Skip to main content

Nanostructures in Welded Joints and Their Interconnection with Operation Properties

  • Conference paper
  • First Online:
Advances in Thin Films, Nanostructured Materials, and Coatings

Abstract

The role of structural factors in ensuring optimal properties of materials and their operational reliability has been shown. Studying the phase composition and nanostructures in the welded joints (heat-affected zone, weld metal) of high-strength structural steel produced by advanced high-speed technologies hybrid laser-arc welding. Structural parameters (dimension of grains and subgrains, dislocation density, nanoparticles) and phase changes in the welded joints were studied by using of analytical scanning electron microscopy, optical metallography, and for fine study the transmission electron microscopy was used as well. The most influential structural factors are the dispersing of martensite structure and bainite substructure, equable distribution of particles of structural phases and the absence of extended dislocation clusters—zones of crack incipience and propagation. Such substructure of welding joints of high-strength structural steel produced by laser-arc welding provides the high complex of strength properties and crack resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kovacs T (2018) Laser welding process specification base on welding theories. Proc Manufact 22:147–153. https://doi.org/10.1016/j.promfg.2018.03.023

    Article  Google Scholar 

  2. Auwal ST, Ramesh S, Yusof F et al (2018) A review on laser beam welding of copper alloys. Int J Adv Manuf Tech 96(1–4):475–490. https://doi.org/10.1007/s00170-017-1566-5

    Article  Google Scholar 

  3. Katayama S (2013) Handbook of laser welding technologies. Woodhead Publishing Limited, Cambridge. https://doi.org/10.1533/9780857098771.backmatter

  4. Markashova L, Berdnikova O, Bernatskyi A et al (2017) Physical and mechanical properties of high-strength steel joints produced by laser welding. In: Young scientists forum on applied physics and engineering (YSF), IEEE International, p 88–91. https://doi.org/10.1109/YSF.2017.8126596

  5. Unt A, Poutiainen I, GrĂĽnenwald S et al (2017) High power fiber laser welding of single sided T-joint on shipbuilding steel with different processing setups. Appl Sci 7(12):1276. https://doi.org/10.3390/app7121276

    Article  CAS  Google Scholar 

  6. Reisgen U, Krivtsun I, Gerhards BA et al (2016) Experimental research of hybrid welding processes in combination of gas tungsten arc with CO2- or Yb:YAG-laser beam. J Laser Appl 28(2):022402. https://doi.org/10.2351/1.4944096

    Article  CAS  Google Scholar 

  7. Shelyagin VD, Krivtsun IV, Borisov YuS et al (2005) Laser-arc and laser-plasma welding and coating technologies. Avtom Svarka 8:49–54

    Google Scholar 

  8. Kesse MA, Gyasi EA, Kah P (2017) Usability of laser-TIG hybrid welding processes. In: The 27th international ocean and polar engineering conference, International Society of Offshore and Polar Engineers, pp 42–49

    Google Scholar 

  9. Bunaziv I, Akselsen OM, Salminen A, Unt A (2016) Fiber laser-MIG hybrid welding of 5 mm 5083 aluminum alloy. J Mat Proc Techn 233:107–114. https://doi.org/10.1016/j.jmatprotec.2016.02.018

    Article  CAS  Google Scholar 

  10. Berdnikova O, Poznyakov V, Bushma O (2016) Laser and hybrid laser-arc welding of high strength steel N-A-XTRA-70. Mat Sci Forum 870:630–635. https://doi.org/10.4028/www.scientific.net/MSF.870.630

  11. Murzin SP, Liedl G (2017) Laser welding of dissimilar metallic materials with use of diffractive optical elements. Comput Opt 41(6):848–855. https://doi.org/10.18287/2412-6179-2017-41-6-848-855

  12. Cherepanov AN, Mali VI, Maliutina IN et al (2017) Laser welding of stainless steel to titanium using explosively welded composite inserts. Int J Adv Manuf Technol 90(9–12):3037–3043. https://doi.org/10.1007/s00170-016-9657-2

    Article  Google Scholar 

  13. Siora OV, Bernatsky AV (2011) Development of basic processing methods of laser welding of joints of dissimilar metals. Metallofiz Noveishie Tekhnol 33:569–576

    Google Scholar 

  14. Farrokhi F, Siltanen J, Salminen A (2015) Fiber laser welding of direct-quenched ultrahigh strength steels: evaluation of hardness, tensile strength, and toughness properties at subzero temperatures. J Manuf Sci Eng 137(6):061012. https://doi.org/10.1115/1.4030177

    Article  Google Scholar 

  15. Berdnikova O, Sydorets V, Alekseienko T (2014) Structure and properties of laser-welded joints from high-strength steels. Appl Mech Mat 682:240–245. https://doi.org/10.4028/www.scientific.net/AMM.682.240

  16. Sokolov M, Salminen A, Khlusova E et al (2015) Testing of new materials and computer aided optimization of laser beam welding of high-strength steels. Phys Proc 78:255–264. https://doi.org/10.1016/j.phpro.2015.11.036

    Article  CAS  Google Scholar 

  17. Kurc-Lisiecka A, Lisiecki A (2017) Laser welding of the new grade of advanced high-strength steel DOMEX 960. Mater Tehnol 51(7):199–204. https://doi.org/10.17222/mit.2015.158

  18. Cao X, Wanjara P, Huang J et al (2011) Hybrid fiber laser-arc welding of thick section high strength low alloy steel. Mater Des 32(6):3399–3413. https://doi.org/10.1016/j.matdes.2011.02.002

    Article  CAS  Google Scholar 

  19. Rossini M, Spena P, Cortese L et al (2015) Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry. Mat Sci Eng: A 628:288–296. https://doi.org/10.1016/j.msea.2015.01.037

    Article  CAS  Google Scholar 

  20. Krivtsun I, Reisgen U, Semenov O et al (2016) Modeling of weld pool phenomena in tungsten inert gas, CO2-laser and hybrid (TIG + CO2-laser) welding. J Laser Appl 28(2):022406. https://doi.org/10.2351/1.4943994

    Article  CAS  Google Scholar 

  21. Rethmeier M, Gook S, Lammers M et al (2009) Laser-hybrid welding of thick plates up to 32 mm using a 20 kW fibre laser. Trans JWRI 27(2):74–79. https://doi.org/10.2207/qjjws.27.74s

    Article  Google Scholar 

  22. Semenov I, Krivtsun I, Reisgen U (2016) Numerical study of the anode boundary layer in atmospheric pressure arc discharges. J Phys D: Appl Phys 49(10):105204. https://doi.org/10.1088/0022-3727/49/10/105204

    Article  CAS  Google Scholar 

  23. Orowan E (1954) Dislocation in Metals. AIME, New York

    Google Scholar 

  24. Gol’dshtein MI, Litvinov VS, Bronfin BM (1986) Metallophysics of high-strength alloys. Metallurgiya, Moscow

    Google Scholar 

  25. Conrad H (1973) Model of strain hardening for explaining the influence of grain size on the stress of metal flow. In: Gordienko LK (ed) Ultrafine grain in metals. Metallurgiya, Moscow, pp 206–219

    Google Scholar 

  26. Petch NJ (1953) The cleavage strength of polycrystalline. J Iron Steel Inst 173(5):25–28

    Google Scholar 

  27. Panin VE, Likhachev VA, Grinyaeva YuV (1985) Structural levels of deformation of solids. Nauka, Novosibirsk

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olena Berdnikova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Markashova, L., Berdnikova, O., Alekseienko, T., Bernatskyi, A., Sydorets, V. (2019). Nanostructures in Welded Joints and Their Interconnection with Operation Properties. In: Pogrebnjak, A.D., Novosad, V. (eds) Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-6133-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6133-3_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6132-6

  • Online ISBN: 978-981-13-6133-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics