Genetic and Molecular Bases of Brassinosteroid Metabolism and Interactions with Other Phytohormones

  • Damian GruszkaEmail author


Brassinosteroids (BRs) regulate diverse physiological processes during plant life cycle. Recent years have witnessed a significant progress in elucidating various aspects of BR biosynthesis and signaling, which was achieved through genetic, biochemical and physiological analyses of mutants isolated in model and crop species. Mechanisms of BR biosynthesis and signal transduction are interconnected with pathways of biosynthesis and signaling of other phytohormones. These interactions form a complicated network of dependencies and enable a coordinated regulation of the various physiological processes. It was also reported that components of the BR signaling pathway, playing roles of both positive or negative regulators of the process, are involved in mechanisms of plant response to various stimuli and stress conditions. This fine-tuning of plant physiological reactions to various stimuli allows a balance between growth rate and stress response to be achieved. The process of identification of new components of the BR signalosome is still ongoing, and functional analysis of the new components broadens the view of the complicated network of hormonal interactions. The chapter presents genetic and molecular aspects of the BR biosynthesis and signaling and interactions with other phytohormones, which mediate physiological processes in plants.


Brassinosteroid biosynthesis Brassinosteroid signaling Genetic regulation Hormonal interactions Metabolism Mutants 


  1. Achard, P., Liao, L., Jiang, C., Desnos, T., Bartlett, J., Fu, X., & Harberd, N. P. (2007). DELLAs contribute to plant photomorphogenesis. Plant Physiology, 143, 1163–1172.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alabadi, D., & Blazquez, M. A. (2009). Molecular interactions between light and hormone signaling to control plant growth. Plant Molecular Biology, 69, 409–417.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Altmann, T. (1998). Recent advances in brassinosteroid molecular genetics. Current Opinion in Plant Biology, 1, 378–383.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Azpiroz, R., Wu, Y., LoCascio, J. C., & Feldmann, K. A. (1998). An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell, 10, 219–230.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bai, M. Y., Zhang, L. Y., Gampala, S. S., Zhu, S. W., Song, W. Y., Chong, K., & Wang, Z. Y. (2007). Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proceedings of the National Academy of Science, 104, 13839–13844.CrossRefGoogle Scholar
  6. Bai, M. Y., Shang, J. X., Oh, E., Fan, M., Bai, Y., Zentella, R., Sun, T. P., & Wang, Z. Y. (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 14, 810–817.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bancos, S., Nomura, T., Sato, T., Molnar, G., Bishop, G. J., Koncz, C., Yokota, T., Nagy, F., & Szekeres, M. (2002). Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiology, 130, 504–513.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bancos, S., Szatmari, A. M., Castle, J., Kozma-Bognar, L., Shibata, K., Yokota, T., Bishop, G. J., Nagy, F., & Szekeres, M. (2006). Diurnal regulation of the brassinosteroid-biosynthethic CPD gene in Arabidopsis. Plant Physiology, 141, 299–309.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bell, E. M., Lin, W. C., Husbands, A. Y., Yu, L., Jaganatha, V., Jablonska, B., Mangeon, A., Neff, M. M., Girke, T., & Springer, P. S. (2012). Arabidopsis lateral organ boundaries negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. Proceedings of the National Academy of Science, 109, 21146–21151.CrossRefGoogle Scholar
  10. Bergonci, T., Ribeiro, B., Ceciliato, P. H. O., Guerrero-Abad, J. C., Silva-Filho, M. C., & Moura, D. S. (2014). Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation. Journal of Experimental Botany, 65, 2219–2230.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bernardo-García, S., de Lucas, M., Martínez, C., Espinosa-Ruiz, A., Davière, J. M., & Prat, S. (2014). BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes & Development, 28, 1681–1694.CrossRefGoogle Scholar
  12. Beuchat, J., Scacchi, E., Tarkowska, D., Ragni, L., Strnad, M., & Hardtke, C. S. (2010). BRX promotes Arabidopsis shoot growth. The New Phytologist, 188, 23–29.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bishop, G. J. (2007). Refining the plant steroid hormone biosynthesis pathway. Trends in Plant Science, 12, 377–380.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bishop, G. J., & Yokota, T. (2001). Plants steroid hormones, brassinosteroids: Current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant & Cell Physiology, 42, 114–120.CrossRefGoogle Scholar
  15. Bishop, G. J., Nomura, T., Yokota, T., Harrison, K., Noguchi, T., Fujioka, S., Takatsuto, S., Jones, J. D. G., & Kamiya, Y. (1999). The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proceedings of the National Academy of Sciences, 96, 1761–1766.CrossRefGoogle Scholar
  16. Bolduc, N., Yilmaz, A., Mejia-Guerra, M. K., Morohashi, K., O’Connor, D., Grotewold, E., & Hake, S. (2012). Unraveling the KNOTTED1 regulatory network in maize meristems. Genes & Development, 26, 1685–1690.CrossRefGoogle Scholar
  17. Castillon, A., Shen, H., & Huq, E. (2007). Phytochrome interacting factors: Central players in phytochrome-mediated light signaling networks. Trends in Plant Science, 12, 514–521.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Castle, J., Szekeres, M., Jenkins, G., & Bishop, G. J. (2005). Unique and overlapping expression patterns of Arabidopsis CYP85 genes involved in brassinosteroid C-6 oxidation. Plant Molecular Biology, 57, 129–140.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Catterou, M., Dubois, F., Schaller, H., Aubanelle, L., Vilcot, B., Sangwan-Norreel, B. S., & Sangwan, R. S. (2001a). Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. Molecular, cellular and physiological characterization of the Arabidopsis bul1 mutant, defective in the Δ7-sterol-C5-desaturation step leading to brassinosteroid biosynthesis. Planta, 212, 659–672.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Catterou, M., Dubois, F., Schaller, H., Aubanelle, L., Vilcot, B., Sangwan-Norreel, B. S., & Sangwan, R. S. (2001b). Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. II. Effects of brassinosteroids on microtubules and cell elongation in the bul1 mutant. Planta, 212, 673–683.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chapman, E. J., Greenham, K., Castillejo, C., Sartor, R., Bialy, A., Sun, T.-P., & Estelle, M. (2012). Hypocotyl transcriptome reveals auxin regulation of growth-promoting genes through GA-dependent and -independent pathways. PLoS One, 7, e36210.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Choe, S., Dilkes, B. P., Fujioka, S., Takatsuto, S., Sakurai, A., & Feldmann, K. A. (1998). The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell, 10, 231–243.PubMedPubMedCentralGoogle Scholar
  23. Choe, S., Noguchi, T., Fujioka, S., Takatsuto, S., Tissier, C. P., Gregory, B. D., Ross, A. S., Tanaka, A., Yoshida, S., Tax, F. E., & Feldmann, K. A. (1999a). The Arabidopsis dwf7/ste1 mutant is defective in the Δ7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell, 11, 207–221.PubMedPubMedCentralGoogle Scholar
  24. Choe, S., Dilkes, B. P., Gregory, B. D., Ross, A. S., Yuan, H., Noguchi, T., Fujioka, S., Takatsuto, S., Tanaka, A., Yoshida, S., Tax, F. E., & Feldmann, K. A. (1999b). The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiology, 119, 897–907.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Choe, S., Tanaka, A., Noguchi, T., Fujioka, S., Takatsuto, S., Ross, A. S., Tax, F. E., Yoshida, S., & Feldmann, K. A. (2000). Lesions in the sterol Δ7 reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. The Plant Journal, 21, 431–443.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Choi, S., Cho, Y. H., Kim, K., Matsui, M., Son, S. H., Kim, S. K., Fujioka, S., & Hwang, I. (2013). BAT1, a putative acyltransferase, modulates brassinosteroid levels in Arabidopsis. The Plant Journal, 73, 380–391.PubMedCrossRefGoogle Scholar
  27. Chono, M., Honda, I., Zeniya, H., Yoneyama, K., Saisho, D., Takeda, K., Takatsuto, S., Hoshino, T., & Watanabe, Y. (2003). A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiology, 133, 1209–1219.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chory, J., Nagpal, P., & Peto, C. A. (1991). Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell, 3, 445–459.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Choudhary, S. P., Yu, J. Q., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L. S. (2012). Benefits of brassinosteroid crosstalk. Trends in Plant Science, 17, 594–605.PubMedCrossRefGoogle Scholar
  30. Chung, Y., Maharjan, P. M., Lee, O., Fujioka, S., Jang, S., Kim, B., Takatsuto, S., Tsujimoto, M., Kim, H., Cho, S., Park, T., Cho, H., Hwang, I., & Choe, S. (2011). Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. The Plant Journal, 66, 564–578.PubMedCrossRefGoogle Scholar
  31. Clouse, S. D. (2001). Integration of light and brassinosteroid signals in etiolated seedling growth. Trends in Plant Science, 6, 443–445.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Clouse, S. D., & Sasse, J. M. (1998). Brassinosteroids: Essential regulators of plant growth and development. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 427–451.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Clouse, S. D., Langford, M., & McMorris, T. C. (1996). A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiology, 111, 671–678.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Corvalan, C., & Choe, S. (2017). Identification of brassinosteroid genes in Brachypodium distachyon. BMC Plant Biology, 17, 5.PubMedPubMedCentralCrossRefGoogle Scholar
  35. de Lucas, M., & Prat, S. (2014). PIFs get BRright: Phytochrome interacting factors as integrators of light and hormonal signals. The New Phytologist, 202, 1126–1141.PubMedCrossRefPubMedCentralGoogle Scholar
  36. de Lucas, M., Davière, J. M., Rodríguez-Falcón, M., Pontin, M., Iglesias-Pedraz, J. M., Lorrain, S., Fankhauser, C., Blázquez, M. A., Titarenko, E., & Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature, 451, 480–484.CrossRefGoogle Scholar
  37. Di Rubbo, S., Irani, N. G., & Russinova, E. (2011). PP2A phosphatases: The “on-off” regulatory switches of brassinosteroid signaling. Science Signaling, 4, 25.CrossRefGoogle Scholar
  38. Dockter, C., Gruszka, D., Braumann, I., Druka, A., Druka, I., Franckowiak, J., Gough, S. P., Janeczko, A., Kurowska, M., Lundqvist, J., Lundqvist, U., Marzec, M., Matyszczak, I., Müller, A. H., Oklestkova, J., Schulz, B., Zakhrabekova, S., & Hansson, M. (2014). Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiology, 166, 1912–1927.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Du, L., & Poovaiah, B. W. (2005). Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature, 437, 741–745.PubMedCrossRefGoogle Scholar
  40. Du, J., Zhao, B., Sun, X., Sun, M., Zhang, D., Zhang, S., & Yang, W. (2017). Identification and characterization of multiple intermediate alleles of the key genes regulating brassinosteroid biosynthesis pathways. Frontiers in Plant Science, 7, 1893.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., Chen, L., Yu, L., Iglesias-Pedraz, J. M., Kircher, S., Schäfer, E., Fu, X., Fan, L. M., & Deng, X. W. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 451, 475–479.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ferguson, B. J., Ross, J. J., & Reid, J. B. (2005). Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiology, 138, 2396–2405.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Friedrichsen, D. M., Joazeiro, C. A. P., Li, J., Hunter, T., & Chory, J. (2000). Brassinosteroid-insensitive 1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiology, 123, 1247–1255.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Friedrichsen, D. M., Nemhauser, J., Muramitsu, T., Maloof, J. N., Alonso, J., Ecker, J. R., Furuya, M., & Chory, J. (2002). Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics, 162, 1445–1456.PubMedPubMedCentralGoogle Scholar
  45. Frigerio, M., Alabadi, D., Perez-Gomez, J., Garcıa-Carcel, L., Phillips, A. L., Hedden, P., & Blazquez, M. A. (2006). Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiology, 142, 553–563.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fujioka, S., & Yokota, T. (2003). Biosynthesis and metabolism of brassinosteroids. Annual Review of Plant Biology, 54, 137–164.PubMedCrossRefGoogle Scholar
  47. Fujioka, S., Takatsuto, S., & Yoshida, S. (2002). An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiology, 130, 930–939.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Fukaki, H., Taniguchi, N., & Tasaka, M. (2006). PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation. The Plant Journal, 48, 380–389.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Furuta, K., Kubo, M., Sano, K., Demura, T., Fukuda, H., Liu, Y. G., Shibata, D., & Kakimoto, T. (2011). The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis calli. Plant & Cell Physiology, 52, 618–628.CrossRefGoogle Scholar
  50. Gallego-Bartolome, J., Minguet, E. G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S. G., Alabadí, D., & Blázquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Science, 109, 13446–13451.CrossRefGoogle Scholar
  51. Gan, L., Wu, H., Wu, D., Zhang, Z., Guo, Z., Yang, N., Xia, K., Zhou, X., K, O., Matsuoka, M., Ng, D., & Zhu, C. (2015). Methyl jasmonate inhibits lamina joint inclination by repressing brassinosteroid biosynthesis and signaling in rice. Plant Science, 241, 238–245.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Goda, H., Shimada, Y., Asami, T., Fujioka, S., & Yoshida, S. (2002). Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiology, 130, 1319–1334.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Goda, H., Sawa, S., Asami, T., Fujioka, S., Shimada, Y., & Yoshida, S. (2004). Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiology, 134, 1555–1573.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Goda, H., Sasaki, E., Akiyama, K., Maruyama-Nakashita, A., Nakabayashi, K., Li, W., Ogawa, M., Yamauchi, Y., Preston, J., Aoki, K., Kiba, T., Takatsuto, S., Fujioka, S., Asami, T., Nakano, T., Kato, H., Mizuno, T., Sakakibara, H., Yamaguchi, S., Nambara, E., Kamiya, Y., Takahashi, H., Hirai, M. Y., Sakurai, T., Shinozaki, K., Saito, K., Yoshida, S., & Shimada, Y. (2008). The AtGen express hormone and chemical treatment data set: Experimental design, data evaluation, model data analysis and data access. The Plant Journal, 55, 526–542.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Gou, X., Yin, H., He, K., Du, J., Yi, J., Xu, S., Lin, H., Clouse, S. D., & Li, J. (2012). Genetic evidence for an indispensable role of Somatic embryogenesis receptor kinases in brassinosteroid signaling. PLoS Genetics, 8, e1002452.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gruszka, D. (2013). The brassinosteroid signaling pathway – New key players and interconnections with other signaling networks crucial for plant development and stress tolerance. International Journal of Molecular Sciences, 14, 8740–8774.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gruszka, D., Szarejko, I., & Maluszynski, M. (2011a). Identification of barley DWARF gene involved in brassinosteroid synthesis. Plant Growth Regulation, 65, 343–358.CrossRefGoogle Scholar
  58. Gruszka, D., Szarejko, I., & Maluszynski, M. (2011b). New allele of HvBRI1 gene encoding brassinosteroid receptor in barley. Journal of Applied Genetics, 52, 257–268.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Gruszka, D., Gorniak, M., Glodowska, E., Wierus, E., Oklestkova, J., Janeczko, A., Maluszynski, M., & Szarejko, I. (2016a). A reverse-genetics mutational analysis of the barley HvDWARF gene results in identification of a series of alleles and mutants with short stature of various degree and disturbance in BR biosynthesis allowing a new insight into the process. International Journal of Molecular Sciences, 17, 600.PubMedCentralCrossRefGoogle Scholar
  60. Gruszka, D., Janeczko, A., Dziurka, M., Pociecha, E., Oklestkova, J., & Szarejko, I. (2016b). Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reaction to drought stress. Frontiers in Plant Science, 7, 1824.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Guan, C., Wang, X., Feng, J., Hong, S., Liang, Y., Ren, B., & Zuo, J. (2014). Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of abscisic acid insensitive5 protein in Arabidopsis. Plant Physiology, 164, 1515–1526.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Gudesblat, G. E., & Russinova, E. (2011). Plants grow on brassinosteroids. Current Opinion in Plant Biology, 14, 530–537.PubMedCrossRefGoogle Scholar
  63. Guo, Z., Fujioka, S., Blancaflor, E. B., Miao, S., Gou, X., & Li, J. (2010). TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell, 22, 1161–1173.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Guo, H., Li, L., Aluru, M., Aluru, S., & Yin, Y. (2013). Mechanisms and networks for brassinosteroid regulated gene expression. Current Opinion in Plant Biology, 16, 1–9.CrossRefGoogle Scholar
  65. Han, Y. J., Kim, Y. S., Hwang, O.-J., Roh, J., Ganguly, K., Kim, S.-K., Hwang, I., & Kim, J.-I. (2017). Overexpression of Arabidopsis thaliana brassinosteroid-related acyltransferase 1 gene induces brassinosteroid-deficient phenotypes in creeping bentgrass. PLoS One, 12, 0187378.Google Scholar
  66. Hansen, M., Chae, H., & Kieber, J. (2009). Regulation of ACS protein stability by cytokinin and brassinosteroid. The Plant Journal, 57, 606–614.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Hartwig, T., Chuck, G. S., Fujioka, S., Klempien, A., Weizbauer, R., Potluri, D. P., Choe, S., Johal, G. S., & Schulz, B. (2011). Brassinosteroid control of sex determination in maize. Proceedings of the National Academy of Science, 108, 19814–19819.CrossRefGoogle Scholar
  68. Hategan, L., Godza, B., & Szekeres, M. (2011). Regulation of brassinosteroid metabolism. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids: A class of plant hormone (pp. 57–81). Dordrecht: Springer.CrossRefGoogle Scholar
  69. Hategan, L., Godza, B., Kozma-Bognar, L., Bishop, G. J., & Szekeres, M. (2014). Differential expression of the brassinosteroid receptor-encoding BRI1 gene in Arabidopsis. Planta, 239, 989–1001.PubMedCrossRefPubMedCentralGoogle Scholar
  70. He, Z., Wang, Z.-Y., Li, J., Zhu, Q., Lamb, C., Ronald, P., & Chory, J. (2000). Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science, 288, 2360–2363.PubMedCrossRefPubMedCentralGoogle Scholar
  71. He, J.-X., Gendron, J. M., Sun, Y., Gampala, S. S., Gendron, N., Sun, C. Q., & Wang, Z. Y. (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 307, 1634–1638.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hecht, V., Vielle-Calzada, J.-P., Hartog, M. V., Schmidt, E. D. L., Boutilier, K., Grossniklaus, U., & de Vries, S. C. (2001). The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiology, 127, 803–816.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hong, Z., Ueguchi-Tanaka, M., Shimizu-Sato, S., Inukai, Y., Fujioka, S., Shimada, Y., Takatsuto, S., Agetsuma, M., Yoshida, S., Watanabe, Y., Uozu, S., Kitano, H., Ashikari, M., & Matsuoka, M. (2002). Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. The Plant Journal, 32, 495–508.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Hong, Z., Ueguchi-Tanaka, M., Umemura, K., Uozu, S., Fujioka, S., Takatsuto, S., Yoshida, S., Ashikari, M., Kitano, H., & Matsuoka, M. (2003). A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 15, 2900–2910.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hothorn, M., Belkhadir, Y., Dreux, M., Dabi, T., Noel, J. P., Wilson, I. A., & Chory, J. (2011). Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature, 474, 467–471.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hu, Y., & Yu, D. (2014). Brassinosteroid Insensitive2 interacts with Abscisic acid Insensitive5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. Plant Cell, 26, 4394–4408.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Huq, E., & Quail, P. H. (2002). PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. The EMBO Journal, 21, 2441–2450.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Husselstein, T., Schaller, H., Gachotte, D., & Benveniste, P. (1999). Δ7- sterol C-5 desaturase: Molecular characterization and functional expression of wild-type and mutant alleles. Plant Molecular Biology, 39, 891–906.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Jager, C. E., Symons, G. M., Nomura, T., Yamada, Y., Smith, J. J., Yamaguchi, S., Kamiya, Y., Weller, J. L., Yokota, T., & Reid, J. B. (2007). Characterization of two brassinosteroid C-6 oxidase genes in pea. Plant Physiology, 143, 1894–1904.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Jaillais, Y., Belkhadir, Y., Balsemao-Pires, E., Dangl, J. L., & Chory, J. (2011). Extracellular leucine- rich repeats as a platform for receptor/coreceptor complex formation. Proceedings of the National Academy of Science, 108, 8503–8507.CrossRefGoogle Scholar
  81. Jasinski, S., Piazza, P., Craft, J., Hay, A., Woolley, L., Rieu, I., Phillips, A., Hedden, P., & Tsiantis, M. (2005). KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Current Biology, 15, 1560–1565.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Jiang, J., Zhang, C., & Wang, X. (2013). Ligand perception, activation, and early signaling of plant steroid receptor Brassinosteroid Insensitive 1. Journal of Integrative Plant Biology, 9999, 1–14.Google Scholar
  83. Jing, Y., Zhang, D., Wang, X., Tang, W., Wang, W., Huai, J., Xu, G., Chen, D., Li, Y., & Lin, R. (2013). Arabidopsis chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate hypocotyl cell elongation. Plant Cell, 25, 242–256.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kang, J.-G., Yun, J., Kim, D.-H., Chung, K.-S., Fujioka, S., Kim, J.-I., Dae, H.-W., Yoshida, S., Takatsuto, S., Song, P.-S., & Park, C.-M. (2001). Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell, 105, 625–636.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Kauschmann, A., Jessop, A., Koncz, C., Szekeres, M., Willmitzer, L., & Altmann, T. (1996). Genetic evidence for an essential role of brassinosteroids in plant development. The Plant Journal, 9, 701–713.CrossRefGoogle Scholar
  86. Kim, T. W., & Wang, Z. Y. (2010). Brassinosteroid signal transduction from receptor kinases to transcription factors. Annual Review of Plant Biology, 61, 681–704.PubMedCrossRefGoogle Scholar
  87. Kim, G. T., Tsukaya, H., & Uchimiya, H. (1998). The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P450 family that is required for the regulated polar elongation of leaf cells. Genes & Development, 12, 2381–2391.CrossRefGoogle Scholar
  88. Kim, T.-W., Chang, S. C., Lee, J. S., Hwang, B., Takatsuto, S., Yokota, T., & Kim, S.-K. (2004). Cytochrome P450-catalyzed brassinosteroid pathway activation through synthesis of castasterone and brassinolide in Phaseolus vulgaris. Phytochemistry, 65, 679–689.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Kim, T.-W., Hwang, J.-Y., Kim, Y.-S., Joo, S.-H., Chang, S. C., Lee, J. S., Takatsuto, S., & Kim, S.-K. (2005a). Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell, 17, 2397–2412.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kim, G. T., Fujioka, S., Kozuka, T., Tax, F. E., Takatsuto, S., Yoshida, S., & Tsukaya, H. (2005b). CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. The Plant Journal, 41, 710–721.PubMedCrossRefGoogle Scholar
  91. Kim, H. B., Kwon, M., Ryu, H., Fujioka, S., Takatsuto, S., Yoshida, S., An, C. S., Lee, I., Hwang, I., & Choe, S. (2006). The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiology, 140, 548–557.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Kim, B. K., Fujioka, S., Takatsuto, S., Tsujimoto, M., & Choe, S. (2008). Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice. Biochemical and Biophysical Research Communications, 374, 614–619.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Kim, T. W., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J. X., Sun, Y., Burlingame, A. L., & Wang, Z. Y. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biology, 11, 1254–1260.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kim, T. W., Guan, S., Burlingame, A. S., & Wang, Z. Y. (2011). The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Molecular Cell, 43, 561–571.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kinoshita, T., Caño-Delgado, A. I., Seto, H., Hiranuma, S., Fujioka, S., Yoshida, S., & Chory, J. (2005). Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature, 433, 167–171.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Kitanaga, Y., Jian, C., Hasegawa, M., Yazaki, J., Kishimoto, N., Kikuchi, S., Nakamura, H., Ichikawa, H., Asami, T., Yoshida, S., Yamaguchi, I., & Suzuki, Y. (2006). Sequential regulation of gibberellin, brassinosteroid, and jasmonic acid biosynthesis occurs in rice coleoptiles to control the transcript levels of anti-microbial thionin genes. Bioscience, Biotechnology, and Biochemistry, 70, 2410–2419.PubMedCrossRefGoogle Scholar
  97. Klahre, U., Noguchi, T., Fujioka, S., Takatsuto, S., Yokota, T., Nomura, T., Yoshida, S., & Chua, N. H. (1998). The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. Plant Cell, 10, 1677–1690.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Koh, S., Lee, S.-C., Kim, M.-K., Koh, J. H., Lee, S., An, G., Choe, S., & Kim, S.-R. (2007). T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Molecular Biology, 65, 453–466.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Koka, C. V., Cerny, R. E., Gardner, R. G., Noguchi, T., Fujioka, S., Takatsuto, S., Yoshida, S., & Clouse, S. D. (2000). A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiology, 122, 85–98.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Kwon, M., Fujioka, S., Jeon, J. H., Kim, H. B., Takatsuto, S., Oshida, S., An, C. S., & Choe, S. (2005). A double mutant for the CYP85A1 and CYP85A2 genes of Arabidopsis exhibits a brassinosteroid dwarf phenotype. J. Plant Biol., 48, 237–244.CrossRefGoogle Scholar
  101. Lanza, M., Garcia-Ponce, B., Castrillo, G., Catarecha, P., Sauer, M., Rodriguez-Serrano, M., Paez-Garcia, A., Sanchez-Bermejo, E., TC, M., Leo del Puerto, Y., Sandalio, L. M., Paz-Ares, J., & Leyva, A. (2012). Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Developmental Cell, 22, 1275–1285.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Li, J. (2003). Brassinosteroids signal through two receptor-like kinases. Current Opinion in Plant Biology, 6, 494–499.PubMedCrossRefGoogle Scholar
  103. Li, J., & Chory, J. (1997). A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 90, 929–938.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Li, J., & Jin, H. (2006). Regulation of brassinosteroid signaling. Trends in Plant Science, 12, 37–41.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Li, J., Nagpal, P., Vitart, V., McMorris, T. C., & Chory, J. (1996). A role for brassinosteroids in light-dependent development of Arabidopsis. Science, 272, 398–401.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Li, D., Wang, L., Wang, M., Xu, Y.-Y., Luo, W., Liu, Y.-J., Xu, Z.-H., Li, J., & Chong, K. (2009). Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnology Journal, 7, 791–806.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Li, L., Ye, H., Guo, H., & Yin, Y. (2010). Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression. Proceedings of the National Academy of Science, 107, 3918–3923.CrossRefGoogle Scholar
  108. Li, Q.-F., Xiong, M., Xu, P., Huang, L.-C., Zhang, C.-Q., & Liu, Q.-Q. (2016). Dissection of brassinosteroid-regulated proteins in rice embryos during germination by quantitative proteomics. Scientific Reports, 6, 34583.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Lindsey, K., Pullen, M. L., & Topping, J. F. (2003). Importance of plant sterols in pattern formation and hormone signaling. Trends in Plant Science, 8, 521–525.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Lisso, J., Altmann, T., & Müssig, C. (2006). Metabolic changes in fruits of the tomato d x mutant. Phytochemistry, 67, 2232–2238.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Luo, M., Xiao, Y., Li, X., Lu, X., Deng, W., Li, D., Hou, L., Hu, M., Li, Y., & Pei, Y. (2007). GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation. The Plant Journal, 51, 419–430.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Maharjan, P. M., & Choe, S. (2011). High temperature stimulates DWARF4 (DWF4) expression to increase hypocotyl elongation in Arabidopsis. Journal of Plant Biology, 54, 425–429.CrossRefGoogle Scholar
  113. Makarevitch, I., Thompson, A., Muehlbauer, G. J., & Springer, N. M. (2012). Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One, 7, e30798.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Mockaitis, K., & Estelle, M. (2004). Integrating transcriptional controls for plant cell expansion. Genome Biology, 5, 245.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Montoya, T., Nomura, T., Farrar, K., Kaneta, T., Yokota, T., & Bishop, G. J. (2002). Cloning the tomato Curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase tBRI1/SR160 in plant steroid hormone and peptide hormone signaling. Plant Cell, 14, 3163–3176.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Montoya, T., Nomura, T., Yokota, T., Farrar, K., Harrison, K., Jones, J. G. D., Kaneta, T., Kamiya, Y., Szekeres, M., & Bishop, G. J. (2005). Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. The Plant Journal, 42, 262–269.PubMedCrossRefGoogle Scholar
  117. Mori, M., Nomura, T., Ooka, H., Ishizaka, M., Yokota, T., Sugimoto, K., Okabe, K., Kajiwara, H., Satoh, K., Yamamoto, K., Hirochika, H., & Kikuchi, S. (2002). Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiology, 130, 1152–1161.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Morinaka, Y., Sakamoto, T., Inukai, Y., Agetsuma, M., Kitano, H., Ashikari, M., & Matsuoka, M. (2006). Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production in rice. Plant Physiology, 141, 924–931.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Mouchel, C. F., Osmont, K. S., & Hardtke, C. S. (2006). BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature, 443, 458–461.PubMedCrossRefGoogle Scholar
  120. Müssig, C., Biesgen, C., Lisso, J., Uwer, U., Weiler, E. W., & Altmann, T. (2000). A novel stress-inducible 12-oxophytodienoate reductase from Arabidopsis thaliana provides a potential link between brassinosteroid-action and jasmonic-acid synthesis. Journal of Plant Physiology, 157, 143–152.CrossRefGoogle Scholar
  121. Muto, H., Yabe, N., Asami, T., Hasunuma, K., & Yamamoto, K. T. (2004). Overexpression of constitutive differential growth1 gene, which encodes a RLCKVII-subfamily protein kinase, causes abnormal differential and elongation growth after organ differentiation in Arabidopsis. Plant Physiology, 136, 3124–3133.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Nakamura, A., Higuchi, K., Goda, H., Fujiwara, M. T., Sawa, S., Koshiba, T., Shimada, Y., & Yoshida, S. (2003). Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiology, 133, 1843–1853.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Nakamura, M., Satoh, T., Tanaka, S.-I., Mochizuki, N., Yokota, T., & Nagatani, A. (2005). Activation of the cytochrome P450 gene, CYP72C1, reduces the levels of active brassinosteroids in vivo. Journal of Experimental Botany, 56, 833–840.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Nakamura, A., Fujioka, S., Sunohara, H., Kamiya, N., Hong, Z., Inukai, Y., Miura, K., Takatsuto, S., Yoshida, S., Ueguchi-Tanaka, M., Hasegawa, Y., Kitano, H., & Matsuoka, M. (2006). The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiology, 140, 580–590.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Nam, K. H., & Li, J. (2004). The Arabidopsis transthyretin-like protein is a potential substrate of BRASSINOSTEROID-INSENSITIVE1. Plant Cell, 16, 2406–2417.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Neff, M. M., Nguyen, S. M., Malancharuvil, E. J., Fujioka, S., Noguchi, T., Seto, H., Tsubuki, M., Honda, T., Takatsuto, S., Yoshida, S., & Chory, J. (1999). BAS1: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proceedings of the National Academy of Science, 96, 15316–15323.CrossRefGoogle Scholar
  127. Nelson, D. R., Schuler, M. A., Paquette, S. M., Werck-Reichhart, D., & Bak, S. (2004). Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiology, 135, 756–772.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Nemhauser, J. L., Mockler, T. C., & Chory, J. (2004). Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biology, 2, 1460–1471.CrossRefGoogle Scholar
  129. Noguchi, T., Fujioka, S., Takatsuto, S., Sakurai, A., Yoshida, S., Li, J., & Chory, J. (1999). Arabidopsis det2 is defective in the conversion of (24R)-24-methylcholest-4-en-3-one to (24R)-24-methyl-5α-cholestan-3-one in brassinosteroid biosynthesis. Plant Physiology, 120, 833–839.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Nomura, T., & Bishop, G. J. (2006). Cytochrome P450s in plant steroid hormone synthesis and metabolism. Phytochemistry Reviews, 5, 421–432.CrossRefGoogle Scholar
  131. Nomura, T., Nakayama, M., Reid, J. B., Takeuchi, Y., & Yokota, T. (1997). Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiology, 113, 31–37.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Nomura, T., Kitasaka, Y., Takatsuto, S., Reid, J. B., Fukami, M., & Yokota, T. (1999). Brassinosteroid/sterol synthesis and plant growth as affected by lka and lkb mutations of pea. Plant Physiology, 119, 1517–1526.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Nomura, T., Sato, T., Bishop, G. J., Kamiya, Y., Takatsuto, S., & Yokota, T. (2001). Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis. Phytochemistry, 57, 171–178.PubMedCrossRefGoogle Scholar
  134. Nomura, T., Bishop, G. J., Kaneta, T., Reid, J. B., Chory, J., & Yokota, T. (2003). The LKA gene is a BRASSINOSTEROID INSENSITIVE1 homolog of pea. The Plant Journal, 36, 291–300.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Nomura, T., Jager, C. E., Kitasaka, Y., Takeuchi, K., Fukami, M., Yoneyama, K., Matsushita, Y., Nyunoya, H., Takatsuto, S., Fujioka, S., Smith, J. J., Kerckhoffs, L. H. J., Reid, J. B., & Yokota, T. (2004). Brassinosteroid deficiency due to truncated steroid 5α-reductase causes dwarfism in the lk mutant of pea. Plant Physiology, 135, 2220–2229.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Nomura, T., Kushiro, T., Yokota, T., Kamiya, Y., Bishop, G. J., & Yamaguchi, S. (2005). The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. The Journal of Biological Chemistry, 280, 17873–17879.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Nomura, T., Ueno, M., Yamada, Y., Takatsuto, S., Takeuchi, Y., & Yokota, T. (2007). Roles of brassinosteroids and related mRNAs in pea seed growth and germination. Plant Physiology, 143, 1680–1688.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Northey, J. G. B., Liang, S., Jamshed, M., Deb, S., Foo, E., Reid, J. B., McCourt, P., & Samuel, M. A. (2016). Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nature Plants, 2, 16114.PubMedCrossRefGoogle Scholar
  139. Oh, E., Zhu, J. Y., & Wang, Z. Y. (2012a). Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature Cell Biology, 14, 802–809.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Oh, M. H., Kim, H. S., Wu, X., Clouse, S. D., Zielinski, R. E., & Huber, S. C. (2012b). Calcium/calmodulin inhibition of the Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase provides a possible link between calcium and brassinosteroid signalling. The Biochemical Journal, 443, 515–523.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Oh, E., Zhu, J.Y., Bai, M.Y., Arenhart, R.A., Sun, Y., Wang, Z.Y. (2014). Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife 3.
  142. Ohnishi, T., Szatmari, A. M., Watanabe, B., Fujita, S., Bancos, S., Koncz, C., Lafos, M., Shibata, K., Yokota, T., Sakata, K., Szekeres, M., & Mizutani, M. (2006). C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell, 18, 3275–3288.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Ohnishi, T., Godza, B., Watanabe, B., Fujioka, S., Hategan, L., Ide, K., Shibata, K., Yokota, T., Szekeres, M., & Mizutani, M. (2012). CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. The Journal of Biological Chemistry, 287, 31551–31560.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Peleg, Z., Reguera, M., Tumimbang, E., Walia, H., & Blumwald, E. (2011). Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water stress. Plant Biotechnology Journal, 9, 747–758.PubMedCrossRefGoogle Scholar
  145. Perruc, E., Kinoshita, N., & Lopez-Molina, L. (2007). The role of chromatin-remodeling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination. The Plant Journal, 52, 927–936.PubMedCrossRefPubMedCentralGoogle Scholar
  146. Poppenberger, B., Rozhon, W., Khan, M., Husar, S., Adam, G., Luschnig, C., Fujioka, S., & Sieberer, T. (2011). CESTA, a positive regulator of brassinosteroid biosynthesis. The EMBO Journal, 30, 1149–1161.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Qian, W., Wu, C., Fu, Y., Hu, G., He, Z., & Liu, W. (2017). Novel rice mutants overexpressing the brassinosteroid catabolic gene CYP734A4. Plant Molecular Biology, 93, 197–208.PubMedCrossRefPubMedCentralGoogle Scholar
  148. Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D. (2012). Seed germination and vigor. Annual Review of Plant Biology, 63, 507–533.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Roh, H., Jeong, C. W., Fujioka, S., Kim, Y. K., Lee, S., & Ahn, J. H. (2012). Genetic evidence for the reduction of brassinosteroid level by a BAHD acyltransferase-like protein in Arabidopsis. Plant Physiology, 159, 696–709.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Ryu, H., & Hwang, I. (2013). Brassinosteroids in plant developmental signaling networks. J. Plant Biol., 56, 267–273.CrossRefGoogle Scholar
  151. Ryu, H., Cho, H., Bae, W., & Hwang, I. (2014). Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. Nature Communications, 5, 4138.PubMedCrossRefGoogle Scholar
  152. Sakamoto, T., Kamiya, N., Ueguchi-Tanaka, M., Iwahori, S., & Matsuoka, M. (2001). KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes & Development, 15, 581–590.CrossRefGoogle Scholar
  153. Sakamoto, T., Morinaka, Y., Ohnishi, T., Sunohara, H., Fujioka, S., Ueguchi-Tanaka, M., Mizutani, M., Sakata, K., Takatsuto, S., Yoshida, S., Tanaka, H., Kitano, H., & Matsuoka, M. (2006). Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology, 24, 105–109.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Sakamoto, T., Morinaka, Y., Inukai, Y., Kitano, H., & Fujioka, S. (2013). Auxin signal transcription factor regulates expression of brassinosteroid receptor gene in rice. The Plant Journal, 73, 676–688.PubMedCrossRefPubMedCentralGoogle Scholar
  155. Sankar, M., Osmont, K. S., Rolcik, J., Gujas, B., Tarkowska, D., Strnad, M., Xenarios, I., & Hardtke, C. S. (2011). A qualitative continuous model of cellular auxin and brassinosteroid signaling and their crosstalk. Bioinformatics, 27, 1404–1412.PubMedCrossRefPubMedCentralGoogle Scholar
  156. Scacchi, E., Osmont, K. S., Beuchat, J., Salinas, P., Navarrete-Gómez, M., Trigueros, M., Ferrándiz, C., & Hardtke, C. S. (2009). Dynamic, auxin-responsive plasma membrane-to-nucleus movement of Arabidopsis BRX. Development, 136, 2059–2067.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Schaller, H. (2003). The role of sterols in plant growth and development. Progress in Lipid Research, 42, 163–175.PubMedCrossRefPubMedCentralGoogle Scholar
  158. Schneider, K., Breuer, C., Kawamura, A., Jikumaru, Y., Hanada, A., Fujioka, S., Ichikawa, T., Kondou, Y., Matsui, M., Kamiya, Y., Yamaguchi, S., & Sugimoto, K. (2012). Arabidopsis PIZZA has the capacity to acylate brassinosteroids. PLoS One, 7, e46805.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Schwechheimer, C. (2008). Understanding gibberellic acid signaling – Are we there yet? Current Opinion in Plant Biology, 11, 9–15.PubMedCrossRefPubMedCentralGoogle Scholar
  160. She, J., Han, Z., Kim, T. W., Wang, J., Cheng, W., Chang, J., Shi, S., Yang, M., Wang, Z. Y., & Chai, J. (2011). Structural insight into brassinosteroid perception by BRI1. Nature, 474, 472–476.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Shen, Y., Khanna, R., Carle, C. M., & Quail, P. H. (2007). Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiology, 145, 1043–1051.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Shi, Y.-H., Zhu, S.-W., Mao, X.-Z., Feng, J.-X., Qin, Y.-M., Zhang, L., Cheng, J., Wei, L.-P., Wang, Z.-Y., & Zhu, Y.-X. (2006). Transcriptome profiling, molecular, biological and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell, 18, 651–664.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Shimada, Y., Fujioka, S., Miyauchi, N., Kushiro, M., Takatsuto, S., Nomura, T., Yokota, T., Kamiya, Y., Bishop, G. J., & Yoshida, S. (2001). Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidation in brassinosteroid biosynthesis. Plant Physiology, 126, 770–779.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Song, L., Shi, Q. M., Yang, X. H., Xu, Z. H., & Hue, H. W. (2009). Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1. Cell Research, 19, 864–876.PubMedCrossRefPubMedCentralGoogle Scholar
  165. Steber, C. M., & McCourt, P. (2001). A role for brassinosteroids in germination in Arabidopsis. Plant Physiology, 125, 763–769.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Sui, P., Jin, J., Ye, S., Mu, C., Gao, J., Feng, H., Shen, W. H., Yu, Y., & Dong, A. (2012). H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice. The Plant Journal, 70, 340–347.PubMedCrossRefPubMedCentralGoogle Scholar
  167. Sun, T. P. (2010). Gibberellin-GID1-DELLA: A pivotal regulatory module for plant growth and development. Plant Physiology, 154, 567–570.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Sun, Y., Fan, X. Y., Cao, D. M., Tang, W., He, K., Zhu, J. Y., He, J. X., Bai, M. Y., Zhu, S., Oh, E., Patil, S., Kim, T. W., Ji, H., Wong, W. H., Rhee, S. Y., & Wang, Z. Y. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell, 19, 765–777.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Szekeres, M., Nemeth, K., Koncz-Kalman, Z., Mathur, J., Kauschmann, A., Altmann, T., Redei, G. P., Nagy, F., Schell, J., & Koncz, C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 85, 171–182.PubMedCrossRefGoogle Scholar
  170. Takahashi, T., Gasch, A., Nishizawa, N., & Chua, N. H. (1995). The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes & Development, 9, 97–107.CrossRefGoogle Scholar
  171. Tanabe, S., Ashikari, M., Fujioka, S., Takatsuto, S., Yoshida, S., Yano, M., Yoshimura, A., Kitano, H., Matsuoka, M., Fujisawa, Y., Kato, H., & Iwasaki, Y. (2005). A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 17, 776–790.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Tanaka, A., Nakagawa, H., Tomita, C., Shimatani, Z., Ohtake, M., Nomura, T., Jiang, C.-J., Dubouzet, J. G., Kikuchi, S., Sekimoto, H., Yokota, T., Asami, T., Kamakura, T., & Mori, M. (2009). BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiology, 151, 669–680.PubMedPubMedCentralCrossRefGoogle Scholar
  173. Tang, W., Kim, T. W., Oses-Prieto, J. A., Sun, Y., Deng, Z., Zhu, S., Wang, R., Burlingame, A. L., & Wang, Z. Y. (2008). BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science, 321, 557–560.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Tsuda, K., Kurata, N., Ohyanagi, H., & Hake, S. (2014). Genome-wide study of KNOX regulatory network reveals brassinosteroid catabolic genes important for shoot meristem function in rice. Plant Cell, 26, 3488–3350.PubMedPubMedCentralCrossRefGoogle Scholar
  175. Tsuge, T., Tsukaya, H., & Uchimiya, H. (1996). Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development, 122, 1589–1600.PubMedPubMedCentralGoogle Scholar
  176. Turk, E. M., Fujioka, S., Seto, H., Shimada, Y., Takatsuto, S., Yoshida, S., Denzel, M. A., Torres, Q. I., & Neff, M. M. (2003). CYP72B1 inactivates brassinosteroid hormones: And intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiology, 133, 1643–1653.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Van Esse, W., Westphal, A. H., Preethi, R., Albrecht, C., van Veen, B., Borst, J. W., & de Vries, S. C. (2011). Quantification of the BRI1 receptor in planta. Plant Physiology, 156, 1691–1700.CrossRefGoogle Scholar
  178. Vert, G., Walcher, C. L., Chory, J., & Nemhauser, J. L. (2008). Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proceedings of the National Academy of Sciences, 105, 9829–9834.CrossRefGoogle Scholar
  179. Vriet, C., Russinova, E., & Reuzeau, C. (2012). Boosting crop yields with plant steroids. Plant Cell, 24, 842–857.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Vukasinonic, N., & Russinova, E. (2018). BRexit: Possible brassinosteroid export and transport routes. Trends in Plant Science, 23, 285–292.CrossRefGoogle Scholar
  181. Wang, Z.-Y., Seto, H., Fujioka, S., Yoshida, S., & Chory, J. (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 410, 380–383.PubMedCrossRefPubMedCentralGoogle Scholar
  182. Wang, Z.-Y., Nakano, T., Gendron, J. M., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., Asami, T., & Chory, J. (2002). Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell, 2, 505–513.PubMedCrossRefGoogle Scholar
  183. Wang, H., Nagegowda, D. A., Rawat, R., Bouvier-Nave, P., Guo, D., & Bach, T. J. (2012a). Overexpression of Brassica juncea wild-type and mutant HMG-CoA synthase 1 in Arabidopsis up-regulates genes in sterol biosynthesis and enhances sterol production and stress tolerance. Plant Biotechnology Journal, 10, 31–42.PubMedCrossRefPubMedCentralGoogle Scholar
  184. Wang, Z.-Y., Bai, M.-Y., Oh, E., & Zhu, J.-Y. (2012b). Brassinosteroid signaling network and regulation of photomorphogenesis. Annual Review of Genetics, 46, 699–722.CrossRefGoogle Scholar
  185. Wang, H., Tang, J., Liu, J., Hu, J., Liu, J., Chen, Y., Cai, Z., & Wang, X. (2018). Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Molecular Plant, 11, 315–325.PubMedCrossRefGoogle Scholar
  186. Wei, Z., Yuan, T., Tarkowska, D., Kim, J., Nam, H. G., Novak, O., He, K., Guo, X., & Li, J. (2017). Brassinosteroid biosynthesis is modulated via a transcription factor cascade of COG1, PIF4, and PIF5. Plant Physiology, 174, 1260–1273.PubMedPubMedCentralCrossRefGoogle Scholar
  187. Witthöft, J., & Harter, K. (2011). Latest news on Arabidopsis brassinosteroid perception and signaling. Frontiers in Plant Science, 2, 58.PubMedPubMedCentralCrossRefGoogle Scholar
  188. Wu, G., Wang, X. L., Li, X. B., Kamiya, Y. J., Otegui, M. S., & Chory, J. (2011). Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Science Signaling, 4, 29.CrossRefGoogle Scholar
  189. Xue, L. W., Du, J. B., Yang, H., Xu, F., Yuan, S., & Lin, H. H. (2009). Brassinosteroids counteract abscisic acid in germination and growth of Arabidopsis. Zeitschrift fur Naturforschung C. Journal of Biosciences, 64, 225–230.PubMedPubMedCentralGoogle Scholar
  190. Yamamuro, C., Ihara, Y., Wu, X., Noguchi, T., Fujioka, S., Takatsuto, S., Ashikari, M., Kitano, H., & Matsuoka, M. (2000). Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 12, 1591–1605.PubMedPubMedCentralCrossRefGoogle Scholar
  191. Yang, X. H., Xu, Z. H., & Xue, H. W. (2005). Arabidopsis membrane steroid-binding protein1 is involved in inhibition of cell elongation. Plant Cell, 17, 116–131.PubMedPubMedCentralCrossRefGoogle Scholar
  192. Yang, D. L., Yao, J., Mei, C.-S., Tong, X.-H., Zeng, L. J., Li, Q., Xiao, L. T., Sun, T. P., Li, J., Deng, X. W., Lee, C. M., Thomashow, M. F., Yang, Y., He, Z., & He, S. Y. (2012). Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceedings of the National Academy of Sciences, 109, 1192–1200.CrossRefGoogle Scholar
  193. Ye, H., Li, L., & Yin, Y. (2011). Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways. Journal of Integrative Plant Biology, 53, 455–468.PubMedCrossRefGoogle Scholar
  194. Ye, H., Li, L., Guo, H., & Yin, Y. (2012). MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis. Proceedings of the National Academy of Science, 109, 20142–20147.CrossRefGoogle Scholar
  195. Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., & Chory, J. (2005). A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 120, 249–259.PubMedCrossRefGoogle Scholar
  196. Youn, J. H., Kim, M. K., Kim, E.-J., Son, S.-H., Lee, J. E., Jang, M.-S., Kim, T.-W., & Kim, S.-K. (2016). ARF7 increases the endogenous contents of castasterone through suppression of BAS1 expression in Arabidopsis thaliana. Phytochemistry, 122, 34–44.PubMedCrossRefGoogle Scholar
  197. Youn, J. H., Kim, T.-W., Joo, S.-H., Son, S.-H., Roh, J., Kim, S., Kim, T.-W., & Kim, S.-K. (2018). Function and molecular regulation of DWARF1 as a C-24 reductase in brassinosteroid biosynthesis in Arabidopsis. Journal of Experimental Botany, 69, 1873–1886.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Yu, X. F., Li, L., Zola, J., Aluru, M., Ye, H. X., Foudree, A., Guo, H. Q., Anderson, S., Aluru, S., Liu, P., Rodermel, S., & Yin, Y. H. (2011). A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. The Plant Journal, 65, 634–646.PubMedCrossRefGoogle Scholar
  199. Yuan, T., Fujioka, S., Takatsuto, S., Matsumoto, S., Gou, X., He, K., Russell, S. D., & Li, J. (2007). BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in Arabidopsis thaliana. The Plant Journal, 51, 220–233.PubMedCrossRefGoogle Scholar
  200. Zhang, Z., & Xu, L. (2018). Arabidopsis BRASSINOSTEROID INACTIVATOR2 is a typical BAHD acyltransferase involved in brassinosteroid homeostasis. Journal of Experimental Botany, 69, 1925–1941.PubMedCrossRefPubMedCentralGoogle Scholar
  201. Zhang, H., Rider, S. D., Henderson, J. T., Fountain, M., Chuang, K., Kandachar, V., Simons, A., Edenberg, H. J., Romero-Severson, J., Muir, W. M., & Ogas, J. (2008). The CHD3 remodeler PICKLE promotes trimethylation of histone H3 lysine 27. The Journal of Biological Chemistry, 283, 22637–22648.PubMedPubMedCentralCrossRefGoogle Scholar
  202. Zhang, L.-Y., Bai, M.-Y., Wu, J., Zhu, J.-Y., Wang, H., Zhang, Z., Wang, W., Sun, Y., Zhao, J., Sun, X., Yang, H., Xu, Y., Kim, S.-H., Fujioka, S., Lin, W.-H., Chong, K., Lu, T., & Wang, Z.-Y. (2009a). Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell, 21, 3767–3780.PubMedPubMedCentralCrossRefGoogle Scholar
  203. Zhang, S., Cai, Z., & Wang, X. (2009b). The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proceedings of the National Academy of Sciences, 106, 4543–4548.CrossRefGoogle Scholar
  204. Zhang, S., Wei, Y., Lu, Y., & Wang, X. (2009c). Mechanisms of brassinosteroids interacting with multiple hormones. Plant Signaling & Behavior, 4, 1117–1120.CrossRefGoogle Scholar
  205. Zhang, C., Bai, M. Y., & Chong, K. (2014a). Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Reports, 33, 683–696.PubMedPubMedCentralCrossRefGoogle Scholar
  206. Zhang, D., Jing, Y., Jiang, Z., & Lin, R. (2014b). The chromatin-remodeling factor PICKLE integrates brassinosteroid and gibberellin signaling during skotomorphogenic growth in Arabidopsis. Plant Cell, 26, 2472–2485.PubMedPubMedCentralCrossRefGoogle Scholar
  207. Zhao, B., & Li, J. (2012). Regulation of brassinosteroid biosynthesis and inactivation. Journal of Integrative Plant Biology, 54, 746–759.PubMedCrossRefPubMedCentralGoogle Scholar
  208. Zhao, Y., Qi, Z., & Berkowitz, G. A. (2013). Teaching an old hormone new tricks: Cytosolic Ca2+ elevation involvement in plant brassinosteroid signal transduction cascades. Plant Physiology, 163, 555–565.PubMedPubMedCentralCrossRefGoogle Scholar
  209. Zhou, X. Y., Song, L., & Xue, H. W. (2013). Brassinosteroids regulate the differential growth of Arabidopsis hypocotyls through auxin signaling components IAA19 and ARF7. Molecular Plant, 6, 887–904.PubMedCrossRefPubMedCentralGoogle Scholar
  210. Zhu, W., Wang, H., Fujioka, S., Zhou, T., Tian, H., Tian, W., & Wang, X. (2013a). Homeostasis of brassinosteroids regulated by DRL1, a putative acyltransferase in Arabidopsis. Molecular Plant, 6, 546–558.PubMedCrossRefPubMedCentralGoogle Scholar
  211. Zhu, J.-Y., Sae-Seaw, J., & Wang, Z.-Y. (2013b). Brassinosteroid signalling. Development, 140, 1615–1620.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Genetics, Faculty of Biology and Environment ProtectionUniversity of SilesiaKatowicePoland

Personalised recommendations