Skip to main content

Structure and Properties of Combined Multilayer Coatings Based on Alternative Triple Nitride and Binary Metallic Layers

  • Conference paper
  • First Online:
Advances in Thin Films, Nanostructured Materials, and Coatings

Abstract

Combined multilayered coatings based on alternative triple nitride and binary metallic layers were deposited using vacuum-arc evaporation of a cathode. (TiMo)N/TiMo, (CrMo)N/CrMo, (CrZr)N/CrZr, (TiCr)N/TiCr and (MoZr)N/MoZr multilayer coatings were fabricated under the same deposition conditions, while bias potential was −200 V. Total thickness of the coatings was around 54 μm, while bilayer thickness was around 900 nm and we had 60 bilayers in each coating. Thicknesses of triple nitride and binary metallic layers were 750 and 150 nm respectively. Various methods of analysis were used for coatings characterization, including, but not limited to, XRD, SEM, EDS, TEM, HR-TEM, SIMS, as well as indentation tests. Forming of two-phase state with (111) and (200) preferable orientation was found in the coatings. Vickers hardness HV0.1, HV0.5 and HV1 of the coatings varied from 2347 to 2912, 2077 to 2584 and from 1369 to 2327 respectively, which makes them perspective for application as hard protective coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Musil J (2000) Hard and superhard nanocomposite coatings. Surf Coatings Technol 125(1–3):322–330. https://doi.org/10.1016/S0257-8972(99)00586-1

  2. Musil J (2007) Properties of hard nanocomposite thin films. In: Nanocomposite thin films and coatings (Published by Imperial College Press and Distributed by World Scientific Publishing Co.), pp 281–328. https://doi.org/10.1142/9781860949975_0005

  3. Hao S, Delley B, Veprek S et al (2006) Superhard nitride-based nanocomposites: role of interfaces and effect of impurities. Phys Rev Lett 97(8):086102. https://doi.org/10.1103/PhysRevLett.97.086102

  4. Veprek S, Veprek-Heijman MGJ, Karvankova P et al (2005) Different approaches to superhard coatings and nanocomposites. Thin Solid Films 476(1):1–29. https://doi.org/10.1016/j.tsf.2004.10.053

  5. Pogrebnjak AD (2013) Structure and properties of nanostructured (Ti–Hf–Zr–V–Nb)N Coatings. J Nanomater 1–12. https://doi.org/10.1155/2013/780125

  6. Pogrebnjak AD, Kravchenko YO, Bondar OV et al (2018) Structural features and tribological properties of multilayer coatings based on refractory metals. Prot Met Phys Chem Surfaces 54(2):240–258. https://doi.org/10.1134/S2070205118020107

  7. Pogrebnjak AD, Shpak AP, Azarenkov NA et al (2009) Structures and properties of hard and superhard nanocomposite coatings. Phys.-Uspekhi 52(1):29–54. https://doi.org/10.3367/UFNe.0179.200901b.0035

  8. Pogrebnyak AD, Tyurin YN (2005) Modification of material properties and coating deposition using plasma jets. Phys.-Uspekhi 48(5):487–514. https://doi.org/10.1070/PU2005v048n05ABEH002055

  9. Pogrebnjak AD, Ponomarev AG, Shpak AP et al (2012) Application of micro- and nanoprobes to the analysis of small-sized 3D materials, nanosystems, and nanoobjects. Phys.-Uspekhi 55(3):270–300. https://doi.org/10.3367/UFNe.0182.201203d.0287

  10. Sangiovanni DG, Hultman L, Chirita V et al (2016) Effects of phase stability, lattice ordering, and electron density on plastic deformation in cubic TiWN pseudobinary transition-metal nitride alloys. Acta Mater 103:823–835. https://doi.org/10.1016/j.actamat.2015.10.039

  11. Cavaleiro AJ, Ramos AS, Martins RMS et al (2017) The effect of heating rate on the phase transformation of Ni/Ti multilayer thin films. Vacuum 139:23–25. https://doi.org/10.1016/j.vacuum.2017.02.004

  12. Lee DB, Kim MH, Lee YC et al (2001) High temperature oxidation of a CrN coating deposited on a steel substrate by ion plating. Surf Coatings Technol 141(2–3):227–231. https://doi.org/10.1016/S0257-8972(01)01238-5

  13. Luridiana S, Miotello A (1996) Spectrophotometric study of oxide growth on arc evaporated TiN and ZrN coatings during hot air oxidation tests. Thin Solid Films 290–291:289–293. https://doi.org/10.1016/S0040-6090(99)80009-1

  14. Mei AB, Howe BM, Zhang C et al (2013) Physical properties of epitaxial ZrN/MgO(001) layers grown by reactive magnetron sputtering. J Vac Sci Technol A Vacuum, Surfaces, Film 31(6):061516. https://doi.org/10.1116/1.4825349

  15. Pogrebnjak AD, Bor’ba SO, Kravchenko YO et al (2016) Effect of the high doze of N+(1018 cm–2) ions implantation into the (TiHfZrVNbTa)N nanostructured coating on its microstructure, elemental and phase compositions, and physico-mechanical properties. J Superhard Mater 38(6):393–401. https://doi.org/10.3103/S1063457616060034

  16. Berladir KV, Budnik OA, Dyadyura KA et al (2016) Physicochemical principles of the technology of formation of polymer composite materials based on polytetrafluoroethylene—a Review. High Temp Mater Process 20(2):157–184. https://doi.org/10.1615/HighTempMatProc.2016017875

  17. Pogrebnjak AD, Lebed AG, Ivanov YF (2001) Modification of single crystal stainless steel structure (Fe-Cr-Ni-Mn) by high-power ion beam. Vacuum 483–486. https://doi.org/10.1016/S0042-207X(01)00225-1

  18. Kasiuk JV, Fedotova JA, Koltunowicz TN et al (2014) Correlation between local Fe states and magnetoresistivity in granular films containing FeCoZr nanoparticles embedded into oxygen-free dielectric matrix. J Alloys Compd 586(Suppl 1):S432–S435. https://doi.org/10.1016/j.jallcom.2012.09.058

  19. Boiko O, Koltunowicz TN, Zukowski P et al (2017) The effect of sputtering atmosphere parameters on dielectric properties of the ferromagnetic alloy – ferroelectric ceramics nanocomposite (FeCoZr)x(PbZrTiO3)(100−x). Ceram Int 43(2):2511–2516. https://doi.org/10.1016/j.ceramint.2016.11.052

  20. Ivashchenko VI, Veprek S, Argon AS et al (2015) First-principles quantum molecular calculations of structural and mechanical properties of TiN/SiNxheterostructures, and the achievable hardness of the nc-TiN/SiNxnanocomposites. Thin Solid Films 578:83–92. https://doi.org/10.1016/j.tsf.2015.02.013

  21. Ivashchenko VI, Veprek S, Turchi PEA et al (2012) First-principles study of TiN/SiC/TiN interfaces in superhard nanocomposites. Phys Rev B—Condens Matter Mater Phys 86(1):014110. https://doi.org/10.1103/PhysRevB.86.014110

  22. Maksakova O, Simoẽs S, Pogrebnjak A et al (2018) The influence of deposition conditions and bilayer thickness on physical-mechanical properties of CA-PVD multilayer ZrN/CrN coatings. Mater Charact 140:189–196. https://doi.org/10.1016/j.matchar.2018.03.048

  23. Pogrebnjak AD, Beresnev VM, Bondar OV et al (2018) Superhard CrN/MoN coatings with multilayer architecture. Mater Des 153:47–59. https://doi.org/10.1016/j.matdes.2018.05.001

  24. Pogrebnjak AD, Ivashchenko VI, Skrynskyy PL et al (2018) Experimental and theoretical studies of the physicochemical and mechanical properties of multi-layered TiN/SiC films: Temperature effects on the nanocomposite structure. Compos Part B Eng 142:85–94. https://doi.org/10.1016/j.compositesb.2018.01.004

  25. Pogrebnjak A, Ivashchenko V, Bondar O et al (2017) Multilayered vacuum-arc nanocomposite TiN/ZrN coatings before and after annealing: Structure, properties, first-principles calculations. Mater Charact 134:55–63. https://doi.org/10.1016/j.matchar.2017.10.016

  26. Pogrebnjak AD, Bondar OV, Erdybaeva NK et al (2015) Influence of thermal annealing and deposition conditions on structure and physical-mechanical properties of multilayered nanosized TiN/ZrN coatings. Prz Elektrotechniczny 1(12):228–232. https://doi.org/10.15199/48.2015.12.59

  27. Bondar OV, Postol’nyi BA, Beresnev VM et al (2015) Composition, structure and tribotechnical properties of TiN, MoN single-layer and TiN/MoN multilayer coatings. J Superhard Mater 37(1):27–38. https://doi.org/10.3103/S1063457615010050

  28. Yang S, Yan X, Yang K et al (2016) Effect of the addition of nano-Al2O3 on the microstructure and mechanical properties of twinned Al0.4FeCrCoNi1.2Ti0.3 alloys. Vacuum 131:69–72. https://doi.org/10.1016/j.vacuum.2016.05.019

  29. Pogrebnjak AD, Rogoz VM, Bondar OV et al (2016) Structure and physicomechanical properties of NbN-based protective nanocomposite coatings: a review. Prot Met Phys Chem Surfaces 52(5):802–813. https://doi.org/10.1134/S2070205116050191

  30. Pogrebnjak AD, Beresnev VM, Kolesnikov DA et al (2013) Multicomponent (Ti-Zr-Hf-V-Nb)N nanostructure coatings fabrication, high hardness and wear resistance. Acta Phys Pol A 123(5):816–818. https://doi.org/10.12693/APhysPolA.123.816

  31. Ming J, Li M, Kumar P et al (2016) Multilayer approach for advanced hybrid lithium battery. ACS Nano 10(6):6037–6044. https://doi.org/10.1021/acsnano.6b01626

  32. Wedig A, Luebben M, Cho D-Y et al (2015) Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat Nanotechnol 11(1):67–74. https://doi.org/10.1038/nnano.2015.221

  33. Ishida H, Campbell S, Blackwell J (2000) General approach to nanocomposite preparation. Chem Mater 12(5):1260–1267. https://doi.org/10.1021/cm990479y

  34. Söderberg H, Odén M, Larsson T et al (2006) Epitaxial stabilization of cubic-SiN[sub x] in TiN∕SiN[sub x] multilayers. Appl Phys Lett 88(19):191902. https://doi.org/10.1063/1.2202145

  35. Hultman L, Bareño J, Flink A et al (2007) Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: film growth experiments and ab initio calculations. Phys Rev B 75(15):155437. https://doi.org/10.1103/PhysRevB.75.155437

  36. Fallqvist A, Ghafoor N, Fager H et al (2013) Self-organization during growth of ZrN/SiNx multilayers by epitaxial lateral overgrowth. J Appl Phys 114(22):224302. https://doi.org/10.1063/1.4838495

  37. Setoyama M, Nakayama A, Tanaka M et al (1996) Formation of cubic-AlN in TiN/AlN superlattice. Surf Coatings Technol 86–87(PART 1):225–230. https://doi.org/10.1016/S0257-8972(96)03033-2

  38. Ghafoor N, Lind H, Tasnádi F et al (2014) Anomalous epitaxial stability of (001) interfaces in ZrN/SiNx multilayers. APL Mater 2(4):046106. https://doi.org/10.1063/1.4870876

  39. Ma S, Xu B, Wu G et al (2008) Microstructure and mechanical properties of SiCN hard films deposited by an arc enhanced magnetic sputtering hybrid system. Surf Coatings Technol 202(22):5379–5382. https://doi.org/10.1016/j.surfcoat.2008.06.057

  40. van Raay JJAM, Rozing PM, van Blitterswijk CA et al (1995) Biocompatibility of wear-resistant coatings in orthopedic surgery in vitro testing with human fibroblast cell cultures. J Mater Sci Mater Med 6(2):80–84. https://doi.org/10.1007/BF00120412

  41. Koehler JS (1970) Attempt to design a strong solid. Phys Rev B 2(2):547–551. https://doi.org/10.1103/PhysRevB.2.547

  42. Ivashchenko VI, Veprek S, Turchi PEA et al (2014) First-principles molecular dynamics investigation of thermal and mechanical stability of the TiN(001)/AlN and ZrN(001)/AlN heterostructures. Thin Solid Films 564:284–293. https://doi.org/10.1016/j.tsf.2014.05.036

  43. Zhitomirsky VN (2007) Structure and properties of cathodic vacuum arc deposited NbN and NbN-based multi-component and multi-layer coatings. Surf Coatings Technol 201(13):6122–6130. https://doi.org/10.1016/j.surfcoat.2006.08.125

  44. Söderberg H, Odén M, Molina-Aldareguia JM et al (2005) Nanostructure formation during deposition of TiN∕SiN[sub x] nanomultilayer films by reactive dual magnetron sputtering. J Appl Phys 97(11):114327. https://doi.org/10.1063/1.1935135

  45. Lin S, Zhou K, Dai M et al (2015) Influence of modulation period on mechanical behavior of Ti-TiN-Zr-ZrN multi-layered coatings. Zhenkong Kexue yu Jishu Xuebao/J Vac Sci Technol 35(1):114–118. https://doi.org/10.13922/j.cnki.cjovst.2015.01.21

  46. Kong M, Dai J, Lao J et al (2007) Crystallization of amorphous SiC and superhardness effect in TiN/SiC nanomultilayers. Appl Surf Sci 253(10):4734–4739. https://doi.org/10.1016/j.apsusc.2006.10.050

  47. López-Vidrier J, Löper P, Schnabel M et al (2016) Silicon nanocrystals embedded in silicon carbide as a wide-band gap photovoltaic material. Sol Energy Mater Sol Cells 144:551–558. https://doi.org/10.1016/j.solmat.2015.10.006

  48. Huang S-H, Chen S-F, Kuo Y-C et al (2011) Mechanical and tribological properties evaluation of cathodic arc deposited CrN/ZrN multilayer coatings. Surf Coatings Technol 206(7):1744–1752. https://doi.org/10.1016/j.surfcoat.2011.10.029

  49. Wu MK, Lee JW, Chan YC et al (2011) Influence of bilayer period and thickness ratio on the mechanical and tribological properties of CrSiN/TiAlN multilayer coatings. Surf Coatings Technol 206(7):1886–1892. https://doi.org/10.1016/j.surfcoat.2011.07.045

  50. Silva HG, Pereira AM, Teixeira JM et al (2010) Magnetic field strength and orientation effects on Co-Fe discontinuous multilayers close to percolation. Phys Rev B—Condens Matter Mater Phys 82(14):144432. https://doi.org/10.1103/PhysRevB.82.144432

  51. Tavares CJ (1998) Deposition and characterization of multilayered TiNrZrN coatings. Thin Solid Films 317(1–2):8–12. https://doi.org/10.1016/S0040-6090(97)00607-X

  52. Krishna H, Shirato N, Yadavali S et al (2011) Self-organization of nanoscale multilayer liquid metal films: experiment and theory. ACS Nano 5(1):470–476. https://doi.org/10.1021/nn1022632

  53. Pogrebnjak A, Maksakova O, Kozak C et al (2016) Physical and mechanical properties of nanostructured (Ti-Zr-Nb)N coatings obtained by vacuum-arc deposition method. Prz Elektrotechniczny 92(8):180–183. https://doi.org/10.15199/48.2016.08.49

  54. Maksakova OV, Grankin SS, Bondar OV et al (2015) Nanostructured (Ti-Zr-Nb)N coatings obtained by vacuum-arc deposition method: structure and properties. J Nano- Electron Phys 7(4):04098-1–04098-7

    Google Scholar 

  55. Martínez-Martínez D, López-Cartes C, Fernández A et al (2009) Influence of the microstructure on the mechanical and tribological behavior of TiC/a-C nanocomposite coatings. Thin Solid Films 517(5):1662–1671. https://doi.org/10.1016/j.tsf.2008.09.091

  56. Chen S-F, Kuo Y-C, Wang C-J et al (2013) The effect of Cr/Zr chemical composition ratios on the mechanical properties of CrN/ZrN multilayered coatings deposited by cathodic arc deposition system. Surf Coatings Technol 231:247–252. https://doi.org/10.1016/j.surfcoat.2012.03.002

  57. Braic M, Balaceanu M, Parau AC et al (2015) Investigation of multilayered TiSiC/NiC protective coatings. Vacuum 120(PA):60–66. https://doi.org/10.1016/j.vacuum.2015.06.019

  58. Bobzin K, Brögelmann T, Kruppe NC et al (2017) Plastic deformation behavior of nanostructured CrN/AlN multilayer coatings deposited by hybrid dcMS/HPPMS. Surf Coatings Technol 332:253–261. https://doi.org/10.1016/j.surfcoat.2017.06.092

  59. Musil J, Jirout M (2007) Toughness of hard nanostructured ceramic thin films. Surf Coatings Technol 201(9–11):5148–5152. https://doi.org/10.1016/j.surfcoat.2006.07.020

  60. Jian J, Lee JH, Liu Y et al (2016) Plastic deformation in nanocrystalline TiN at ultra-low stress: An in situ nanoindentation study. Mater Sci Eng A 650:445–453. https://doi.org/10.1016/j.msea.2015.10.002

Download references

Acknowledgements

This work was done under the aegis of Ukrainian state budget programs No. 0116U006816 “Development of perspective nanostructured multilayered coatings with enhanced physical-mechanical and tribological properties”, 0118U003579 “Multilayer and multicomponent coatings with adaptive behavior in wear and friction conditions” and 0116U002621 “Physical basics of forming the composition and properties of transition metals boride, nitride and boride-nitride films for application in machine-building”, as well as by Science and Technology Center in Ukraine (STCU) program entitled “A first-principle approach for the design of new superhard nanocomposite coatings” (Project No 6372-C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Bondar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bondar, O.V. et al. (2019). Structure and Properties of Combined Multilayer Coatings Based on Alternative Triple Nitride and Binary Metallic Layers. In: Pogrebnjak, A.D., Novosad, V. (eds) Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-6133-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6133-3_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6132-6

  • Online ISBN: 978-981-13-6133-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics