Skip to main content

Damage Tolerance Analysis for Repaired Composite Stringer Panels

  • Conference paper
  • First Online:
Proceedings of International Conference on Aerospace System Science and Engineering 2018 (ICASSE 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 549))

Included in the following conference series:

  • 624 Accesses

Abstract

In this paper, the damage tolerance of repaired composite panels with an M style stringer was analysed through a finite element model. Firstly, an interface unit is introduced to make connection relationship between the panel and stringer. The strength and damage tolerance are analysed by using nonlinear finite element method (FEM). Then the panel laminates with internal presupposition damage are analysed. The damage tolerance is determined under four-point bending load by simulation. Then the failure laminated panel was repaired by patching method. Finally, the structure strength and damage tolerance of the repaired panel with stringer was analysed. The research results can provide some theoretical support for the repair of aircraft composite materials in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miedlar, P. C., Berens, A. P., Gunderson, A., & Gallagher, J. P. (2002). USAF damage tolerant design handbook: Guidelines for the analysis and design of damage tolerant aircraft structures.

    Google Scholar 

  2. Bertolini, J., Castanie, B., Barrau, J. J., et al. (2008). An experimental and numerical study on omega stringer debonding. Composite Structure, 86(1), 233–242.

    Article  Google Scholar 

  3. Davilla, C., & Camanho, P. (2008). Analysis of the effects of residual strains and defects on skin/stiffener debonding using decohesion elements. In AIAA.

    Google Scholar 

  4. Krueger, R., Cvitkovich, M. K., O’Brien, T. K., et al. (2000). Testing and analysis of composite skin/stringer debonding under multi-axial loading. Journal of Composite Materials, 34(15), 1263–1300.

    Article  Google Scholar 

  5. Kusugal, S., Kadadevarmath, R. S., & Mallapur, D. G. (2017). Stress and damage tolerance analysis of stiffened panel with passenger door cutout in airframe structure using FEA. Materials Today: Proceedings, 4(10), 10696–10703.

    Google Scholar 

  6. Camanho, P. P., & Dávila, C. G. (2002). Mixed-mode decohesion finite elements for the simulation of delamination in composite materials.

    Google Scholar 

  7. Reinoso, J., Blázquez, A., Távara, L., et al. (2016). Damage tolerance of composite runout panels under tensile loading. Composites Part B Engineering, 96, 79–93.

    Article  Google Scholar 

  8. Dugdale, D. S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2), 100–104.

    Article  Google Scholar 

  9. Bazargan, M. (2010). Airline operation and scheduling. Farnham: Ashgate Publishing Limited.

    Google Scholar 

  10. Katnam, K. B., Silva, L. F. M. D., & Young, T. M. (2013). Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities. Progress in Aerospace Sciences, 61, 26–42.

    Article  Google Scholar 

  11. Armstrong, K. B., & Barrett, R. T. (2005). Care and repair of advanced composites. Society of Automotive Engineers.

    Google Scholar 

  12. Hibbit, D., Karlsson, B., & Sorenson, P. (2010) ABAQUS analysis user’s manual.

    Google Scholar 

  13. Hashin, Z. (1981). Fatigue failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 47(2), 329–334.

    Article  Google Scholar 

  14. Benzeggagh, M. L., & Kenane, M. (1996). Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology, 56, 439–449.

    Article  Google Scholar 

  15. Hashin, Z., & Rotem, A. (1973). A fatigue criterion for fiber-reinforced materials. Journal of Composite Materials, 7, 448–464.

    Article  Google Scholar 

  16. Wu, Z., & Chen, J. (2017). Research on low speed impact of composite laminated structures based on Hashin criterion. Journal of shenyang university of aeronautics and astronautics, 34(5):12–20 (in Chinese). 吴振, 陈健. 基于Hashin准则的复合材料层合结构低速冲击研究[J]. 沈阳航空航天大学学报, 2017, 34(5)12–20.

    Google Scholar 

  17. Barbero, E. J. (2013). Finite element analysis of composite materials using Abaqus™. Boca Raton: CRC press (学习教材).

    Google Scholar 

  18. Matzenmiller, A., Lubliner, J., & Taylor, R. L. (1995). A constitutive model for anisotropic damage in fiber-composites. Mechanics of Materials, 20, 125–152.

    Article  Google Scholar 

  19. Sun, J., Zhang, X., & Gong, Z., et al. (2013). Failure mechanism analysis of cap type steel bar debonding of composite materials. Journal of Aeronautics, 34(7), 1616–1626 (in Chinese). 孙 , 张晓 , 宫 峰,等. 复合材料 的失效机理分析[J]. 航空学报, 2013, 34(7)1616-1626.

    Google Scholar 

  20. Maimí, P., Camanho, P. P., Mayugo, J. A., et al. (2007). A continuum damage model for composite laminates: Part II – Computational implementation and validation. Mechanics of Materials, 39(10), 909–919.

    Article  Google Scholar 

  21. Caminero, M. A., Rodríguez, G. P., & Muñoz, V. (2016). Effect of stacking sequence on Charpy impact and flexural damage behavior of composite laminates. Composite Structures, 136, 345–357.

    Article  Google Scholar 

  22. Vicente, J. L. M., Moreno, M. C. S., Torija, M. A. C., et al. Multiaxial behavior of notched composite structures manufactured by different procedures.

    Google Scholar 

  23. Lapczyk, I., & Hurtado, J. A. (2007). Progressive damage modeling in fiber-reinforced materials. Composites: Part A, 38(11), 2333–2341.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, L., Yu, Y. (2019). Damage Tolerance Analysis for Repaired Composite Stringer Panels. In: Jing, Z. (eds) Proceedings of International Conference on Aerospace System Science and Engineering 2018. ICASSE 2018. Lecture Notes in Electrical Engineering, vol 549. Springer, Singapore. https://doi.org/10.1007/978-981-13-6061-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6061-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6060-2

  • Online ISBN: 978-981-13-6061-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics