Strain Resolution and Spatial Resolution Improvement of BOCDR-Based DSS System Using Particle Swarm Optimization Algorithm

  • Ramji TanguduEmail author
  • Prasant Kumar Sahu
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 546)


This paper presents, a detailed analysis on the performance of a Brillouin optical correlation domain reflectometry (BOCDR) based distributed strain sensing (BOCDR-DSS) system. Strain resolution and spatial resolution decide the performance of BOCDR-DSS system. Particle swarm optimization (PSO) algorithm is used in this paper to enhance the above-mentioned performance of the available BOCDR-DSS system. With the help of PSO evolutionary algorithm, Brillouin frequency shift (BFS) error of the considered sensing system has been minimized. Finally, 4 m-long strained silica optical fiber (SOF) section over a 700 m fiber under test is successfully detected with ~0.0011% strain resolution and ~43 cm spatial resolution. Simulation was carried out using MATLAB version 15.0.


Spontaneous Brillouin scattering (SpBS) Brillouin optical correlation domain reflectometry (BOCDR) Particle swarm optimization (PSO) Brillouin frequency shift (BFS) 


  1. 1.
    Lee B (2003) Review of the present status of optical fiber sensors. J Opt Fiber Technol 9(2):57–79CrossRefGoogle Scholar
  2. 2.
    Abdurrahman G, Gunes Y, Karlik SE (2008) Spontaneous raman power and Brillouin frequency shift method based distributed temperature and strain detection in power cables. J Opt Fiber TechnolGoogle Scholar
  3. 3.
    Horiguchi T, Shimizu K, Kurashima T, Tateda M, Koyamada Y (1995) Development of a distributed sensing technique using Brillouin scattering. J Lightw Technol 13(7):1296–1302. IEEECrossRefGoogle Scholar
  4. 4.
    Yu JW, Park Y, Oh K (2002) Brillouin frequency shifts in silica optical fiber with the double cladding structure. J Optic Exp 10(19):996–1002. OSACrossRefGoogle Scholar
  5. 5.
    Taki M, Soto MA, Pasquale FD, Bolognini G (2011) Long-range BOTDA sensing using optical pulse coding and single source bi-directional distributed raman amplification. J Opt Sens. IEEEGoogle Scholar
  6. 6.
    Ravet F, Zou L, Bao X, Chen L, Huang RF, Khoo HA (2006) Detection of buckling in steel pipeline and column by the distributed Brillouin sensor. J Opt Fiber Tech, Elsevier, pp 305–311CrossRefGoogle Scholar
  7. 7.
    Zhao Z, Soto MA, Tang M, Martin-Lopez S, Thevenaz L (2016) Distributed shape sensing using Brillouin scattering in multi-core fibers. J Opt Exp 24(22):25211–25223. OSACrossRefGoogle Scholar
  8. 8.
    Zhang D, Wang J, Zhang P, Shi B (2017) Internal strain monitoring for coal mining similarity model based on distributed fiber optical sensing. J Opt Meas, Elsevier, pp 234–241CrossRefGoogle Scholar
  9. 9.
    Bergman A, Langer T, Tur M (2017) Phase-Based, high spatial resolution and distributed, static and dynamic strain sensing using Brillouin dynamic gratings in optical fibers. J Opt Exp 25(5):5376–5388. OSACrossRefGoogle Scholar
  10. 10.
    Garus D, Krebber K, Schliep F (1996) Distributed sensing technique based on Brillouin optical-fiber frequency domain analysis. Opt Lett 21(17):1402–1404CrossRefGoogle Scholar
  11. 11.
    Minardo A, Bernini R, Zeni R (2014) Distributed temperature sensing in polymer optical fiber by BOFDA. IEEE Photon Technol Lett 24(4):387–390. IEEECrossRefGoogle Scholar
  12. 12.
    Hotate K, Hasegawa T (2000) Measurement of Brillouin gain spectrum distribution along an optical fiber using correlation-based technique-proposal experiment and simulation. Trans Electron E83-C(3):405–412. IEICEGoogle Scholar
  13. 13.
    Song KY, Hotate K (2008) Brillouin optical correlation domain analysis in linear configuration. Lett Photon Technol 20(24):2150–2152. IEEEGoogle Scholar
  14. 14.
    Gao J, Shi B, Zhang W, Zhu H (2006) Monitoring the stress of the post-tensioning cable using fiber optic distributed strain sensor. J Opt Meas, Elsevier, pp 420–428CrossRefGoogle Scholar
  15. 15.
    Li B, Luo L, Yu Y, Soga K, Yan J (2017) Dynamic strain measurement using small gain stimulated Brillouin scattering in STFT-BOTDR. J Opt Sens 17(9):2718–2724. IEEECrossRefGoogle Scholar
  16. 16.
    Soto MA, Sahu PK, Bolognini G, Pasquale FD (2008) Brillouin-Based distributed temperature sensor employing pulse coding. J Opt Sens 8(3):225–226. IEEECrossRefGoogle Scholar
  17. 17.
    Himansu SP, Sahu PK (2016) Brillouin distributed strain sensor performance improvement using FourWaRD algorithm. J Opt, Elsevier, pp 2666–2669Google Scholar
  18. 18.
    Yanjun Z, Yu C, Xinghu F, Wenzhe L, Weihong B (2015) Spectrum parameter estimation in Brillouin scattering distributed temperature sensor based on cuckoo search algorithm combined with the improved differential evolution algorithm. J Opt Comm, Elsevier, pp 15–20Google Scholar
  19. 19.
    Himansu SP, Sahu PK (2015) Brillouin distributed temperature sensor employing phase modulation and optimization techniques. J Opt Comm, Elsevier, pp 788–794Google Scholar
  20. 20.
    Maraval D, Gabet R, Jaouen Y, Lamour V (2017) Dynamic optical fiber sensing with Brillouin optical time domain reflectometry: application to pipeline vibration monitoring. J Lightw Technol 35(16):3296–3302. IEEECrossRefGoogle Scholar
  21. 21.
    Mizuno Y, Zou W, He Z, Hotate K (2010) Operation of Brillouin optical correlation-domain reflectometry: theoretical analysis and experimental validation. J Lightw Technol 28(22):3300–3306. IEEEGoogle Scholar
  22. 22.
    Mizuno Y, Zou W, He Z, Hotate K (2008) Proposal of Brillouin optical correlation-domain reflectometry (BOCDR). J Opt Exp 16(16):12148–12153. OSACrossRefGoogle Scholar
  23. 23.
    Hayashi N, Mizuno Y, Nakamura K (2014) Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers. J Lightw Technol 32(21):3999–4003. IEEECrossRefGoogle Scholar
  24. 24.
    Hayashi N, Mizuno Y, Nakamura K (2014) First demonstration of distributed Brillouin measurement with centimeter-order resolution based on plastic optical fibers. In: International Conference. pp 377–379. IEEEGoogle Scholar
  25. 25.
    Hayashi N, Mizuno Y, Nakamura K (2014) Simplified configuration of Brillouin optical correlation-domain reflectometry. J Photon Technol 6(5). IEEECrossRefGoogle Scholar
  26. 26.
    Hayashi N, Mizuno Y, Nakamura K (2014) Alternative implementation of simplified Brillouin optical correlation-domain reflectometry. J Photon Technol 6(6). IEEECrossRefGoogle Scholar
  27. 27.
    Jiang F, Yu C, Xia H, Tran QA, Ha QM, Tran NQ, Hu J (2017) A new binary hybrid particle swarm optimization with wavelet mutation. J Opt Comm, Elsevier, pp 90–101CrossRefGoogle Scholar
  28. 28.
    Ramachandra Murthy KVS, Ramalinga Raju M, Govinda Rao G (2010) Comparison between Conventional, GA and PSO with respect to optimal capacitor placement in agricultural distribution system. In: International Conference of INDICON. IEEEGoogle Scholar
  29. 29.
    Voratas K (2012) Comparison of three evolutionary algorithms: GA, PSO, and DE. J Ind Eng Manag Sys 11(3):215–223. IEEEGoogle Scholar
  30. 30.
    McCall J (2005) Genetic algorithms for modelling and optimization. J Comp App Math, Elsevier, pp 205–222MathSciNetCrossRefGoogle Scholar
  31. 31.
    Blum C (2005) Ant colony optimization: introduction and recent trends. J Phys, Elsevier, pp 353–373CrossRefGoogle Scholar
  32. 32.
    Jiang T, Su X, Han W (2017) Optimization of support scheduling on deck of carrier aircraft based on improved differential evolution algorithm. In: Proceedings of 3rd International Conference on Control Science and Systems Engineering, pp 136–140. IEEEGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Indian Institute of Technology BhubaneswarArugulIndia

Personalised recommendations