2008) Sensitivity of photonic crystal fiber grat-ing sensors: biosensing, refractive index, strain and temperature sensing. J Opt Soc Am B 25:310–324CrossRefGoogle Scholar
  9. 9.
    Wang Z, Taru T, Birks TA, Knight JC (2007) Coupling in dual-core photonic bandgap fibers: theory and experiment. Opt Express 15:4795–4803CrossRefGoogle Scholar
  10. 10.
    Lagsgaard J (2005) coupling in twin-core photonic bandgap fibers. Opt Lett 30:3281–3283CrossRefGoogle Scholar
  11. 11.
    Lagsgaard J, Bang O, Bjarklev A (2004) Photonic crystal fiber design for broadband directional coupling. Opt Lett 29:2473–2475CrossRefGoogle Scholar
  12. 12.
    Saitoh K, Florous NJ, Koshiba M, Skorobogatiy M (2005) Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multi-core photonic crystal fibers. Opt Express 13:10327–10335CrossRefGoogle Scholar
  13. 13.
    Saitoh K, Sato Y, Koshiba M (2004) Polarization splitter in three-core photonic crystal fibers. Opt Express 12:3940–3946CrossRefGoogle Scholar
  14. 14.
    Saitoh K, Sato Y, Koshiba M (2003) Coupling characteristics of dual-core photonic crystal fiber couplers. Opt Express 11:3188–3195CrossRefGoogle Scholar
  15. 15.
    Huang WP (1994) Coupled mode theory for optical waveguides: an overview. J Opt Soc Am A 11:963–983CrossRefGoogle Scholar
  16. 16.
    Beatrand G, Alireza H, Majid FF, Andrei K, Skorobogatiy MA (2007) Photonic bandgap fiber-based surface plasmon resonance sensors. Opt Express 15:11413–11426CrossRefGoogle Scholar
  17. 17.
    Rindorf L, Bang O (2008) Highly sensitive refractometer with a photonic-crystal-fiber long-period grating. Opt Lett 33:563–565CrossRefGoogle Scholar
  18. 18.
    Shuai B, Xia L, Zhang Y, Liu D (2012) A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Opt Express 20:5974–5986CrossRefGoogle Scholar
  19. 19.
    Tian M, Lu P, Chen L, Lv C, Liu D (2012) All-solid D-shaped photonic fiber sensor based on surface plasmon resonance. Opt Commun 285:1550–1554CrossRefGoogle Scholar
  20. 20.
    Hasan MR, Akter S, Ahmed K, Abbott D (2017) Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber. IEEE Photon Technol Lett 1041–1135Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringMadan Mohan Malaviya University of TechnologyGorakhpurIndia

Personalised recommendations