Transformation of Matter and Energy in Crops Under the Influence of Brassinosteroids

  • Hadi Waisi
  • Bogdan Nikolic
  • Bojan Jankovic


The application of various allelochemicals in agricultural production is carried out primarily to increase the quantity and quality of crop yield. These allelochemicals, which include brasssinosteroids (BRs), can reinforce the resistance of crops to abiotic stresses or increase their competitive ability against other organisms (biotic stresses). In particular, BRs can directly intensify crop physiological processes leading to increased growth and development, which create essential prerequisites for their increased yield. Thus, the use of the BRs in plant protection and agriculture is of particular interest. As yield is the ultimate and most important characteristic related to agricultural production, it represents the end product of transforming matter and energy in plants in the field. In order to obtain better qualitative and quantitative yield results, different crops are often subjected to various concentrations of 24-epibrassinolide (24-EBL). Therefore, this chapter concerns biochemical and biophysical responses of several (maize, soybean, barley etc.) crops treated with a range of concentrations of 24-EBL at various stages of development (seedlings, vegetative stages of plants before flowering and mature field plants). Particular attention is given to the influence of exogenously applied 24-EBL on specified physiological and biochemical parameters (carbohydrates, starch, polyphenols, pigments, proteins, etc.) in selected crops, especially maize, in relation to their likely roles in determining crop biomass accumulation, biomass redistribution, growth, yield and improved resistance to abiotic stresses.


Brassinosteroids 24-epibrassinolide Crops Maize Biomass Plant growth Yield 



This research work was partially supported by the Serbian Ministry of Education, Science and Technological Development under the projects number 172015, TR 37021, TR31080 and TR31018.


  1. Ali, B., Hasan, S. A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q., & Ahmad, A. (2008). A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environmental and Experimental Botany, 62, 153–159.CrossRefGoogle Scholar
  2. Amzallag, G. N. (2001). Data analysis in plant physiology: Are we missing the reality? Plant, Cell & Environment, 24, 881–890.CrossRefGoogle Scholar
  3. Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ashby, W. R. (1957). An introduction to cybernetics. London: Chapman & Hall Ltd.CrossRefGoogle Scholar
  5. Athwal, D. S. (1971). Semidwarf rice and wheat in global food needs. The Quarterly Review of Biology, 46, 1–34.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bai, M. Y., Shang, J. X., Oh, E., Fan, M., Bai, Y., Zentella, R., Sun, T., & Wang, Z. Y. (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 14, 810–817.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47, 1–8.PubMedCrossRefGoogle Scholar
  8. Baker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 659–668.CrossRefGoogle Scholar
  9. Bancos, S., Nomura, T., Sato, T., Molnar, G., Bishop, G. J., Koncz, C., Yokota, T., Nagy, F., & Szekeres, M. (2002). Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiology, 130, 504–513.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bartoli, C. G., Casalongué, C. A., Simontacchi, M., Marquez-Garcia, B., & Foyer, C. H. (2013). Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environmental and Experimental Botany, 94, 73–88.CrossRefGoogle Scholar
  11. Bishop, G. J., & Koncz, C. (2002). Brassinosteroids and plant steroid hormone signaling. The Plant Cell, 14, S97–S110.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cano-Delgado, A., Yin, Y., Yu, C., Vafeados, D., Mora-Garcıa, S., Cheng, J.-C., Nam, K. H., Li, J., & Chory, J. (2004). BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development, 131, 5341–5351.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cano-Delgado, A., Lee, J.-Y., & Demura, T. (2010). Regulatory mechanisms for specification and patterning of plant vascular tissues. Annual Review of Cell and Developmental Biology, 26, 605–637.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cao, S., Xu, Q., Cao, Y., Qian, K., An, K., Zhu, Y., Hu, B., Zhao, H., & Kuai, B. (2005). Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiologia Plantarum, 123, 57–66.CrossRefGoogle Scholar
  15. Celik, H., Asik, B. B., Gurel, S., & Katkat, A. V. (2010). Effect of potassium and iron on macro element uptake of maize. Zemdirbyste-Agriculture, 97, 11–22.Google Scholar
  16. Cheikh, N., Brenner, M. L., Huber, J. L., & Huber, S. C. (1992). Regulation of Sucrose Phosphate Synthase by Gibberelins in soybean and spinach plants. Plant Physiology, 100, 1238–1242.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Clouse, S. D. (2011). Brassinosteroid signal transduction: From receptor kinase activation to transcriptional networks regulating plant development. The Plant Cell, 23, 1219–1230.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Clouse, S. D., & Sasse, J. M. (1998). BRASSINOSTEROIDS: Essential regulators of plant growth and development. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 427–451.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Crocco, C. D., Holm, M., Yanovsky, M. J., & Botto, J. F. (2011). Function of B-BOX proteins under shade. Plant Signaling & Behavior, 6, 101–104.CrossRefGoogle Scholar
  20. Darussalam, Cole, M. A., & Patrick, J. W. (1998). Auxin control of photoassimilate transport to and within developing grains of wheat. Australian Journal of Plant Physiology, 25, 69–77.Google Scholar
  21. De Bruyne, L., Höfte, M., & De Vleesschauwer, D. (2014). Connecting growth and defense: The emerging roles of brassinosteroids and gibberellins in plant innate immunity. Molecular Plant, 7, 943–959.PubMedCrossRefPubMedCentralGoogle Scholar
  22. De Groot, C. C., Marcelis, L. F. M., Van den Boogaard, R., Harbinson, J., & Lambers, H. (2003). Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation. Journal of Experimental Botany, 54, 1957–1967.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Derevyanchuk, M. V., Kretynin, S., Iakovenko, O., Litvinovskaya, R. P., Zhabinskii, V., Martinec, J., Blume, Y., Khripach, V. A., & Kravets, V. S. (2017). Effect of 24-epibrassinolide on Brassica napus alternative respiratory pathway, guard cells movement and phospholipid signaling under salt stress. Steroids, 117, 16–24.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Divi U.K., Rahman T. and P. Krishna (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology, 10: 151.
  25. Divi, U. K., & Krishna, P. (2010). Overexpression of the brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. Journal of Plant Growth Regulation, 29, 385–393.CrossRefGoogle Scholar
  26. Domagalska, M. A., Schomburg, F. M., Amasino, R. M., Vierstra, R. D., Nagy, F., & Davis, S. J. (2007). Attenuations of brassinosteroid signaling enhances FLC expression and delays flowering. Development, 134, 2841–2850.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Domagalska, M. A., Sarnowska, E., Nagy, F., & Davis, S. J. (2010). Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana. PLoS One, 5, e14012.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dragicevic, V. (2015). Thermodynamics of abiotic stress and stress tolerance of cultivated plants. In M. Gorji-Bandpy (Ed.), Recent advances in thermo and fluid dynamics (pp. 195–222). Rijeka: InTech.Google Scholar
  29. Dragicevic, V., & Stojkovic, M. (2016). Biofortification – Enriched of crops with mineral nutrients. Saarbrücken: LAP LAMBERT Academic Publishing, OmniScriptum GmbH& Co. KG. isbn:978-3-659-90382-3.Google Scholar
  30. Dragičević, V., Nikolić, B., Radosavljević, M., Đurić, N., Dodig, D., Stojiljković, M., & Kravić, N. (2016a). Barley grain enrichement with essential elements by agronomic biofortification. Acta Periodica Technologica, 47, 1–9. (APTEFF. ISSN 1450-7188. Scholar
  31. Dragičević, V., Nikolić, B., Waisi, H., Stojiljković, M., & Simić, M. (2016b). Increase of soybean nutritional quality with non-standard foliar fertilizers. Journal of Central European Agriculture, 17, 356–368.CrossRefGoogle Scholar
  32. El-Maarouf-Bouteau, H., Sajjad, Y., Bazin, J., Langlade, N., Cristescu, S. M., Balzergue, S., Baudouin, E., & Bailly, C. (2015). Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant, Cell & Environment, 38, 364–374.CrossRefGoogle Scholar
  33. Fabregas, N., Ibanes, M., & Cano-Delgado, A. I. (2010). A systems biology approach to dissect the contribution of brassinosteroid and auxin hormones to vascular patterning in the shoot of Arabidopsis thaliana. Plant Signaling & Behavior, 5, 903–906.CrossRefGoogle Scholar
  34. Feng, Z., Wu, C., Wang, C., Roh, J., Zhang, L., Chen, J., Zhang, S., Zhang, H., Yang, C., Hu, J., You, X., Liu, X., Yang, X., Guo, X., Zhang, X., Wu, F., Terzaghi, W., Kim, S.-K., Jiang, L., & Wan, J. (2012). SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. Journal of Experimental Botany, 67, 4241–4253.CrossRefGoogle Scholar
  35. Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171, 501–523.PubMedCrossRefGoogle Scholar
  36. Fitzgerald, M. A., McCouch, S. R., & Hall, R. D. (2009). Not just a grain of rice: The quest for quality. Trends in Plant Science, 14, 133–139.PubMedCrossRefGoogle Scholar
  37. Flock, T., Weatheritt, R. J., Latysheva, N. S., & Babu, M. M. (2014). Controlling entropy to tune the functions of intrinsically disorder regions. Current Opinion in Structural Biology, 26, 62–72.PubMedCrossRefGoogle Scholar
  38. Frachebaud, Y., Ribaut, J.-M., Vargas, M., Mesmer, R., & Stamp, P. (2002). Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.). Journal of Experimental Botany, 53, 1967–1977.CrossRefGoogle Scholar
  39. Gallego-Bartolomé, J., Minguet, E. G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S. G., & Blázquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 109, 13446–13451.CrossRefGoogle Scholar
  40. Gomes, M. M. A. (2011). Physiological effects related to brassinosteroid application in plants. In Brassinosteroids: A class of plant hormone (pp. 193–242). Netherlands: Springer.CrossRefGoogle Scholar
  41. Grover, M. (2014). Brassinosteroid synthesis as context sensitive language acceptance problem. International Journal of Computational Science and Engineering (IJCSE), 6, 118–120.Google Scholar
  42. Gudesblat, G. E., & Russinova, E. (2011). Plants grow on brassinosteroids. Current Opinion in Plant Biology, 14, 530–537.PubMedCrossRefGoogle Scholar
  43. Guivarc’h, A., Rembur, J., Goetz, M., Roitsch, T., Noin, M., Schmülling, T., & Chriqui, D. (2002). Local expression of the ipt gene in transgenic tobacco (Nicotiana tabacum L. cv. SR1) axillary buds establishes a role for cytokinins in tuberization and sink formation. Journal of Experimental Botany, 53, 621–629.PubMedCrossRefGoogle Scholar
  44. Gururani, M. A., Upadhyaya, C. P., Strasser, R. J., Yu, J. W., & Park, S. W. (2013). Evaluation of abiotic stress tolerance in transgenic potato plants with reduced expression of PSII manganese stabilizing protein. Plant Science, 198, 7–16.PubMedCrossRefGoogle Scholar
  45. Gururani, M. A., Mohanta, T. K., & Bae, H. (2015a). Current understanding of the interplay between phytohormones and photosynthesis under environmental stress. International Journal of Molecular Sciences, 16, 19055–19085.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gururani, M. A., Ganesan, M., & Song, P.-S. (2015b). Photo-biotechnology as a tool to improve agronomic traits in crops. Biotechnology Advances, 33, 53–63.PubMedCrossRefGoogle Scholar
  47. Gururani, M. A., Venkatesh, J., & Tran, L.-S. P. (2015c). Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant, 8, 1304–1320.PubMedCrossRefGoogle Scholar
  48. Ha, C. V., Leyva-González, M. A., Osakabe, Y., Tran, U. T., Nishiyama, R., Watanabe, Y., Tanaka, M., Seki, M., Yamaguchi, S., Dong, N. V., Yamaguchi-Shinozaki, K., Shinozaki, K., Herrera-Estrella, L., & Tran, L.-S. P. (2014). Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences, 111, 851–856.CrossRefGoogle Scholar
  49. Hartwig, T., & Wang, Z. Y. (2015). The molecular circuit of steroid signalling in plants. Essays in Biochemistry, 58, 71–82.PubMedCrossRefGoogle Scholar
  50. Hartwig, T., Chuck, G. S., Fujioka, S., Klempien, A., Weizbauer, R., Potluri, D. P. V., Choe, S., Johal, G. S., & Schulz, B. (2011). Brassinosteroid control of sex determination in maize. Proceedings of the National Academy of Sciences, 108, 19814–19819.CrossRefGoogle Scholar
  51. Hartwig, T., Corvalan, C., Best, N. B., Budka, J. S., Zhu, J.-Y., Choe, S., & Schulz, B. (2012). Propiconazole is a specific and accessible brassinosteroid (BR) biosynthesis inhibitor for Arabidopsis and maize. PLoS One, 7, e36625. Scholar
  52. Hasan, S. A., Hayat, S., Ali, B., & Ahmad, A. (2008). 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environmental Pollution, 151, 60–66.PubMedCrossRefGoogle Scholar
  53. Hasan, S. A., Hayat, S., & Ahmad, A. (2011). Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere, 84, 1446–1451.PubMedCrossRefGoogle Scholar
  54. Hayat, S., Ali, B., Hasan, S. A., & Ahmad, A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 60, 33–41.CrossRefGoogle Scholar
  55. Holá, D. (2011). Brassinosteroids and photosynthesis. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids: A class of plant hormone (pp. 143–192). New York: Springer Science & Business Media. isbn:978-94-007-0188-5. e-ISBN 978-94-007-0189-2.CrossRefGoogle Scholar
  56. Hola, D., Rothova, O., Kočova, M., Kohout, L., & Kvasnica, M. (2010). The effect of brassinosteroids on the morphology, development and yield of field-grown maize. Plant Growth Regulation, 61, 29–43.CrossRefGoogle Scholar
  57. Hong, Z., Ueguchi-Tanaka, M., Umemura, K., Uozu, S., Fujioka, S., Takatsuto, S., Yoshida, S., Ashikari, M., Kitano, H., & Matsuoka, M. (2003). A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. The Plant Cell, 15, 2900–2910.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hong, Z., Ueguchi-Tanaka, M., & Matsuoka, M. (2004). Brassinosteroids and rice architecture. Journal of Pest Science, 29, 184–188.CrossRefGoogle Scholar
  59. Horton, P. (2000). Prospects for crop improvement through the genetic manipulation of photosynthesis: Morphological and biochemical aspects of light capture. Journal of Experimental Botany, 51, 475–485.PubMedCrossRefGoogle Scholar
  60. Huang, Y., Han, C., Peng, W., Peng, Z., Xiong, X., Zhu, Q., Gao, B., Xie, D., & Ren, C. (2010). Brassinosteroid negatively regulates jasmonate inhibition of root growth in Arabidopsis. Plant Signaling & Behavior, 5, 140–142.CrossRefGoogle Scholar
  61. Janeczko, A., Koscielniak, J., Pilipowicz, M., Szarek-Lukaszewska, G., & Skoczowski, A. (2005). Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica, 43, 293–298.CrossRefGoogle Scholar
  62. Janeczko, A., Biesaga-Koscielniak, J., & Dziurka, M. (2009). 24-Epibrassinolide modifies seed composition in soybean, oilseed rape and wheat. Seed Science and Technology, 37, 625–639.CrossRefGoogle Scholar
  63. Janković, B. (2013). Thermal characterization and detailed kinetic analysis of Cassava starch thermo-oxidative degradation. Carbohydrate Polymers, 95, 621–629.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Janković, B. Ž., & Waisi, H. (2017). The thermodynamics properties of dehydration of two maize hybrids under the influence of 24-epibrassinolide: The impact of the mutual interaction of bioactive compounds and water molecules during this process, CHAPTER 4. In R. Porter & N. Parker (Eds.), Bioactive compounds, sources, properties and applications, biotechnology in agriculture, industry and medicine (pp. 179–234). New York: NOVA Science Publishers. isbn:978-1-53612-418-7. ISBN: 978-1-53612-424-8 (eBook).Google Scholar
  65. Janković, B., Stopić, S., Bogović, J., & Friedrich, B. (2014). Kinetic and thermodynamic investigations of non-isothermal decomposition process of a commercial silver nitrate in an argon atmosphere used as the precursors for ultrasonic spray pyrolysis (USP): The mechanistic approach. Chemical Engineering and Processing, 82, 71–87.CrossRefGoogle Scholar
  66. Kebrom, T. H., & Brutnell, T. P. (2007). The molecular analysis of the shade avoidance syndrome in the grasses has begun. Journal of Experimental Botany, 58, 3079–3089.PubMedCrossRefGoogle Scholar
  67. Keller, M. M., Jaillais, Y., Pedmale, U. V., Moreno, J. E., Chory, J., & Ballare, C. L. (2011). Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. The Plant Journal, 67, 195–207.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Khripach, V., Zhabinskii, V., & De Groot, A. (2000). Twenty years of brassinosteroids: Steroidal plant hormones warrant better crops for the XXI century. Annals of Botany, 86, 441–447.CrossRefGoogle Scholar
  69. Kim, S. Y., Kim, B. H., Lim, C. J., Lim, C. O., & Nam, K. H. (2010). Constitutive activation of stress-inducible genes in a brassinosteroid insensitive 1 (bri1) mutant results in higher tolerance to cold. Physiologia Plantarum, 138, 191–204.PubMedCrossRefGoogle Scholar
  70. Kochian, L. V., Hoekenga, O. A., & Pineros, M. A. (2004). How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology, 55, 459–493.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Komatsu, T., Kawaide, H., Saito, C., Yamagami, A., Shimada, S., Nakazawa, M., Matsui, M., Nakano, A., Tsujimoto, M., Natsume, M., Abe, H., Asami, T., & Nakano, T. (2010). The chloroplast protein BPG2 functions in brassinosteroid-mediated post-transcriptional accumulation of chloroplast rRNA. The Plant Journal, 61, 409–422.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Kozuka, T., Kobayashi, J., Horiguchi, G., Demura, T., Sakakibara, H., Tsukaya, H., & Nagatani, A. (2010). Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physiology, 153, 1608–1618.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kranner, I., Minibayeva, F. V., Beckett, R. P., & Seal, C. E. (2010). What is stress? Concepts, definitions and applications in seed science. The New Phytologist, 188, 655–673.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Kutschera, U., & Wang, Z. Y. (2012). Brassinosteroiod action in flowering plants: A Darwinian perspective. Journal of Experimental Botany, 63, 3511–3522.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lang, A., & Thorpe, M. H. (1985). Partitioning of assimilates at the whole plant level. In Photosynthesis and physiology of the whole plant (pp. 108–135). OECD Workshop, Braunschweig, Germany. Paris: OECD.Google Scholar
  76. Larcher, W. (2003). Physiological plant ecology. Ecophysiology and stress physiology of functional groups (4th Edition on English). Berlin: Springer.Google Scholar
  77. Laxmi, A., Paul, L. K., Peters, J. L., & Khurana, J. P. (2004). Arabidopsis constitutive photomorphogenic mutant, bls1, displays altered brassinosteroid response and sugar sensitivity. Plant Molecular Biology, 56, 185–201.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Li, L., Xu, J., Xu, Z.-J., & Xue, H.-W. (2005). Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. The Plant Cell, 17, 2738–2753.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Li, F., Asami, T., Wu, X., Tsang, E. W. T., & Cutler, A. J. (2007). A putative hydroxysteroid dehydrogenase involved in regulating plant growth and development. Plant Physiology, 145, 87–97.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Li, J., Li, Y., Chen, S., & An, L. (2010). Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. Journal of Experimental Botany, 61, 4221–4230.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Lichtenthaler, H. K. (1996). Vegetation stress: An introduction to the stress concept in plants. Journal of Plant Physiology, 148, 4–14.CrossRefGoogle Scholar
  82. Lichtenthaler, H. K., & Miehe, J. A. (1997). Fluorescence imaging as a tool for plant stress. Trends in Plant Science, 2, 316–320.CrossRefGoogle Scholar
  83. Lisso, J., Altmann, T., & Mussig, C. (2006). Metabolic changes in fruits of the tomato dx mutant. Phytochemistry, 67, 2232–2238.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Long, S. P., Zhu, X.-G., Naidu, S. L., & Ort, D. R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment, 29, 315–330.CrossRefGoogle Scholar
  85. Lundin, B., Hansson, M., Schoefs, B., Vener, A. V., & Spetea, C. (2007). The Arabidopsis PsbO2 protein regulates dephosphorylation and turnover of the photosystem II reaction centre D1 protein. The Plant Journal, 49, 528–539.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Luo, X. M., Lin, W. H., Zhu, S., Zhu, J. Y., Sun, Y., Fan, X. Y., Cheng, M., Hao, Y., Oh, E., Tian, M., Liu, L., Zhang, M., Xie, Q., Chong, K., & Wang, Z. Y. (2010). Integration of light- and brassinosteroid signaling pathways by a GATA transcription factor in Arabidopsis. Developmental Cell, 19, 872–883.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Makarevitch, I., Thompson, A., Muehlbauer, G. J., & Springer, N. M. (2012). Brd1 gene in maize encodes a brassinosteroids. C-6 oxidase. PLoS One, 7, e30798.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Maxwell, K., & Johnson, G. (2000). Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 51, 659–668.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Mondo, V. H. V., Cicero, S. M., Dourado-Neto, D., Pupim, T. L., & Dias, M. A. N. (2013). Seed vigor and initial growth of corn crop. Journal of Seed Science, 35, 64–69.CrossRefGoogle Scholar
  90. Morinaka, Y., Sakamoto, T., Inukai, Y., Agetsuma, M., Kitano, H., Ashikari, M., & Matsuoka, M. (2006). Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiology, 141, 924–931.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Müssig, C., Shin, G.-H., & Altmann, T. (2003). Brassinosteroids promote root growth in Arabidopsis. Plant Physiology, 133, 1261–1271.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Nagata, N., Asami, T., & Yoshida, S. (2001). Brassinazole, an inhibitor of brassinosteroid biosynthesis, inhibits development of secondary xylem in cress plants (Lepidium sativum). Plant & Cell Physiology, 42, 1006–1011.CrossRefGoogle Scholar
  93. Nakano, H., Muramatsu, S., Makino, A., & Mae, T. (2000). Relationship between the suppression of photosynthesis and starch accumulation in the pod-removed bean. Australian Journal of Plant Physiology, 27, 167–173.Google Scholar
  94. Nam, K. H., & Li, J. (2004). The Arabidopsis transthyretin-like protein is a potential substrate of BRASSINOSTEROID-INSENSITIVE1. The Plant Cell, 16, 2406–2417.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Narula, N., Kothe, E., & Behl, R. K. (2009). Role of root exudates in plant-microbe interactions. Journal of Applied Botany and Food Quality, 82, 122–130.Google Scholar
  96. Nikolić, B., & Waisi, H. (2012). Effect of simultaneous application brassinosteroids and reduced doses of fungicides on pomological characteristics and yield of apple (Malus Domestica L.). Proceedings of abstracts of 1st International Brassinosteroid Conference, Barcelona June 27th – 29th 2012, ed (p. 44). Barcelona: AOPC/Brassinosteroid 2012, CSIC, Centre de Recerca en Agrigenòmica.Google Scholar
  97. Nikolić, B., Waisi, H., Dragićević, V., Marisavljević, D., Pavlović, D., Jovanović, V., & Đurović, S. (2013). The effect of different light and nitrogen growth regimes on brassinosteroid activity in maize plants. In Serbian Plant Physiology Society and Institute for Biological Research & S. Stanković (Eds.), Proceedings of abstracts of 20th symposium of the Serbian Plant Physiology Society (pp. 49–50). Subotica: University of Belgrade. isbn:978-86-912591-2-9.Google Scholar
  98. Nikolić, B., Dragičević, V., Waisi, H., Đurović, S., Milićević, Z., Spasojević, I., & Brankov, M. (2014). Impact of root manipulation and brassinosteroids on growth, photosynthesis and thermodinamics of maize at lower temperatures. In Ž. Čupić, & S. Anić (Eds.), Physical chemistry 2014, 12th international conference on fundamental and applied aspects of physical chemistry (pp. 477–481). Belgrade. (ISBN 978-86-82475-31-6). September 22–26, 2014.Google Scholar
  99. Noctor, G., & Foyer, C. H. (1998a). A re-evaluation of the ATP: NADPH budget during C3 photosynthesis. A contribution from nitrate assimilation and its associated respiratory activity? Journal of Experimental Botany, 49, 1895–1908.Google Scholar
  100. Noctor, G., & Foyer, C. H. (1998b). ASCORBATE AND GLUTHATHIONE: Keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 249–279.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Ogweno, J. O., Song, X. S., Shi, K., Hu, W. H., Mao, W. H., Zhou, Y. H., Yu, J. Q., & Nogués, S. (2008). Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27, 49–57.CrossRefGoogle Scholar
  102. Oh, M. H., Sun, J., Oh, D. H., Zielinski, R. E., Clouse, S. D., & Huber, |. S. C. (2011). Enhancing Arabidopsis leaf growth by engineering the BRASSINOSTEROID INSENSITIVE1 receptor kinase. Plant Physiology, 157, 120–131.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Oh, M. H., Wang, X., Clouse, S. D., & Huber, S. C. (2012). Deactivation of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase by autophosphorylation within the glycine-rich loop. Proceedings of the National Academy of Sciences, 109, 327–332.CrossRefGoogle Scholar
  104. Ovecka, M., Berson, T., Beck, M., Derksen, J., Samaj, J., Baluska, F., & Lichtscheidl. (2010). Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana. The Plant Cell, 22, 2999–3019.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Park, W., Kim, H. B., Kim, W. T., Park, P. B., An, G., & Choe, S. (2006). Rice bending lamina 2 (bla2) mutants are defective in a cytochrome P450 (CYP734A6) gene predicted to mediate brassinosteroid catabolism. Journal of Plant Biology, 49, 469–476.CrossRefGoogle Scholar
  106. Paul, M. J., & Foyer, C. H. (2001). Sink regulation of photosynthesis. Journal of Experimental Botany, 52, 1383–1400.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Perez-Espana, V. H., Sanchez-Leon, N., & Vielle-Calzada, J.-P. (2011). CYP85A1 is required for the initiation of female gametogenesis in Arabidopsis thaliana. Plant Signaling & Behavior, 6, 321–326.CrossRefGoogle Scholar
  108. Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5, 308–316.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Pons, T. L., Jordi, W., & Kuiper, D. (2001). Acclimation of plants to light gradients in leaf canopies: Evidence for a possible role for cytokinins transported in the transpiration stream. Journal of Experimental Botany, 52, 1563–1574.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Poorter, H., & Van der Verf. (1998). Is inherent variation in RGR determined by LAR at low irradiance and by NAR at high irradiance? A review of herbaceous species. In H. Lambers, H. Poorter, & M. M. I. Van Vuuren (Eds.), Inherent variation in plant growth. Physiological mechanisms and ecological consequences (pp. 309–336). Leiden: Backhuys.Google Scholar
  111. Qereix, A., Dewar, R. C., Gaudillere, J.-P., Dayau, S., & Valancogne, C. (2001). Sink feedback regulation of photosynthesis in vines: Measurements and a model. Journal of Experimental Botany, 52, 2313–2322.CrossRefGoogle Scholar
  112. Quarrie, S. (1997). How to use physiology to improve the drought resistance of maize. In Agriculture Research Institute “Serbia” (Ed.), Proceedings of abstracts of 12th symposium of the Yugoslav Society for Plant Physiology (p. 6) (no ISBN number). Kragujevac.Google Scholar
  113. Raghavendra, A. S., Gonugunta, V. K., Christmann, A., & Grill, E. (2010). ABA perception and signalling. Trends in Plant Science, 15, 395–401.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Reinhardt, D., & Kuhlemeier, C. (2002). Plant architecture. EMBO Reports, 3, 846–851.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Reuzeau, C., Pen, J., Frankard, V., de Wolf, J., Peerbolte, R., Broekaert, W., & Van Camp, W. (2005). TraitMill: A discovery engine for identifying yield enhancement genes in cereals. Molecular Plant Breeding, 5, 753–759.Google Scholar
  116. Rivero, R. M., Shulaev, V., & Blumwald, E. (2009). Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiology, 150, 1530–1540.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Rothová, O., Holá, D., Kočová, M., Tůmová, L., Hnilička, F., Hniličková, H., Kamlar, M., & Macek, T. (2014). 24-epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach. Steroids, 85, 44–57.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Saglam-Cag, S. (2007). The effect of epibrassinolide on senescence in wheat leaves. Biotechnology and Biotechnological Equipment, 21, 63–65.CrossRefGoogle Scholar
  119. Sakamoto, T., & Matsuoka, M. (2008). Identifying and exploiting grain yield genes in rice. Current Opinion in Plant Biology, 11, 209–214.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Sakamoto, T., Morinaka, Y., Ohnishi, T., Sunohara, H., Fujioka, S., Ueguchi-Tanaka, M., Mizutani, M., Sakata, K., Takatsuto, S., Yoshida, S., Tanaka, H., Kitano, H., & Matsuoka, M. (2006). Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology, 24, 105–109.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Sakamoto, T., Morinaka, Y., Inukai, Y., Kitano, H., & Fujioka, S. (2013). Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. The Plant Journal, 73, 676–688.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Sankar, M., Osmont, K. S., Rolcik, J., Gujas, B., Tarkowska, D., Strnad, M., Xenarios, I., & Hardtke, C. S. (2011). A qualitative continuous model of cellular auxin and brassinosteroid signaling and their crosstalk. Bioinformatics, 27, 1404–1412.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Schluter, U., Kopke, D., Altmann, T., & Mussig, C. (2002). Analysis of carbohydrate metabolism of CPD antisense plants and the brassinosteroid-deficient cbb1 mutant. Plant, Cell & Environment, 25, 783–791.CrossRefGoogle Scholar
  124. Schulz, B., Best, N., Budka, J., Chuck, G., Hartwig, T., Johal, G., & Prasad Potlur, D. (2012). The GRAS-like transcription factor upright leaf angle1 (URL1) encodes a monocot-specific brassinosteroid function for leaf angle control in maize. In A. Cano-Delgado (Ed.), Proceedings of abstracts of 1st international brassinosteroid conference, Barcelona June 27th–29th 2012 (p. 43) (edited only in electron form in USB device) CSIC, Centre de Recerca en Agrigenòmica.Google Scholar
  125. Serna, M., Coll, Y., Zapata, P. J., Botella, M. A., Pretel, M. T., & Amoros, A. (2015). A brassinosteroid analogue prevented the effect of salt stress on ethylene synthesis and polyamine in lettuce plants. Scientia Horticulturae, 185, 105–112.CrossRefGoogle Scholar
  126. Sharma, P., & Bhardwaj, R. (2007). Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress. Acta Physiologiae Plantarum, 29, 259–263.CrossRefGoogle Scholar
  127. Sola-Penna, M., & Meyer-Fernandes, J. R. (1998). Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: Why is trehalose more effective than other sugars? Archives of Biochemistry and Biophysics, 60, 10–14.CrossRefGoogle Scholar
  128. Song, L., Zhou, X.-Y., Li, L., Xue, L.-J., Yang, X., & Xue, H.-W. (2009). Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis. Molecular Plant, 2, 755–772.PubMedCrossRefGoogle Scholar
  129. Souter, M., Topping, J., Pullen, M., Friml, J., Palme, K., Hackett, R., Grierson, D., & Lindsey, K. (2002). hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. The Plant Cell, 14, 1017–1031.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Srikanth, A., & Schmid, M. (2011). Regulation of flowering time: All roads lead to Rome. Cellular and Molecular Life Sciences, 68, 2013–2037.PubMedCrossRefGoogle Scholar
  131. Stevanović, M., Trkulja, N., Nikolić, B., Dolovac, N., & Ivanović, Ž. (2012). Effect of simultaneous application of brassinosteroids and reduced doses of fungicides on Venturia inaequalis. In Institute for Plant Protection and Environment (Ed.), Proceedings of international symposium: Current trends in plant protection (pp. 379–384). Belgrade. 25–28 September 2012 (ISBN: 978-86-910951-1-6. UDK: 634.11–248.231).Google Scholar
  132. Stitt, M., & Sonnewald, U. (1995). Regulation of metabolism in transgenic plants. Annual Review of Plant Physiology and Plant Molecular Biology, 46, 341–368.CrossRefGoogle Scholar
  133. Sun, W. Q. (2002). Methods for the study of water relations under desiccation stress. In M. Black & H. W. Pritchard (Eds.), Desiccation and survival in plants: Drying without dying (pp. 47–91). New York: CABI Publishing.CrossRefGoogle Scholar
  134. Sun, J., Okita, T. W., & Edwards, G. E. (1999). Modification of carbon partitioning, photosynthetic capacity and O2 sensitivity in Arabidopsis plants with low ADP-glucose pyrophosphorilase activity. Plant Physiology, 119, 267–276.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Symons, G. M., Schultz, L., Kerckhoffs, L. H. J., Davies, N. W., Gregory, D., & Reid, J. B. (2002). Uncoupling brassinosteroid levels and de-etiolation in pea. Physiologia Plantarum, 115, 311–319.PubMedCrossRefGoogle Scholar
  136. Symons, G. M., Davies, C., Shavrukov, Y., Dry, I. B., Reid, J. B., & Thomas, M. R. (2006). Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiology, 140, 150–158.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Symons, G. M., Smith, J. J., Nomura, T., Davies, N. W., Yokota, T., & Reid, J. B. (2008). The hormonal regulation of de-etiolation. Planta, 227, 1115–1125.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Sze, H., Li, X., & Palmgren, M. G. (1999). Energization of plant cell membranes by H+-pumping ATPases: Regulation and biosynthesis. The Plant Cell, 11, 677–689.PubMedPubMedCentralGoogle Scholar
  139. Szekeres, M., Nemeth, K., Koncz-Kalman, Z., Mathur, J., Kauschmann, A., Altmann, T., Redei, G. P., Nagy, F., Schell, J., & Koncz, C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 85, 171–182.PubMedCrossRefGoogle Scholar
  140. Tanaka, A., Nakagawa, H., Tomita, C., Shimatani, Z., Ohtake, M., Nomura, T., Jiang, C. J., Dubouzet, J. G., Kikuchi, S., Sekimoto, H., Yokota, T., Asami, T., Kamakura, T., & Mori, M. (2009). BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiology, 151, 669–680.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Turk, E. M., Fujioka, S., Seto, H., Shimada, Y., Takatsuto, S., Yoshida, S., Denzel, M. A., Torres, Q. I., & Neff, M. M. (2003). CYP72B1 inactivates brassinosteroid hormones: An intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiology, 133, 1643–1653.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Van Camp, W. (2005). Yield enhancement genes: Seeds for growth. Current Opinion in Biotechnology, 16, 147–153.PubMedCrossRefGoogle Scholar
  143. van Esse, G. W., van Mourik, S., Stigter, H., ten Hove, C. A., Molenaar, J., & de Vries, S. C. (2012). A mathematical model for bassinosteroid insensitive-mediated signaling in root growth and hypocotil elongation. Plant Physiology, 160, 523–532.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Vardhini, B. V., & Rao, S. S. R. (2002). Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry, 61, 843–847.CrossRefGoogle Scholar
  145. Vernadsky, V. I. (2008). Biosphera and noosphera. Moskow. (printed on Russian, but cited according translation on Serbian, Belgrade, Serbia 2012: Airis press. isbn:978-86-519-1331-3.Google Scholar
  146. Vriet, C., Russinova, E., & Reuzeau, C. (2012). Boosting crop yields with plant steroids. The Plant Cell, 24, 842–857.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Vriet, C., Russinova, E., & Reuzeau, C. (2013). From squalene to brassinolide: The steroid metabolic and signaling pathways across the plant kingdom. Molecular Plant, 6, 1738–1757.PubMedCrossRefGoogle Scholar
  148. Waisi, H. (2016). The influence of brassinosteroid 24-epibrassinolide on germination and early stages of growth and development of different maize hybrids (Zea mays L.). PhD thesis (on Serbian), Faculty of Biology, Univercity of Belgrade, Belgrade, Serbia.Google Scholar
  149. Waisi, H., Kosović, A., Krstić, Đ., Milojković-Opsenica, D., Nikolić, B., Dragićević, V., & Trifković, J. (2015a). Polyphenolic profile of maize seedlings treated with 24-epibrassinolide. Journal of Chemistry, 2015, 976971.CrossRefGoogle Scholar
  150. Waisi, H., Nikolić, B., Dragićević, V., Šaponjić, B., Jovanović, V., Trifković, J., & Milojković-Opsenica, D. (2015b). Different aspects of mode of action of brassinosteroids in maize. In Book of proceedings of “AGROSYM 2015”- 6th international scientific agricultural symposium (pp. 332–339). Oktober, 15–18, 2015, Jahorina Mountain (near Sarajevo), Bosnia and Herzegovina, (978-99976-632-2-1), 2015.Google Scholar
  151. Waisi, H., Petković, A., Nikolić, B., Janković, B., Raičević, V., Lalević, B., & Giba, Z. (2017a). Influence of 24-epibrassinolide on seedling growth and distribution of mineral elements in two maize hybrids. Hemijska Industrija, 71, 201–209.CrossRefGoogle Scholar
  152. Waisi, H., Janković, B., Janković, M., Nikolić, B., Dimkić, I., Lalević, B., & Raičević, V. (2017b). New insights in dehydration stress behavior of two maize hybrids using advanced distributed reactivity model (DRM). Responses to the impact of 24-epibrassinolide. PLoS One, 12, e0179650.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Wang, L., Xu, Y., Zhang, C., Ma, Q., Joo, S.-H., Kim, S.-K., Xu, Z., & Chong, K. (2008). OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS One, 3, e3521.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Welch, R. M., & Graham, R. D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany, 55, 353–364.PubMedCrossRefGoogle Scholar
  155. Werner, C., Ryel, R. J., Correia, O., & Beyschlag, W. (2001). Effects of photoinhibition on whole-plant carbon gain assessed with a photosynthesis model. Plant, Cell and Environment, 24, 27–40.CrossRefGoogle Scholar
  156. Wolf, S., Mravec, J., Greiner, S., Mouille, G., & Höfte, H. (2012). Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling. Current Biology, 22, 1732–1737.PubMedCrossRefGoogle Scholar
  157. Wu, C., Trieu, A., Radhakrishnan, P., Kwok, S. F., Harris, S., Zhang, K., Wang, J., Wan, J., Zhai, H., Takatsuto, S., Matsumoto, S., Fujioka, S., Feldmann, K. A., & Pennell, R. I. (2008). Brassinosteroids regulate grain filling in rice. The Plant Cell, 20, 2130–2145.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Xi, W., & Yu, H. (2010). MOTHER OF FT AND TFL1 regulates seed germination and fertility relevant to the brassinosteroid signaling pathway. Plant Signaling & Behavior, 5, 1315–1317.CrossRefGoogle Scholar
  159. Xia, X. J., Huang, L. F., Zhou, Y. H., Mao, W. H., Shi, K., Wu, J. X., Asami, T., Chen, Z., & Yu, J. Q. (2009a). Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 230, 1185–1196.PubMedCrossRefGoogle Scholar
  160. Xia, X.-J., Wang, Y.-J., Zhou, Y.-H., Tao, Y., Mao, W.-H., Shi, K., Asami, T., Chen, Z., & Yu, J.-Q. (2009b). Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiology, 150, 801–814.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Xia, X. J., Zhang, Y., Wu, J. X., Wang, J. T., Zhou, Y. H., Shi, K., Yu, Y. L., & Yu, J. Q. (2009c). Brassinosteroids promote metabolism of pesticides in cucumber. Agricultural and Food Chemistry, 57, 8406–8413.CrossRefGoogle Scholar
  162. Xie, L., Yang, C., & Wang, X. (2011). Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. Journal of Experimental Botany, 62, 4495–4506.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Xue, L. W., Du, J. B., Yang, H., Xu, F., Yuan, S., & Lin, H. H. (2009). Brassinosteroids counteract abscisic acid in germination and growth of Arabidopsis. Zeitschrift für Naturforschung. Section C, 64, 225–230.CrossRefGoogle Scholar
  164. Ye, Q., Zhu, W., Li, L., Zhang, S., Yin, Y., Ma, H. C., & Wang, X. (2010). Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proceedings of the National Academy of Sciences, 107, 6100–6105.CrossRefGoogle Scholar
  165. Yu, X., Li, L., Zola, J., Aluru, M., Ye, H., Foudree, A., Guo, H., Anderson, S., Aluru, S., Liu, P., Rodermel, S., & Yin, Y. (2011). A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. The Plant Journal, 65, 634–646.PubMedCrossRefGoogle Scholar
  166. Zhang, S., Wei, Y., Lu, Y., & Wang, X. (2009). Mechanisms of brassinosteroids interacting with multiple hormones. Plant Signaling & Behavior, 4, 1117–1120.CrossRefGoogle Scholar
  167. Zhu, S. Q., Chen, M. W., Ji, B. H., Jiao, D. M., & Liang, J. S. (2011). Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L.) and cabbage (Brassica campestris). Journal of Experimental Botany, 62, 4617–4625.PubMedCrossRefPubMedCentralGoogle Scholar
  168. Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. (2010). Temperature stress and plant sexual reproduction: Uncovering the weakest links. Journal of Experimental Botany, 61, 1959–1968.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Hadi Waisi
    • 1
    • 2
  • Bogdan Nikolic
    • 3
  • Bojan Jankovic
    • 2
  1. 1.Faculty for Ecology and Environmental ProtectionUniversity Union-Nikola TeslaBelgradeSerbia
  2. 2.Department of Physical Chemistry, Institute of Nuclear Sciences “Vinča”University of BelgradeBelgradeSerbia
  3. 3.Department of Phytopharmacy and Environmental ProtectionInstitute of Plant Protection and EnvironmentBelgradeSerbia

Personalised recommendations