Advertisement

Cochlear Implantation and Rehabilitation

  • Fei Chen
  • Wenli Ni
  • Wenyan Li
  • Huawei LiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1130)

Abstract

Cochlear implant (CI) is currently the only medical treatment available to partially restore hearing to patients with profound-to-severe hearing loss. CI is fundamentally distinct from hearing aid (HA) use, as implants are surgically placed under the skin behind the ear where they bypass the normal sound-conducting mechanism, convert sound signals into electrical stimulation, and directly stimulate the residual auditory nerves. In recent years, CI has evolved into one of the most profound advances in modern medicine and provided hearing to more than 320,000 deaf patients. According to the time of onset, deafness is classified as prelingual and postlingual deafness, and the indications of cochlear implants vary slightly. The medical evaluation must be made before surgery, including the medical history, objective and subjective audiometry, imaging of the ear, as well as the genetic diagnostic. Here we reviewed the surgical approaches for cochlear implants as well as the complications.

Keywords

Cochlear implantation Speech processing Speech perception Indication Surgery approach Outcome expectation 

References

  1. 1.
    Volta (1800) On the electricity excited by mere contact of conducting substances of different kinds. Royal Soc Philos Trans 90:403–431CrossRefGoogle Scholar
  2. 2.
    Djourno A, Eyries C (1957) Auditory prosthesis by means of a distant electrical stimulation of the sensory nerve with the use of an indwelt coiling. Presse Med 65(63):1417–1417PubMedGoogle Scholar
  3. 3.
    House WF, Urban J (1973) Long term results of electrode implantation and electronic stimulation of the cochlea in man. Ann Otol Rhinol Laryngol 82(4):504–517CrossRefGoogle Scholar
  4. 4.
    Simmons FB, Epley JM, Lummis RC, Guttman N, Frishkopf LS, Harmon LD, Zwicker E (1965) Auditory nerve: electrical stimulation in man. Science 148:104–106CrossRefGoogle Scholar
  5. 5.
    Fretz RJ, Fravel RP (1985) Design and function: a physical and electrical description of the 3M House cochlear implant system. Ear Hear 6(3):14S–19SCrossRefGoogle Scholar
  6. 6.
    Bilger RC (1977) Psychoacoustic evaluation of present prostheses. Ann Otol Rhinol Laryngol Suppl 86:92–104PubMedGoogle Scholar
  7. 7.
    Gantz B, Tyler RS, Abbas P, Tye-Murray N, Knutson JF, Mccabe BF, Lansing C, Brown CJ, Woodworth G, Hinrichs J, Kuk F (1988) Evaluation of five different cochlear implant designs: audiologic assessment and predictors of performance. Laryngoscope 98(10):1100–1106CrossRefGoogle Scholar
  8. 8.
    Loizou PC (1999) Introduction to cochlear implants. IEEE Eng Med Biol Mag 18(1):32–42CrossRefGoogle Scholar
  9. 9.
    Loizou PC (1999) Signal-processing techniques for cochlear implants. IEEE Eng Med Biol Mag 18(3):34–46CrossRefGoogle Scholar
  10. 10.
    Seligman PM, Patrick JF, Tong YC, Clark GM, Dowell RC, Crosby PA (1984) A signal processor for a multiple-electrode hearing prosthesis. Acta Otolaryngol 98(sup411):135–139CrossRefGoogle Scholar
  11. 11.
    Tye-Murray N, Lowder M, Tyler RS (1990) Comparison of the F0F2 and F0F1F2 processing strategies for the Cochlear Corporation cochlear implant. Ear Hear 11(3):195–200CrossRefGoogle Scholar
  12. 12.
    Patrick JF, Clark GM (1991) The nucleus 22-channel cochlear implant system. Sci Publ 5(370):1989–1990Google Scholar
  13. 13.
    Eddington D (1980) Speech discrimination in deaf subjects with cochlear implants. J Acoust Soc Am 68(3):885–891CrossRefGoogle Scholar
  14. 14.
    Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM (1991) Better speech recognition with cochlear implants. Nature 352(6332):236–238CrossRefGoogle Scholar
  15. 15.
    Han D, Liu B, Zhou N, Chen X, Kong Y, Liu H, Xu L (2009) Lexical tone perception with HiResolution and HiResolution 120 sound-processing strategies in pediatric Mandarin-speaking cochlear implant users. Ear Hear 30(2):885–891CrossRefGoogle Scholar
  16. 16.
    Seligman P, McDermott H (1995) Architecture of the Spectra 22 speech processor. Ann Otol Rhinol Laryngol 8(761):139–141Google Scholar
  17. 17.
    Skinner MW, Arndt PL, Staller SJ (2002) Nucleus 24 advanced encoder conversion study: performance versus preference. Ear Hear 23(1):2–17CrossRefGoogle Scholar
  18. 18.
    Patrick JF, Busby PA, Gibson PJ (2006) The development of the Nucleus Freedom Cochlear implant system. Trends Amplif 10(4):175–200CrossRefGoogle Scholar
  19. 19.
    Arnoldner C, Riss D, Brunner M, Baumgartner WD, Hamzavi JS (2007) Speech and music perception with the new fine structure speech coding strategy: preliminary results. Acta Otolaryngol 127(12):1298–1303CrossRefGoogle Scholar
  20. 20.
    Firszt JB, Holden LK, Reeder RM, Skinner MW (2009) Speech recognition in cochlear implant recipients: comparison of standard HiRes and HiRes 120 sound processing. Otol Neurotol 30(2):146–152CrossRefGoogle Scholar
  21. 21.
    Starr A, Picton T, Sininger Y, Hood L, Berlin C (1996) Auditory neuropathy. Brain 119(Pt 3):741–753CrossRefGoogle Scholar
  22. 22.
    Hood LJ (2015) Otolaryngologic clinics of North America. Otolaryngol Clin N Am 48:1027–1040CrossRefGoogle Scholar
  23. 23.
    House W, Luxford W, Courtney B (1985) Otitis media in children following the cochlear implant. Ear Hear 6:24S–26SCrossRefGoogle Scholar
  24. 24.
    Luntz M, Hodges A, Balkany T, Dolan-Ash S, Schloffman J (1996) Otitis media in children with cochlear implants. Laryngoscope 106:1403–1405CrossRefGoogle Scholar
  25. 25.
    Morton N (1991) Genetic epidemiology of hearing impairment. Ann N Y Acad Sci 630:16–31CrossRefGoogle Scholar
  26. 26.
    House W, Berliner K (1986) Safety and efficacy of the House/3M cochlear implant in profoundly deaf adults. Otolaryngol Clin N Am 19:275–286Google Scholar
  27. 27.
    Mangus B, Rivas A et al (2012) Surgical techniques in cochlear implants. Otolaryngol Clin N Am 45:69–80CrossRefGoogle Scholar
  28. 28.
    Iseli C, Adunka OF, Buchman CA (2014) Scala tympani cochleostomy survey: a follow-up study. Laryngoscope 124:1928–1931CrossRefGoogle Scholar
  29. 29.
    Kronenberg J, Migirov L, Dagan T (2001) Suprameatal approach: new surgical approach for cochlear implantation. J Laryngol Otol 115:283–285CrossRefGoogle Scholar
  30. 30.
    Postelmans JT, Grolman W, Tange RA, Stokroos RJ (2009) Comparison of two approaches to the surgical management of cochlear implantation. Laryngoscope 119:1571–1578CrossRefGoogle Scholar
  31. 31.
    Gawecki W, Karlik M, Borucki L, Wróbel M, Stieler O, Szyfter W (2018) Middle fossa approach for cochlear implantation. Otol Neurotol 39:e96CrossRefGoogle Scholar
  32. 32.
    Kiratzidis T, Arnold W, Iliades T (2002) Veria operation updated. I. The trans-canal wall cochlear implantation. ORL 64:406–412CrossRefGoogle Scholar
  33. 33.
    Kiratzidis T, Iliades T, Arnold W (2002) Veria operation. II. Surgical results from 101 cases. ORL 64:413–416CrossRefGoogle Scholar
  34. 34.
    Pau H, Just T, Bornitz M, Lasurashvilli N, Zahnert T (2007) Noise exposure of the inner ear during drilling a cochleostomy for cochlear implantation. Laryngoscope 117:535–540CrossRefGoogle Scholar
  35. 35.
    James C, Albegger K, Battmer R et al (2005) Preservation of residual hearing with cochlear implantation: how and why. Acta Otolaryngol 125:481–491CrossRefGoogle Scholar
  36. 36.
    Skarzynski H, Lorens A, Piotrowska A, Anderson I (2007) Partial deafness cochlear implantation in children. Int J Pediatr Otorhinolaryngol 71:1407–1413CrossRefGoogle Scholar
  37. 37.
    Sun C, Hsu C, Chen P, Wu H (2015) Residual hearing preservation after cochlear implantation via round window or cochleostomy approach. Laryngoscope 125:1715–1719CrossRefGoogle Scholar
  38. 38.
    Havenith S, Lammers MJ, Tange RA et al (2013) Hearing preservation surgery: cochleostomy or round window approach? A systematic review. Otol Neurotol 34:667CrossRefGoogle Scholar
  39. 39.
    Sennaroglu L, Saatci I (2002) A new classification for cochleovestibular malformations. Laryngoscope 112:2230–2241CrossRefGoogle Scholar
  40. 40.
    Sennaroglu L (2009) Cochlear implantation in inner ear malformations – a review article. Cochlear Implant Int 11:4–41CrossRefGoogle Scholar
  41. 41.
    Lenarz T (2018) Cochlear implant – state of the art. GMS Curr Top Otorhinolaryngol Head Neck Surg 16:Doc04PubMedPubMedCentralGoogle Scholar
  42. 42.
    Farinetti A, Gharbia BD, Mancini J, Roman S, Nicollas R, Triglia J-M (2014) Cochlear implant complications in 403 patients: comparative study of adults and children and review of the literature. Eur Ann Otorhinolaryngol Head Neck Dis 131:177–182CrossRefGoogle Scholar
  43. 43.
    Eisenberg LS, Johnson KC, Martinez AS et al (2006) Speech recognition at 1-year follow-up in the childhood development after cochlear implantation study: methods and preliminary findings. Audiol Neurootol 11:259–268CrossRefGoogle Scholar
  44. 44.
    Dettman SJ, D’Costa WA, Dowell RC, Winton EJ, Hill KL, Williams SS (2004) Cochlear implants for children with significant residual hearing. Arch Otolaryngol Head Neck Surg 130:612–618CrossRefGoogle Scholar
  45. 45.
    Gantz B, Rubinstein J, Tyler R et al (2000) Long-term results of cochlear implants in children with residual hearing. Ann Otol Rhinol Laryngol 185:33–36CrossRefGoogle Scholar
  46. 46.
    Dunn CC, Walker EA, Oleson J et al (2014) Longitudinal speech perception and language performance in pediatric cochlear implant users: the effect of age at implantation. Ear Hear 35:148CrossRefGoogle Scholar
  47. 47.
    Chen Y, Wong L, Zhu S, Xi X (2016) Early speech perception in Mandarin-speaking children at one-year post cochlear implantation. Res Dev Disabil 49:1–12CrossRefGoogle Scholar
  48. 48.
    Geers A, Brenner C, Davidson L (2003) Factors associated with development of speech perception skills in children implanted by age five. Ear Hear 24:24S–35SCrossRefGoogle Scholar
  49. 49.
    Lin FR, Chien WW, Li L, Clarrett DM, Niparko JK, Francis HW (2012) Cochlear implantation in older adults. Medicine 91:229CrossRefGoogle Scholar
  50. 50.
    Yang Z, Cosetti M (2016) Safety and outcomes of cochlear implantation in the elderly: a review of recent literature. J Otol 11:1–6CrossRefGoogle Scholar
  51. 51.
    Bronkhorst A, Plomp R (1988) The effect of head-induced interaural time and level differences on speech intelligibility in noise. J Acoust Soc Am 83:1508–1516CrossRefGoogle Scholar
  52. 52.
    Schafer EC, Amlani AM, Seibold A, Shattuck PL (2007) A meta-analytic comparison of binaural benefits between bilateral cochlear implants and bimodal stimulation. J Am Acad Audiol 18:760–776(17)CrossRefGoogle Scholar
  53. 53.
    Neuman AC, Haravon A, Sislian N, Waltzman SB (2007) Sound-direction identification with bilateral cochlear implants. Ear Hear 28:73CrossRefGoogle Scholar
  54. 54.
    Mosnier I, Sterkers O, Bebear J-P et al (2009) Speech performance and sound localization in a complex noisy environment in bilaterally implanted adult patients. Audiol Neurotol 14:106–114CrossRefGoogle Scholar
  55. 55.
    Papsin BC, Gordon KA (2008) Bilateral cochlear implants should be the standard for children with bilateral sensorineural deafness. Curr Opin Otolaryngol 16:69CrossRefGoogle Scholar
  56. 56.
    Balkany T, Hodges A, Telischi F et al (2008) William House Cochlear Implant Study Group: position statement on bilateral cochlear implantation. Otol Neurotol 29:107CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Southern University of Science and TechnologyShenzhenChina
  2. 2.Key Laboratory of Hearing Medicine of NHFPC, ENT Institute and Otorhinolaryngology Department, Shanghai Engineering Research Centre of Cochlear Implant, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina

Personalised recommendations