Skip to main content

Strain Resolution and Spatial Resolution Improvement of BOCDR-Based DSS System Using Particle Swarm Optimization Algorithm

  • Conference paper
  • First Online:
Optical and Wireless Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 546))

Abstract

This paper presents, a detailed analysis on the performance of a Brillouin optical correlation domain reflectometry (BOCDR) based distributed strain sensing (BOCDR-DSS) system. Strain resolution and spatial resolution decide the performance of BOCDR-DSS system. Particle swarm optimization (PSO) algorithm is used in this paper to enhance the above-mentioned performance of the available BOCDR-DSS system. With the help of PSO evolutionary algorithm, Brillouin frequency shift (BFS) error of the considered sensing system has been minimized. Finally, 4 m-long strained silica optical fiber (SOF) section over a 700 m fiber under test is successfully detected with ~0.0011% strain resolution and ~43 cm spatial resolution. Simulation was carried out using MATLAB version 15.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee B (2003) Review of the present status of optical fiber sensors. J Opt Fiber Technol 9(2):57–79

    Article  Google Scholar 

  2. Abdurrahman G, Gunes Y, Karlik SE (2008) Spontaneous raman power and Brillouin frequency shift method based distributed temperature and strain detection in power cables. J Opt Fiber Technol

    Google Scholar 

  3. Horiguchi T, Shimizu K, Kurashima T, Tateda M, Koyamada Y (1995) Development of a distributed sensing technique using Brillouin scattering. J Lightw Technol 13(7):1296–1302. IEEE

    Article  Google Scholar 

  4. Yu JW, Park Y, Oh K (2002) Brillouin frequency shifts in silica optical fiber with the double cladding structure. J Optic Exp 10(19):996–1002. OSA

    Article  Google Scholar 

  5. Taki M, Soto MA, Pasquale FD, Bolognini G (2011) Long-range BOTDA sensing using optical pulse coding and single source bi-directional distributed raman amplification. J Opt Sens. IEEE

    Google Scholar 

  6. Ravet F, Zou L, Bao X, Chen L, Huang RF, Khoo HA (2006) Detection of buckling in steel pipeline and column by the distributed Brillouin sensor. J Opt Fiber Tech, Elsevier, pp 305–311

    Article  Google Scholar 

  7. Zhao Z, Soto MA, Tang M, Martin-Lopez S, Thevenaz L (2016) Distributed shape sensing using Brillouin scattering in multi-core fibers. J Opt Exp 24(22):25211–25223. OSA

    Article  Google Scholar 

  8. Zhang D, Wang J, Zhang P, Shi B (2017) Internal strain monitoring for coal mining similarity model based on distributed fiber optical sensing. J Opt Meas, Elsevier, pp 234–241

    Article  Google Scholar 

  9. Bergman A, Langer T, Tur M (2017) Phase-Based, high spatial resolution and distributed, static and dynamic strain sensing using Brillouin dynamic gratings in optical fibers. J Opt Exp 25(5):5376–5388. OSA

    Article  Google Scholar 

  10. Garus D, Krebber K, Schliep F (1996) Distributed sensing technique based on Brillouin optical-fiber frequency domain analysis. Opt Lett 21(17):1402–1404

    Article  Google Scholar 

  11. Minardo A, Bernini R, Zeni R (2014) Distributed temperature sensing in polymer optical fiber by BOFDA. IEEE Photon Technol Lett 24(4):387–390. IEEE

    Article  Google Scholar 

  12. Hotate K, Hasegawa T (2000) Measurement of Brillouin gain spectrum distribution along an optical fiber using correlation-based technique-proposal experiment and simulation. Trans Electron E83-C(3):405–412. IEICE

    Google Scholar 

  13. Song KY, Hotate K (2008) Brillouin optical correlation domain analysis in linear configuration. Lett Photon Technol 20(24):2150–2152. IEEE

    Google Scholar 

  14. Gao J, Shi B, Zhang W, Zhu H (2006) Monitoring the stress of the post-tensioning cable using fiber optic distributed strain sensor. J Opt Meas, Elsevier, pp 420–428

    Article  Google Scholar 

  15. Li B, Luo L, Yu Y, Soga K, Yan J (2017) Dynamic strain measurement using small gain stimulated Brillouin scattering in STFT-BOTDR. J Opt Sens 17(9):2718–2724. IEEE

    Article  Google Scholar 

  16. Soto MA, Sahu PK, Bolognini G, Pasquale FD (2008) Brillouin-Based distributed temperature sensor employing pulse coding. J Opt Sens 8(3):225–226. IEEE

    Article  Google Scholar 

  17. Himansu SP, Sahu PK (2016) Brillouin distributed strain sensor performance improvement using FourWaRD algorithm. J Opt, Elsevier, pp 2666–2669

    Google Scholar 

  18. Yanjun Z, Yu C, Xinghu F, Wenzhe L, Weihong B (2015) Spectrum parameter estimation in Brillouin scattering distributed temperature sensor based on cuckoo search algorithm combined with the improved differential evolution algorithm. J Opt Comm, Elsevier, pp 15–20

    Google Scholar 

  19. Himansu SP, Sahu PK (2015) Brillouin distributed temperature sensor employing phase modulation and optimization techniques. J Opt Comm, Elsevier, pp 788–794

    Google Scholar 

  20. Maraval D, Gabet R, Jaouen Y, Lamour V (2017) Dynamic optical fiber sensing with Brillouin optical time domain reflectometry: application to pipeline vibration monitoring. J Lightw Technol 35(16):3296–3302. IEEE

    Article  Google Scholar 

  21. Mizuno Y, Zou W, He Z, Hotate K (2010) Operation of Brillouin optical correlation-domain reflectometry: theoretical analysis and experimental validation. J Lightw Technol 28(22):3300–3306. IEEE

    Google Scholar 

  22. Mizuno Y, Zou W, He Z, Hotate K (2008) Proposal of Brillouin optical correlation-domain reflectometry (BOCDR). J Opt Exp 16(16):12148–12153. OSA

    Article  Google Scholar 

  23. Hayashi N, Mizuno Y, Nakamura K (2014) Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers. J Lightw Technol 32(21):3999–4003. IEEE

    Article  Google Scholar 

  24. Hayashi N, Mizuno Y, Nakamura K (2014) First demonstration of distributed Brillouin measurement with centimeter-order resolution based on plastic optical fibers. In: International Conference. pp 377–379. IEEE

    Google Scholar 

  25. Hayashi N, Mizuno Y, Nakamura K (2014) Simplified configuration of Brillouin optical correlation-domain reflectometry. J Photon Technol 6(5). IEEE

    Article  Google Scholar 

  26. Hayashi N, Mizuno Y, Nakamura K (2014) Alternative implementation of simplified Brillouin optical correlation-domain reflectometry. J Photon Technol 6(6). IEEE

    Article  Google Scholar 

  27. Jiang F, Yu C, Xia H, Tran QA, Ha QM, Tran NQ, Hu J (2017) A new binary hybrid particle swarm optimization with wavelet mutation. J Opt Comm, Elsevier, pp 90–101

    Article  Google Scholar 

  28. Ramachandra Murthy KVS, Ramalinga Raju M, Govinda Rao G (2010) Comparison between Conventional, GA and PSO with respect to optimal capacitor placement in agricultural distribution system. In: International Conference of INDICON. IEEE

    Google Scholar 

  29. Voratas K (2012) Comparison of three evolutionary algorithms: GA, PSO, and DE. J Ind Eng Manag Sys 11(3):215–223. IEEE

    Google Scholar 

  30. McCall J (2005) Genetic algorithms for modelling and optimization. J Comp App Math, Elsevier, pp 205–222

    Article  MathSciNet  Google Scholar 

  31. Blum C (2005) Ant colony optimization: introduction and recent trends. J Phys, Elsevier, pp 353–373

    Article  Google Scholar 

  32. Jiang T, Su X, Han W (2017) Optimization of support scheduling on deck of carrier aircraft based on improved differential evolution algorithm. In: Proceedings of 3rd International Conference on Control Science and Systems Engineering, pp 136–140. IEEE

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramji Tangudu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tangudu, R., Sahu, P.K. (2020). Strain Resolution and Spatial Resolution Improvement of BOCDR-Based DSS System Using Particle Swarm Optimization Algorithm. In: Janyani, V., Singh, G., Tiwari, M., d’Alessandro, A. (eds) Optical and Wireless Technologies . Lecture Notes in Electrical Engineering, vol 546. Springer, Singapore. https://doi.org/10.1007/978-981-13-6159-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6159-3_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6158-6

  • Online ISBN: 978-981-13-6159-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics