Skip to main content

Protection of Hair Cells from Ototoxic Drug-Induced Hearing Loss

  • Chapter
  • First Online:
Hearing Loss: Mechanisms, Prevention and Cure

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1130))

Abstract

Hair cells are specialized sensory epithelia cells that receive mechanical sound waves and convert them into neural signals for hearing, and these cells can be killed or damaged by ototoxic drugs, including many aminoglycoside antibiotics, platinum-based anticancer agents, and loop diuretics, leading to drug-induced hearing loss. Studies of therapeutic approaches to drug-induced hearing loss have been hampered by the limited understanding of the biological mechanisms that protect and regenerate hair cells. This review briefly discusses some of the most common ototoxic drugs and describes recent research concerning the mechanisms of ototoxic drug-induced hearing loss. It also highlights current developments in potential therapies and explores current clinical treatments for patients with hearing impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collaborators., G.D.a.I.I.a.P (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1545–1602

    Google Scholar 

  2. Wargo KA, Edwards JD (2014) Aminoglycoside-induced nephrotoxicity. J Pharm Pract 27(6):573–577

    PubMed  Google Scholar 

  3. Ding D, Allman BL, Salvi R (2012) Review: ototoxic characteristics of platinum antitumor drugs. Anat Rec (Hoboken) 295(11):1851–1867

    CAS  Google Scholar 

  4. Forge A et al (1993) Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science 259(5101):1616–1619

    CAS  PubMed  Google Scholar 

  5. Juhn SK, Rybak LP, Prado S (1981) Nature of blood-labyrinth barrier in experimental conditions. Ann Otol Rhinol Laryngol 90(2 Pt 1):135–141

    CAS  PubMed  Google Scholar 

  6. Salt AN, Plontke SK (2005) Local inner-ear drug delivery and pharmacokinetics. Drug Discov Today 10(19):1299–1306

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Henley CM et al (1996) Sensitive developmental periods for kanamycin ototoxic effects on distortion-product otoacoustic emissions. Hear Res 98(1–2):93–103

    CAS  PubMed  Google Scholar 

  8. Sun S et al (2014) In vivo overexpression of X-linked inhibitor of apoptosis protein protects against neomycin-induced hair cell loss in the apical turn of the cochlea during the ototoxic-sensitive period. Front Cell Neurosci 8:248

    PubMed  PubMed Central  Google Scholar 

  9. Crundwell G, Gomersall P, Baguley DM (2016) Ototoxicity (cochleotoxicity) classifications: a review. Int J Audiol 55(2):65–74

    PubMed  Google Scholar 

  10. Beaubien AR et al (2009) Delay in hearing loss following drug administration. Acta Otolaryngol 109(5–6):345–352

    Google Scholar 

  11. Higashi K (1989) Unique inheritance of streptomycin-induced deafness. Clin Genet 35(6):433–436

    CAS  PubMed  Google Scholar 

  12. Hu DN et al (1991) Genetic aspects of antibiotic induced deafness: mitochondrial inheritance. J Med Genet 28(2):79–83

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6(5):389–402

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Anderson S et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290(5806):457–465

    CAS  PubMed  Google Scholar 

  15. Prezant TR et al (1993) Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet 4(3):289–294

    CAS  PubMed  Google Scholar 

  16. Hamasaki K, Rando RR (1997) Specific binding of aminoglycosides to a human rRNA construct based on a DNA polymorphism which causes aminoglycoside-induced deafness. Biochemistry 36(40):12323–12328

    CAS  PubMed  Google Scholar 

  17. Xing G, Chen Z, Cao X (2007) Mitochondrial rRNA and tRNA and hearing function. Cell Res 17(3):227–239

    CAS  PubMed  Google Scholar 

  18. Hobbie SN et al (2008) Genetic analysis of interactions with eukaryotic rRNA identify the mitoribosome as target in aminoglycoside ototoxicity. Proc Natl Acad Sci U S A 105(52):20888–20893

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao H et al (2004) Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family. Am J Hum Genet 74(1):139–152

    CAS  PubMed  Google Scholar 

  20. Zhao H et al (2005) Functional characterization of the mitochondrial 12S rRNA C1494T mutation associated with aminoglycoside-induced and non-syndromic hearing loss. Nucleic Acids Res 33(3):1132–1139

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ross CJ et al (2009) Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet 41(12):1345–1349

    CAS  PubMed  Google Scholar 

  22. Yang JJ et al (2013) The role of inherited TPMT and COMT genetic variation in cisplatin-induced ototoxicity in children with cancer. Clin Pharmacol Ther 94(2):252–259

    CAS  PubMed  Google Scholar 

  23. Xu H et al (2015) Common variants in ACYP2 influence susceptibility to cisplatin-induced hearing loss. Nat Genet 47(3):263–266

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Brown AL et al (2015) SOD2 genetic variant associated with treatment-related ototoxicity in cisplatin-treated pediatric medulloblastoma. Cancer Med 4(11):1679–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Oldenburg J et al (2007) Cisplatin-induced long-term hearing impairment is associated with specific glutathione s-transferase genotypes in testicular cancer survivors. J Clin Oncol 25(6):708–714

    CAS  PubMed  Google Scholar 

  26. Rednam S et al (2013) Glutathione S-transferase P1 single nucleotide polymorphism predicts permanent ototoxicity in children with medulloblastoma. Pediatr Blood Cancer 60(4):593–598

    CAS  PubMed  Google Scholar 

  27. Pussegoda K et al (2013) Replication of TPMT and ABCC3 genetic variants highly associated with cisplatin-induced hearing loss in children. Clin Pharmacol Ther 94(2):243–251

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Becker B, Cooper MA (2013) Aminoglycoside antibiotics in the 21st century. ACS Chem Biol 8(1):105–115

    CAS  PubMed  Google Scholar 

  29. Karmody CS, Weinstein L (1977) Reversible sensorineural hearing-loss with intravenous erythromycin lactobionate. Ann Otol Rhinol Laryngol 86(1):9–11

    CAS  PubMed  Google Scholar 

  30. Swanson DJ et al (1992) Erythromycin ototoxicity: prospective assessment with serum concentrations and audiograms in a study of patients with pneumonia. Am J Med 92(1):61–68

    CAS  PubMed  Google Scholar 

  31. Kobayashi T et al (1997) Ototoxic effect of erythromycin on cochlear potentials in the guinea pig. Ann Otol Rhinol Laryngol 106(7 Pt 1):599–603

    CAS  PubMed  Google Scholar 

  32. Beaugard ME, Asakuma S, Snow JB Jr (1981) Comparative ototoxicity of chloramphenicol and kanamycin with ethacrynic acid. Arch Otolaryngol 107(2):104–109

    CAS  PubMed  Google Scholar 

  33. Henley CM et al (1984) Impairment in cochlear function produced by chloramphenicol and noise. Neuropharmacology 23(2A):197–202

    CAS  PubMed  Google Scholar 

  34. Gao WY et al (2004) Ototoxicity of a new glycopeptide, norvancomycin with multiple intravenous administrations in guinea pigs. J Antibiot 57(1):45–51

    CAS  PubMed  Google Scholar 

  35. Lutz H et al (1991) Ototoxicity of vancomycin – an experimental-study in Guinea-Pigs. ORL J Otorhinolaryngol Relat Spec 53(5):273–278

    CAS  PubMed  Google Scholar 

  36. Forouzesh A, Moise PA, Sakoulas G (2009) Vancomycin ototoxicity: a reevaluation in an era of increasing doses. Antimicrob Agents Chemother 53(2):483–486

    CAS  PubMed  Google Scholar 

  37. Wright CG, Meyerhoff WL, Halama AR (1987) Ototoxicity of neomycin and polymyxin-B following middle-ear application in the Chinchilla and Baboon. Am J Otol 8(6):495–499

    CAS  PubMed  Google Scholar 

  38. Rakover Y, Keywan K, Rosen G (1997) Safety of topical ear drops containing ototoxic antibiotics. J Otolaryngol 26(3):194–196

    CAS  PubMed  Google Scholar 

  39. Knight KR et al (2007) Early changes in auditory function as a result of platinum chemotherapy: use of extended high-frequency audiometry and evoked distortion product otoacoustic emissions. J Clin Oncol 25(10):1190–1195

    CAS  PubMed  Google Scholar 

  40. Frisina RD et al (2016) Comprehensive audiometric analysis of hearing impairment and tinnitus after cisplatin-based chemotherapy in survivors of adult-onset cancer. J Clin Oncol 34(23):2712–2720

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Landier W et al (2014) Ototoxicity in children with high-risk neuroblastoma: prevalence, risk factors, and concordance of grading scales – a report from the Children’s Oncology Group. J Clin Oncol 32(6):527–534

    PubMed  PubMed Central  Google Scholar 

  42. Qaddoumi I et al (2012) Carboplatin-associated ototoxicity in children with retinoblastoma. J Clin Oncol 30(10):1034–1041

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Knight KR, Kraemer DF, Neuwelt EA (2005) Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol 23(34):8588–8596

    PubMed  Google Scholar 

  44. Landier W (2016) Ototoxicity and cancer therapy. Cancer 122(11):1647–1658

    PubMed  Google Scholar 

  45. Ding D et al (2002) Ethacrynic acid rapidly and selectively abolishes blood flow in vessels supplying the lateral wall of the cochlea. Hear Res 173(1–2):1–9

    CAS  PubMed  Google Scholar 

  46. Liu H et al (2011) Ototoxic destruction by co-administration of kanamycin and ethacrynic acid in rats. J Zhejiang Univ Sci B 12(10):853–861

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ding D et al (2007) Cell death after co-administration of cisplatin and ethacrynic acid. Hear Res 226(1–2):129–139

    CAS  PubMed  Google Scholar 

  48. Cazals Y (2000) Auditory sensori-neural alterations induced by salicylate. Prog Neurobiol 62(6):583–631

    CAS  PubMed  Google Scholar 

  49. Didier A, Miller JM, Nuttall AL (1993) The vascular component of sodium salicylate ototoxicity in the guinea pig. Hear Res 69(1–2):199–206

    CAS  PubMed  Google Scholar 

  50. Huang ZW et al (2005) Paradoxical enhancement of active cochlear mechanics in long-term administration of salicylate. J Neurophysiol 93(4):2053–2061

    CAS  PubMed  Google Scholar 

  51. Claessen FAP et al (1998) Quinine pharmacokinetics: ototoxic and cardiotoxic effects in healthy Caucasian subjects and in patients with falciparum malaria. Tropical Med Int Health 3(6):482–489

    CAS  Google Scholar 

  52. Bortoli R, Santiago M (2007) Chloroquine ototoxicity. Clin Rheumatol 26(11):1809–1810

    PubMed  Google Scholar 

  53. Johansen PB, Gran JT (1998) Ototoxicity due to hydroxychloroquine: report of two cases. Clin Exp Rheumatol 16(4):472–474

    CAS  PubMed  Google Scholar 

  54. Tange RA et al (1997) Ototoxic reactions of quinine in healthy persons and patients with Plasmodium falciparum infection. Auris Nasus Larynx 24(2):131–136

    CAS  PubMed  Google Scholar 

  55. Jourde-Chiche N et al (2012) Antimalarial ototoxicity: an underdiagnosed complication? a study of spontaneous reports to the French Pharmacovigilance Network. Ann Rheum Dis 71(9):1586–1587

    PubMed  Google Scholar 

  56. Huth ME et al (2015) Designer aminoglycosides prevent cochlear hair cell loss and hearing loss. J Clin Invest 125(2):583–592

    PubMed  PubMed Central  Google Scholar 

  57. Heinrich UR et al (2015) Cell-specific accumulation patterns of gentamicin in the guinea pig cochlea. Hear Res 326:40–48

    CAS  PubMed  Google Scholar 

  58. Suzuki M, Kaga K (1996) Effect of cisplatin on the negative charge barrier in strial vessels of the Guinea Pig. A transmission electron microscopic study using polyethyleneimine molecules. Eur Arch Otorhinolaryngol 253(6):351–355

    CAS  PubMed  Google Scholar 

  59. Suzuki M et al (2002) Effect of noise exposure on blood-labyrinth barrier in guinea pigs. Hear Res 164(1–2):12–18

    PubMed  Google Scholar 

  60. Salt AN, Ma Y (2001) Quantification of solute entry into cochlear perilymph through the round window membrane. Hear Res 154(1–2):88–97

    CAS  PubMed  Google Scholar 

  61. Imamura S, Adams JC (2003) Distribution of gentamicin in the guinea pig inner ear after local or systemic application. J Assoc Res Otolaryngol 4(2):176–195

    PubMed  PubMed Central  Google Scholar 

  62. Rosario MC et al (1998) Population pharmacokinetics of gentamicin in patients with cancer. Br J Clin Pharmacol 46(3):229–236

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gyselynck AM, Forrey A, Cutler R (1971) Pharmacokinetics of gentamicin – distribution and plasma and renal clearance. J Infect Dis 124:S70–S76

    CAS  PubMed  Google Scholar 

  64. Posyniak A, Zmudzki J, Niedzielska J (2001) Sample preparation for residue determination of gentamicin and neomycin by liquid chromatography. J Chromatogr A 914(1–2):59–66

    CAS  PubMed  Google Scholar 

  65. Alfthan O, Renkonen OV, Sivonen A (1973) Concentration of gentamicin in serum, urine and urogenital tissue in man. Acta Pathol Microbiol Scand B-Microbiol 81:92–94

    Google Scholar 

  66. Mingeot-Leclercq MP, Tulkens PM (1999) Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother 43(5):1003–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Deconti RC et al (1973) Clinical and pharmacological studies with Cis-Diamminedichloroplatinum(Ii). Cancer Res 33(6):1310–1315

    CAS  PubMed  Google Scholar 

  68. Pendyala L, Creaven PJ (1993) In-vitro cytotoxicity, protein-binding, red-blood-cell partitioning, and biotransformation of oxaliplatin. Cancer Res 53(24):5970–5976

    CAS  PubMed  Google Scholar 

  69. Jacobs C et al (1980) Renal handling of Cis-Diamminedichloroplatinum(Ii). Cancer Treat Rep 64(12):1223–1226

    CAS  PubMed  Google Scholar 

  70. Graham MA et al (2000) Clinical pharmacokinetics of oxaliplatin: a critical review. Clin Cancer Res 6(4):1205–1218

    CAS  PubMed  Google Scholar 

  71. Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73(9):994–1007

    CAS  PubMed  Google Scholar 

  72. Brillet G et al (1994) Long-term renal effect of cisplatin in man. Am J Nephrol 14(2):81–84

    CAS  PubMed  Google Scholar 

  73. Cho W (2006) Building signaling complexes at the membrane. Sci STKE 2006(321):pe7

    PubMed  Google Scholar 

  74. Lesniak W, Pecoraro VL, Schacht J (2005) Ternary complexes of gentamicin with iron and lipid catalyze formation of reactive oxygen species. Chem Res Toxicol 18(2):357–364

    CAS  PubMed  Google Scholar 

  75. Orrenius S (2007) Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 39(2–3):443–455

    CAS  PubMed  Google Scholar 

  76. Priuska EM, Schacht J (1995) Formation of free radicals by gentamicin and iron and evidence for an iron/gentamicin complex. Biochem Pharmacol 50(11):1749–1752

    CAS  PubMed  Google Scholar 

  77. Baliga R et al (1998) In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity. Kidney Int 53(2):394–401

    CAS  PubMed  Google Scholar 

  78. Dehne N et al (2001) Cisplatin ototoxicity: involvement of iron and enhanced formation of superoxide anion radicals. Toxicol Appl Pharmacol 174(1):27–34

    CAS  PubMed  Google Scholar 

  79. Holzer AK et al (2004) The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells. Mol Pharmacol 66(4):817–823

    CAS  PubMed  Google Scholar 

  80. Ohrvik H, Thiele DJ (2015) The role of Ctr1 and Ctr2 in mammalian copper homeostasis and platinum-based chemotherapy. J Trace Elem Med Biol 31:178–182

    CAS  PubMed  Google Scholar 

  81. More SS et al (2010) Role of the copper transporter, CTR1, in platinum-induced ototoxicity. J Neurosci 30(28):9500–9509

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Chinnery PF, Hudson G (2013) Mitochondrial genetics. Br Med Bull 106:135–159

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Li H et al (2015) Local mechanisms for loud sound-enhanced aminoglycoside entry into outer hair cells. Front Cell Neurosci 9:130

    PubMed  PubMed Central  Google Scholar 

  84. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(Pt 2):335–344

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Garcia-Berrocal JR et al (2007) The anticancer drug cisplatin induces an intrinsic apoptotic pathway inside the inner ear. Br J Pharmacol 152(7):1012–1020

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Shen HM, Liu ZG (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 40(6):928–939

    CAS  Google Scholar 

  87. Clerici WJ, DiMartino DL, Prasad MR (1995) Direct effects of reactive oxygen species on cochlear outer hair cell shape in vitro. Hear Res 84(1–2):30–40

    CAS  PubMed  Google Scholar 

  88. Forge A, Li L (2000) Apoptotic death of hair cells in mammalian vestibular sensory epithelia. Hear Res 139(1–2):97–115

    CAS  PubMed  Google Scholar 

  89. Mielke K, Herdegen T (2000) JNK and p38 stresskinases – degenerative effectors of signal-transduction-cascades in the nervous system. Prog Neurobiol 61(1):45–60

    CAS  PubMed  Google Scholar 

  90. Rybak LP, Whitworth CA (2005) Ototoxicity: therapeutic opportunities. Drug Discov Today 10(19):1313–1321

    CAS  PubMed  Google Scholar 

  91. Ylikoski J et al (2002) Blockade of c-Jun N-terminal kinase pathway attenuates gentamicin-induced cochlear and vestibular hair cell death. Hear Res 166(1–2):33–43

    CAS  PubMed  Google Scholar 

  92. Nakamagoe M et al (2010) Estradiol protects the cochlea against gentamicin ototoxicity through inhibition of the JNK pathway. Hear Res 261(1–2):67–74

    CAS  PubMed  Google Scholar 

  93. Lee JE et al (2004) Signaling pathway for apoptosis of vestibular hair cells of mice due to aminoglycosides. Acta Otolaryngol 124:69–74

    Google Scholar 

  94. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308

    CAS  PubMed  Google Scholar 

  95. Watanabe K et al (2003) Expression of caspase-activated deoxyribonuclease (CAD) and caspase 3 (CPP32) in the cochlea of cisplatin (CDDP)-treated guinea pigs. Auris Nasus Larynx 30(3):219–225

    PubMed  Google Scholar 

  96. Wang J et al (2004) Caspase inhibitors, but not c-Jun NH2-terminal kinase inhibitor treatment, prevent cisplatin-induced hearing loss. Cancer Res 64(24):9217–9224

    CAS  PubMed  Google Scholar 

  97. Theneshkumar S et al (2009) Effect of noise conditioning on cisplatin-induced ototoxicity: a pilot study. Med Sci Monit 15(7):BR173–BR177

    CAS  PubMed  Google Scholar 

  98. Fetoni AR et al (2012) Antioxidant treatment with coenzyme Q-ter in prevention of gentamycin ototoxicity in an animal model. Acta Otorhinolaryngol Ital 32(2):103–110

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Campbell KC et al (2016) D-methionine (D-met) significantly reduces kanamycin-induced ototoxicity in pigmented guinea pigs. Int J Audiol 55(5):273–278

    PubMed  Google Scholar 

  100. Campbell KC et al (2007) Prevention of noise-and drug-induced hearing loss with D-methionine. Hear Res 226(1–2):92–103

    CAS  PubMed  Google Scholar 

  101. Li G et al (2001) Round window membrane delivery of L-methionine provides protection from cisplatin ototoxicity without compromising chemotherapeutic efficacy. Neurotoxicology 22(2):163–176

    PubMed  Google Scholar 

  102. Ekborn A et al (2003) Intracochlear administration of thiourea protects against cisplatin-induced outer hair cell loss in the guinea pig. Hear Res 181(1–2):109–115

    CAS  PubMed  Google Scholar 

  103. Tokgoz SA et al (2012) Protective effects of vitamins E, B and C and L-carnitine in the prevention of cisplatin-induced ototoxicity in rats. J Laryngol Otol 126(5):464–469

    PubMed  Google Scholar 

  104. Yassuda CC et al (2008) The role of hyperbaric oxygen therapy (hot) as an otoprotection agent against cisplatin ototoxicity. Acta Cir Bras 23(Suppl 1):72–76; discussion 76

    PubMed  Google Scholar 

  105. Cunningham LL et al (2004) Overexpression of Bcl-2 prevents neomycin-induced hair cell death and caspase-9 activation in the adult mouse utricle In vitro. J Neurobiol 60(1):89–100

    CAS  PubMed  Google Scholar 

  106. Pfannenstiel SC et al (2009) Bcl-2 gene therapy prevents aminoglycoside-induced degeneration of auditory and vestibular hair cells. Audiol Neurootol 14(4):254–266

    CAS  PubMed  Google Scholar 

  107. Wang J et al (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J Neurosci 23(24):8596–8607

    CAS  PubMed  Google Scholar 

  108. Bowers WJ et al (2002) Neurotrophin-3 transduction attenuates cisplatin spiral ganglion neuron ototoxicity in the cochlea. Mol Ther 6(1):12–18

    CAS  PubMed  Google Scholar 

  109. Li X et al (2011) Protective role of hydrogen sulfide against noise-induced cochlear damage: a chronic intracochlear infusion model. PLoS One 6(10):e26728

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Roy S et al (2013) Sound preconditioning therapy inhibits ototoxic hearing loss in mice. J Clin Invest 123(11):4945–4949

    CAS  PubMed  PubMed Central  Google Scholar 

  111. McLean WJ et al (2017) Clonal expansion of Lgr5-positive cells from mammalian cochlea and high-purity generation of sensory hair cells. Cell Rep 18(8):1917–1929

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Cheng C et al (2017) Characterization of the transcriptomes of Lgr5+ hair cell progenitors and Lgr5– supporting cells in the mouse cochlea. Front Mol Neurosci 10:122

    PubMed  PubMed Central  Google Scholar 

  113. Lu X et al (2017) Bmi1 regulates the proliferation of cochlear supporting cells via the canonical Wnt signaling pathway. Mol Neurobiol 54(2):1326–1339

    CAS  PubMed  Google Scholar 

  114. He Z et al (2017) Autophagy protects auditory hair cells against neomycin-induced damage. Autophagy 13(11):1884–1904

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Fang B, Xiao H (2014) Rapamycin alleviates cisplatin-induced ototoxicity in vivo. Biochem Biophys Res Commun 448(4):443–447

    CAS  PubMed  Google Scholar 

  116. Yu H et al (2013) Inhibition of H3K9 methyltransferases G9a/GLP prevents ototoxicity and ongoing hair cell death. Cell Death Dis 4:e506

    CAS  PubMed  PubMed Central  Google Scholar 

  117. He Y et al (2015) Inhibition of H3K4me2 demethylation protects auditory hair cells from neomycin-induced apoptosis. Mol Neurobiol 52(1):196–205

    CAS  PubMed  Google Scholar 

  118. Izumikawa M et al (2005) Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 11(3):271–276

    CAS  PubMed  Google Scholar 

  119. Li L et al (2017) Advances in nano-based inner ear delivery systems for the treatment of sensorineural hearing loss. Adv Drug Deliv Rev 108:2–12

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, J., Chai, R., Li, H., Sun, S. (2019). Protection of Hair Cells from Ototoxic Drug-Induced Hearing Loss. In: Li, H., Chai, R. (eds) Hearing Loss: Mechanisms, Prevention and Cure. Advances in Experimental Medicine and Biology, vol 1130. Springer, Singapore. https://doi.org/10.1007/978-981-13-6123-4_2

Download citation

Publish with us

Policies and ethics