Advertisement

Protection of Spiral Ganglion Neurons and Prevention of Auditory Neuropathy

  • Wenwen Liu
  • Xue Wang
  • Man Wang
  • Haibo Wang
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1130)

Abstract

In the auditory system, the primary sensory neurons, spiral ganglion neurons (SGNs), transmit complex acoustic information from hair cells to the second-order sensory neurons in the cochlear nucleus for sound processing, thus building the initial bridge between the physical world of sound and the perception of that sound. Cochlear SGN loss causes irreversible hearing impairment because this type of neural cell cannot regenerate. A better understanding of the molecular mechanisms of formation, structure, degeneration, and protection of SGNs will help to design potential therapeutic strategies for preservation and replacement of them in the cochlear implant recipient. In this review, we described and summarized the following about SGNs: (1) their cell biology and their peripheral and central connections, (2) mechanisms of their neuronal damage and their protection, and (3) the neural and synaptic mechanism of auditory neuropathy and current options for hearing rehabilitation from auditory neuropathy. The updates of the research progress and the significant issues on these topics were discussed.

Keywords

Spiral ganglion neuron Synapse Neuronal damage Auditory neuropathy Cochlea implantation 

References

  1. 1.
    Adamson CL, Reid MA, Davi RL (2002) Opposite actions of brain-derived neurotrophic factor and neurotrophin-3 on firing features and ion channel composition of murine spiral ganglion neurons. J Neurosci 22(4):1385–1396PubMedGoogle Scholar
  2. 2.
    Agterberg M, Versnel HG, Jc SG, Albers F, Klis S (2008) Morphological changes in spiral ganglion cells after intracochlear application of brain-derived neurotrophic factor in deafened guinea pigs. Hear Res 244(2):25–34PubMedGoogle Scholar
  3. 3.
    Agterberg MJ, Versnel H, Dijk LM, Groot JC, Klis SF (2009) Enhanced survival of spiral ganglion cells after cessation of treatment with brain-derived neurotrophic factor in deafened Guinea Pigs. Jaro J Assoc Res Otolaryngol 10(3):355–367PubMedGoogle Scholar
  4. 4.
    Alam SA, Robinson BK, Huang J, Green SH (2007) Prosurvival and proapoptotic intracellular signaling in rat spiral ganglion neurons in vivo after the loss of hair cells. J Comp Neurol 503(6):832–852.  https://doi.org/10.1002/cne.21430 CrossRefPubMedGoogle Scholar
  5. 5.
    Angeli S, Lin X, Liu XZ (2012) Genetics of hearing and deafness. Anat Rec (Hoboken) 295(11):1812–1829.  https://doi.org/10.1002/ar.22579 CrossRefGoogle Scholar
  6. 6.
    Bardley J, Beale T, Graham J, Bell M (2008) Variable long-term outcomes from cochlear implantation in children with hypoplastic auditory nerve. Cochlea Implants Int 9:34–35Google Scholar
  7. 7.
    Berlin CI (1999) Auditory neuropathy:using OAEs and ABRs from screening to management. Semin Hear 20:307–308Google Scholar
  8. 8.
    Brown MC, Berglund AM, Kiang NY, Ryugo DK (1988) Central trajectories of type II spiral ganglion neurons. J Comp Neurol 278(4):581–590PubMedGoogle Scholar
  9. 9.
    Chikar JA, Colesa DJ, Swiderski DL, Polo AD, Raphael Y, Pfingst BE (2008) Over-expression of BDNF by adenovirus with concurrent electrical stimulation improves cochlear implant thresholds and survival of auditory neurons. Hear Res 245(1):24–34PubMedPubMedCentralGoogle Scholar
  10. 10.
    Coate TM, Kelley MW (2013) Making connections in the inner ear: recent insights into the development of spiral ganglion neurons and their connectivity with sensory hair cells. Semin Cell Dev Biol 24(5):460–469PubMedPubMedCentralGoogle Scholar
  11. 11.
    Conde de Felipe MM, Feijoo Redondo A, García-Sancho J, Schimmang T, Durán Alonso MB (2011) Cell- and gene-therapy approaches to inner ear repair. Histol Histopathol 26(7):923–940PubMedGoogle Scholar
  12. 12.
    Corrales CE, Pan L, Li H, Liberman MC, Heller S, Edge ASB (2006) Engraftment and differentiation of embryonic stem cell–derived neural progenitor cells in the cochlear nerve trunk: growth of processes into the organ of corti. Dev Neurobiol 66(13):1489–1500Google Scholar
  13. 13.
    Dror AA, Avraham KB (2010) Hearing impairment: a panoply of genes and functions. Neuron 68(2):293–308.  https://doi.org/10.1016/j.neuron.2010.10.011 CrossRefPubMedGoogle Scholar
  14. 14.
    Echteler SM (1992) Developmental segregation in the afferent projections to mammalian auditory hair cells. Proc Natl Acad Sci U S A 89:6324–6327PubMedPubMedCentralGoogle Scholar
  15. 15.
    Fu Y, Ding D, Wei L, Jiang H, Salvi R (2013) Ouabain-induced apoptosis in cochlear hair cells and spiral ganglion neurons in vitro. Biomed Res Int 2013:628064.  https://doi.org/10.1155/2013/628064 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Geisler CD (1998) From sound to synapse: physiology of the mammalian ear. Oxford University Press, New YorkGoogle Scholar
  17. 17.
    Gilels F, Paquette ST, Zhang J, Rahman I, White PM (2013) Mutation of Foxo3 causes adult onset auditory neuropathy and alters cochlear synapse architecture in mice. J Neurosci 33(47):18409–18424.  https://doi.org/10.1523/jneurosci.2529-13 CrossRefPubMedGoogle Scholar
  18. 18.
    Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. Nat Neurosci 5:147–154PubMedGoogle Scholar
  19. 19.
    Hackney CM, Osen KK, Ottersen OP, Storm-Mathisen J, Manjaly G (1996) Immunocytochemical evidence that glutamate is a neurotransmitter in the cochlear nerve: a quantitative study in the guinea-pig anteroventral cochlear nucleus. Eur J Neurosci 8(1):79–91PubMedGoogle Scholar
  20. 20.
    Hardie NA, Shepherd RK (1999) Sensorineural hearing loss during development: morphological and physiological response of the cochlea and auditory brainstem. Hear Res 128(1–2):147–165PubMedGoogle Scholar
  21. 21.
    Harris MS, Gilbert JL, Lormore KA, Musunuru SA, Fritsch MH (2011) Cisplatin ototoxicity affecting cochlear implant benefit. Otol Neurotol 32(6):969–972.  https://doi.org/10.1097/MAO.0b013e3182255893 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    He Y, Zhang PZ, Sun D, Mi WJ, Zhang XY, Cui Y et al (2014) Wnt1 from cochlear schwann cells enhances neuronal differentiation of transplanted neural stem cells in a rat spiral ganglion neuron degeneration model. Cell Transplant 23(6):747–760PubMedGoogle Scholar
  23. 23.
    Huang LC, Thorne PR, Housley GD, Montgomery JM (2007) Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development 134:2925–2933PubMedGoogle Scholar
  24. 24.
    Huang LC, Barclay M, Lee K, Peter S, Housley GD, Thorne PR et al (2012) Synaptic profiles during neurite extension, refinement and retraction in the developing cochlea. Neural Dev 7:38PubMedPubMedCentralGoogle Scholar
  25. 25.
    Ishikawa M, Ohnishi H, Skerleva D, Sakamoto T, Yamamoto N, Hotta A et al (2017) Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae. J Tissue Eng Regen Med 11(6):1766–1778PubMedGoogle Scholar
  26. 26.
    Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y et al (2010) A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci U S A 107(6):2687–2692PubMedPubMedCentralGoogle Scholar
  27. 27.
    Jeong SW, Kim LS, Hur D, Bae WY, Kim JR, Lee JH (2010) Gentamicin-induced spiral ganglion cell death: apoptosis mediated by ROS and the JNK signaling pathway. Acta Otolaryngol 130(6):670–678.  https://doi.org/10.3109/00016480903428200 CrossRefPubMedGoogle Scholar
  28. 28.
    Kanzaki S, Stöver T, Kawamoto K, Prieskorn DM, Altschuler RA, Miller JM et al (2002) Glial cell line-derived neurotrophic factor and chronic electrical stimulation prevent VIII cranial nerve degeneration following denervation. J Comp Neurol 454(3):350–360PubMedGoogle Scholar
  29. 29.
    Kiang NY, Rho JM, Northrop CC, Liberman MC, Ryugo DK (1982) Hair-cell innervation by spiral ganglion cells in adult cats. Science 217(4555):175–177PubMedGoogle Scholar
  30. 30.
    Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “Temporary” noise-induced hearing loss. J Neurosc Off J Soc Neurosci 29(45):14077–14085Google Scholar
  31. 31.
    Kujawa SG, Liberman MC (2015) Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res 330(Pt B):191–199PubMedPubMedCentralGoogle Scholar
  32. 32.
    Kundu P, Rout N (2010) The impact of high gain conventional hearing aid on OAEs in a case of auditory neuropathy/dys-synchrony. East J Med 15:15–16Google Scholar
  33. 33.
    Ladrech S, Guitton M, Saido T, Lenoir M (2004) Calpain activity in the amikacin-damaged rat cochlea. J Comp Neurol 477(2):149–160.  https://doi.org/10.1002/cne.20252 CrossRefPubMedGoogle Scholar
  34. 34.
    Lallemend F, Lefebvre PP, Hans G, Rigo JM, Tr VDW, Moonen G et al (2003) Substance P protects spiral ganglion neurons from apoptosis via PKC-Ca2+-MAPK/ERK pathways. J Neurochem 87(2):508–521PubMedGoogle Scholar
  35. 35.
    Lallemend F, Hadjab S, Hans G, Moonen G, Lefebvre PP, Malgrange B (2005) Activation of protein kinase CbetaI constitutes a new neurotrophic pathway for deafferented spiral ganglion neurons. J Cell Sci 118(19):4511–4525PubMedGoogle Scholar
  36. 36.
    Lang H, Schulte BA, Zhou D, Smythe N, Spicer SS, Schmiedt RA (2006) Nuclear factor κB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci 26(13):3541–3550.  https://doi.org/10.1523/jneurosci.2488-05.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Li H, Liu H, Heller S (2003) Pluripotent stem cells from the adult mouse inner ear. Nat Med 9(10):1293–1299PubMedGoogle Scholar
  38. 38.
    Li L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S et al (2011) The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147(7):1615–1627PubMedPubMedCentralGoogle Scholar
  39. 39.
    Liberman MC (1978) Auditory-nerve response from cats raised in a lownoise chamber. J Acoust Soc Am 63:442–455PubMedGoogle Scholar
  40. 40.
    Liberman MC (1982) Single-neuron labeling in the cat auditory nerve. Science 216(4551):1239–1241Google Scholar
  41. 41.
    Liberman MC (2017) Noise-induced and age-related hearing loss: new perspectives and potential therapies. F1000Res 6:927Google Scholar
  42. 42.
    Liberman LD, Wang H, Liberman MC (2011) Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. J Neurosci 31:801–808PubMedPubMedCentralGoogle Scholar
  43. 43.
    Liu W, Fan Z, Han Y, Zhang D, Li J, Wang H (2012) Intranuclear localization of apoptosis-inducing factor and endonuclease G involves in peroxynitrite-induced apoptosis of spiral ganglion neurons. Neurol Res 34(10):915–922.  https://doi.org/10.1179/1743132812y.0000000098 CrossRefPubMedGoogle Scholar
  44. 44.
    Liu W, Xu X, Fan Z, Sun G, Han Y, Zhang D et al (2018) Wnt signaling activates TP53-induced glycolysis and apoptosis regulator and protects against cisplatin-induced spiral ganglion neuron damage in the mouse Cochlea. Antioxid Redox Signal.  https://doi.org/10.1089/ars.2017.7288
  45. 45.
    Martinez-Monedero R, Liu C, Weisz C, Vyas P, Fuchs PA, Glowatzki E (2016) GluA2-containing AMPA receptors distinguish ribbon-associated from ribbonless afferent contacts on rat cochlear hair cells. eNeuro 3(2):11080–11085Google Scholar
  46. 46.
    Matthews G, Fuchs P (2010) The diverse roles of ribbon synapses in sensory neurotransmission. Nat Rev Neurosci 11:812–822PubMedPubMedCentralGoogle Scholar
  47. 47.
    Miller JM, Miller AL, Yamagata T, Bredberg G, Altschuler RA (2002) Protection and regrowth of the auditory nerve after deafness: neurotrophins, antioxidants and depolarization are effective in vivo. Audiol Neurootol 7(3):175–179.  https://doi.org/10.1159/000058306 CrossRefPubMedGoogle Scholar
  48. 48.
    Mohammadian F, Eatemadi A, Daraee H (2017) Application of stem cell for the regeneration of spiral ganglion neurons. Cell Mol Biol 63(1):6–12PubMedGoogle Scholar
  49. 49.
    Moser T, Starr A (2016) Auditory neuropathy–neural and synaptic mechanisms. Nat Rev Neurol 12:135–149PubMedGoogle Scholar
  50. 50.
    Moser T, Predoehl F, Starr A (2013) Review of hair cell synapse defects in sensorineural hearing impairment. Otol Neurotol 34:995–1004PubMedGoogle Scholar
  51. 51.
    Nakaizumi T, Kawamoto K, Minoda R, Raphael Y (2004) Adenovirus-mediated expression of brain-derived neurotrophic factor protects spiral ganglion neurons from ototoxic damage. Audiol Neurotol 9(3):135–143Google Scholar
  52. 52.
    Narne VK, Vanaja CS (2009) Perception of speech with envelope enhancement in individuals with auditory neuropathy and simulated loss of temporal modulation processing. Int J Audiol 48:700–701PubMedGoogle Scholar
  53. 53.
    Nayagam BA, Muniak MA, Ryugo DK (2011) The spiral ganglion: connecting the peripheral and central auditory systems. Hear Res 278(1–2):2–20PubMedPubMedCentralGoogle Scholar
  54. 54.
    Pangrsic T, Lasarow L, Reuter K, Takago H, Schwander M, Riedel D et al (2010) Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells. Nat Neurosci 13:869–876PubMedGoogle Scholar
  55. 55.
    Pirvola U, Xingqun L, Virkkala J, Saarma M, Murakata C, Camoratto AM et al (2000) Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation. J Neurosci 20(1):43–50PubMedGoogle Scholar
  56. 56.
    Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H et al (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97PubMedGoogle Scholar
  57. 57.
    Pouyatos B, Morel G, Lambert-Xolin AM, Maguin K, Campo P (2004) Consequences of noise- or styrene-induced cochlear damages on glutamate decarboxylase levels in the rat inferior colliculus. Hear Res 189(1–2):83–91PubMedGoogle Scholar
  58. 58.
    Pujol R, Puel JL (1999) Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings. Ann N Y Acad Sci 884(1):249–254PubMedGoogle Scholar
  59. 59.
    Pujol R, Rebillard G, Puel JL, Lenoir M, Eybalin M, Recasens M (1990) Glutamate neurotoxicity in the cochlea: a possible consequence of ischaemic or anoxic conditions occurring in ageing. Acta Otolaryngol Suppl 476:32–36PubMedGoogle Scholar
  60. 60.
    Rance G, Barker EJ (2009) Speech and language outcomes in children with auditory neuropathy/dys-synchrony managed with either cochlear implants or hearing aids. Int J Audiol 48(6):313–320PubMedGoogle Scholar
  61. 61.
    Rance G, Starr A (2015) Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy. Brain 138:3141–3158PubMedGoogle Scholar
  62. 62.
    Rance G, Corben LA, Du Bourg E, King A, Delatycki MB (2010) Successful treatment of auditory perceptual disorder in individuals with Friedreich ataxia. Neuroscience 171:552–553PubMedGoogle Scholar
  63. 63.
    Rathinam R, Ghosh S, Neumann WL, Jamesdaniel S (2015) Cisplatin-induced apoptosis in auditory, renal, and neuronal cells is associated with nitration and downregulation of LMO4. Cell Death Discovery 1:15052PubMedPubMedCentralGoogle Scholar
  64. 64.
    Rosenbluth J (1962) The fine structure of acoustic ganglia in the rat. J Cell Biol 12:329–359PubMedPubMedCentralGoogle Scholar
  65. 65.
    Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25(1):51–101PubMedGoogle Scholar
  66. 66.
    Ruel J, Bobbin RP, Vidal D, Pujol R, Puel JL (2000) The selective AMPA receptor antagonist GYKI 53784 blocks action potential generation and excitotoxicity in the guinea pig cochlea. Neuropharmacology 39(11):1959–1973PubMedGoogle Scholar
  67. 67.
    Rutherford MA, Chapochnikov NM, Moser T (2012) Spike encoding of neurotransmitter release timing by spiral ganglion neurons of the cochlea. J Neurosci 32:4773–4789PubMedGoogle Scholar
  68. 68.
    Sachs MB, Abbas PJ (1974) Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J Acoust Soc Am 56:1835–1847PubMedGoogle Scholar
  69. 69.
    Santarelli R, Rossi R, Scimemi P, Cama E, Valentino ML, La Morgia C et al (2015) OPA1-related auditory neuropathy: site of lesion and outcome of cochlear implantation. Brain 138:563–576PubMedPubMedCentralGoogle Scholar
  70. 70.
    Seal RP, Akil O, Yi E, Weber CM, Grant L, Yoo J et al (2008) Sensorineural deafness and seizures in mice lacking Vesicular Glutamate Transporter 3. Neuron 57:263–275PubMedPubMedCentralGoogle Scholar
  71. 71.
    Sergeyenko Y, Lall K, Liberman MC, Kujawa SG (2013) Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci Off J Soc Neurosci 33(34):13686–13694Google Scholar
  72. 72.
    Sharif S, Nakagawa T, Ohno T, Matsumoto M, Kita T, Riazuddin S et al (2007) The potential use of bone marrow stromal cells for cochlear cell therapy. Neuroreport 18(4):351PubMedGoogle Scholar
  73. 73.
    Shepherd RK, Coco A, Epp SB, Crook JM (2005) Chronic depolarization enhances the trophic effects of brain-derived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss. J Comp Neurol 486(2):145–158PubMedPubMedCentralGoogle Scholar
  74. 74.
    Shepherd RK, Coco A, Epp SB (2008) Neurotrophins and electrical stimulation for protection and repair of spiral ganglion neurons following sensorineural hearing loss. Hear Res 242(1):100–109PubMedGoogle Scholar
  75. 75.
    Shibata SB, Cortez SR, Beyer LA, Wiler JA, Polo AD, Pfingst BE et al (2010) Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Exp Neurol 223(2):464PubMedPubMedCentralGoogle Scholar
  76. 76.
    Shrestha BR, Chia C, Wu L, Kujawa SG, Liberman MC, Goodrich LV (2018) Sensory neuron diversity in the inner ear is shaped by activity. Cell 174(5):1229–1246PubMedGoogle Scholar
  77. 77.
    Soares ID, Menezes PL, Carnauba AT, de Andrade KC, Lins OG (2016) Study of cochlear microphonic potentials in auditory neuropathy. Braz J Otorhinolaryngol 82:722–736PubMedGoogle Scholar
  78. 78.
    Spoendlin H (1971) Degeneration behaviour of the cochlear nerve. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 200:275e291Google Scholar
  79. 79.
    Spoendlin H (1981) Differentiation of cochlear afferent neurons. Acta Otolaryngol 91(5–6):451–456PubMedGoogle Scholar
  80. 80.
    Stamataki S, Francis HW, Lehar M, May BJ, Ryugo DK (2006) Synaptic alterations at inner hair cells precede spiral ganglion cell loss in aging C57BL/6J mice. Hear Res 221(1):104–118PubMedGoogle Scholar
  81. 81.
    Steinbach S, Lutz J (2007) Glutamate induces apoptosis in cultured spiral ganglion explants. Biochem Biophys Res Commun 357(1):14–19PubMedGoogle Scholar
  82. 82.
    Sujeong J, Hyong-Ho C, Song-Hee K, Kyung-Hwa L, Yeoul JJ, Jong-Seong P et al (2015) Neural-induced human mesenchymal stem cells promote cochlear cell regeneration in deaf guinea pigs. Clin Exp Otorhinolaryngol 8(2):83–91Google Scholar
  83. 83.
    Sun S, Babola T, Pregernig G, So KS, Nguyen M, Su SM et al (2018) Hair cell mechanotransduction regulates spontaneous activity and spiral ganglion subtype specification in the auditory system. Cell 174(5):1247–1263PubMedGoogle Scholar
  84. 84.
    Thomsen E (1966) The ultrastructure of the spiral ganglion in the guinea pig. Acta Otolaryngol 63(Suppl. 224):442Google Scholar
  85. 85.
    Uluc K, Kendigelen P, Fidan E, Zhang L, Chanana V, Kintner D et al (2013) TrkB receptor agonist 7, 8 dihydroxyflavone triggers profound gender- dependent neuroprotection in mice after perinatal hypoxia and ischemia. CNS Neurol Disord Drug Targets 12(3):360–370PubMedPubMedCentralGoogle Scholar
  86. 86.
    Verleye M, Steinschneider R, Fx GJ (2007) Moclobemide attenuates anoxia and glutamate-induced neuronal damage in vitro independently of interaction with glutamate receptor subtypes. Brain Res 1138(1):30–38PubMedGoogle Scholar
  87. 87.
    Wan G, Gómez-Casati ME, Gigliello AR, Liberman MC, Corfas G (2014) Neurotrophin 3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. elife 3:e03564PubMedCentralGoogle Scholar
  88. 88.
    Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse Cochlea. J Assoc Res Otolaryngol Jaro 3(3):248–268PubMedGoogle Scholar
  89. 89.
    Wang J, Ding D, Salvi RJ (2003) Carboplatin-induced early cochlear lesion in chinchillas. Hear Res 181(1–2):65–72PubMedGoogle Scholar
  90. 90.
    Winter IM, Robertson D, Yates GK (1990) Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres. Hear Res 45:191–202PubMedGoogle Scholar
  91. 91.
    Wise AK, Richardson R, Hardman J, Clark G, O’Leary S (2005) Resprouting and survival of guinea pig cochlear neurons in response to the administration of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3. J Comp Neurol 487(2):147–165PubMedGoogle Scholar
  92. 92.
    Wise AK, Hume CR, Flynn BO, Jeelall YS, Suhr CL, Sgro BE et al (2010) Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea. Mol Ther J Am Soc Gene Ther 18(6):1111–1122Google Scholar
  93. 93.
    Wong AC, Ryan AF (2015) Mechanisms of sensorineural cell damage, death and survival in the cochlea. Front Aging Neurosci 21(7):58Google Scholar
  94. 94.
    Wu JS, Young ED, Glowatzki E (2016) Maturation of spontaneous firing properties after hearing onset in rat auditory nerve fibers: spontaneous rates, refractoriness, and interfiber correlations. J Neurosci 36:10584–10597PubMedPubMedCentralGoogle Scholar
  95. 95.
    Wynne DP, Zeng FG, Bhatt S, Michalewski HJ, Dimitrijevic A, Starr A (2013) Loudness adaptation accompanying ribbon synapse and auditory nerve disorders. Brain 136:1626–1638PubMedPubMedCentralGoogle Scholar
  96. 96.
    Xiao L, Xu H, Zhang Y, Wei Z, He J, Jiang W et al (2008) Quetiapine facilitates oligodendrocyte development and prevents mice from myelin breakdown and behavioral change. Mol Psychiatry 13:697–698PubMedGoogle Scholar
  97. 97.
    Yakovlev AG, Faden AI (2001) Caspase-dependent apoptotic pathways in CNS injury. Mol Neurobiol 24(1–3):131–144PubMedGoogle Scholar
  98. 98.
    Yu Q, Chang Q, Liu X, Wang Y, Li H, Gong S et al (2013) Protection of spiral ganglion neurons from degeneration using small-molecule TrkB receptor agonists. J Neurosci Off J Soc Neurosci 33(32):13042Google Scholar
  99. 99.
    Zeng FG, Liu S (2006) Speech perception in individuals with auditory neuropathy. Speech Lang Hear Res 49:367–368Google Scholar
  100. 100.
    Zhang KD, Coate TM (2017) Recent advances in the development and function of type II spiral ganglion neurons in the mammalian inner ear. Semin Cell Dev Biol 65:80–87PubMedGoogle Scholar
  101. 101.
    Zhang Y, Liu N, Tang Y, Yang E, Dong S, Huang M et al (2014) Efficient generation of neural stem cell-like cells from rat adipose derived stem cells after lentiviral transduction with green fluorescent protein. Mol Neurobiol 50(2):647–654Google Scholar
  102. 102.
    Zuccotti A, Kuhn S, Johnson SL, Franz C, Singer W, Hecker D et al (2012) Lack of brain-derived neurotrophic factor hampers inner hair cell synapse physiology, but protects against noise-induced hearing loss. J Neurosci 32(25):8545–8553PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Wenwen Liu
    • 1
    • 2
  • Xue Wang
    • 1
    • 2
  • Man Wang
    • 1
    • 2
  • Haibo Wang
    • 1
    • 2
  1. 1.Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT HospitalShandong Provincial ENT Hospital Affiliated to Shandong UniversityJinanChina
  2. 2.Shandong Provincial Key Laboratory of OtologyJinanChina

Personalised recommendations