Skip to main content

Brassinosteroids in Cereals – Presence, Physiological Activity and Practical Aspects

  • Chapter
  • First Online:
Book cover Brassinosteroids: Plant Growth and Development

Abstract

Brassinosteroids (BRs) are plant steroid hormones that are characterised by a sterane skeleton of four rings with a number of functional groups attached (mainly hydroxyl). The first species from the Poaceae family in which BRs were found was rice (Oryza sativa L., cv. Arborio J1) – castasterone (13.6 pg g−1 F.W.) and dolichosterone (8.4 pg g−1 F.W.). BRs were also found in corn, wheat, rye, barley as well as Phalaris canariensis L. or ryegrass. There are significant differences between the different cereals in the types of BRs that are present and in their concentration. In agricultural and biological experiments whose aim was to clarify the role of these compounds in cereals, exogenous 28-homobrassinolide and 24-epibrassinolide and less often, brassinolide or other BRs were most commonly used. Recently, however, the number of articles in which BR-biosynthetic deficient mutants or BR-signalling mutants are being used in studies has increased. BR mutants of cereals include mutants of rice (i.e. d61), barley (i.e. uzu) and corn (Brd1). It is worth emphasising that in the case of cereal plants, studies on mutants have confirmed lot of the physiological functions of BRs that have previously been reported in works in which exogenous BR was applied. One can also mention the participation of BRs in regulating plant growth, CO2 assimilation, proline and sugar production, their protective effects on the PSII (under stress conditions) or their participation in a complicated network of connections with other plant hormones. In addition to being a good model for studies of the role of BRs in cereals, mutants of cereal crops can be used in agricultural practice, i.e. to create new dwarf cultivars. This chapter will review the knowledge about brassinosteroids in cereals – their presence, physiological activity and practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, H., Nakamura, K., Morishita, T., Uchiyama, M., Takatsuto, S., & Ikekawa, N. (1984). Endogenous brassinosteroids of the rice plant: Castasterone and dolichosterone. Agricultural and Biological Chemistry, 48, 1103–1104.

    CAS  Google Scholar 

  • Abe, H., Takatsuto, S., Nakayama, M., & Yokota, T. (1995). 28-homotyphasterol, a new natural brassinosteroid from rice (oryza sativa L.) Bran. Bioscience, Biotechnology, and Biochemistry, 59, 176–178.

    Article  CAS  Google Scholar 

  • Agami, R. A. (2013). Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South African Journal of Botany, 88, 171–177.

    Article  CAS  Google Scholar 

  • Ali, Q., Athar, H., & Ashraf, M. (2008). Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant Growth Regulation, 56, 107–116.

    Article  CAS  Google Scholar 

  • Antonchick, A. P., Schneider, B., Zhabinskii, V. N., Konstantinova, O. V., & Khripach, V. A. (2003). Biosynthesis of 2,3-epoxybrassinosteroids in seedlings of Secale cereale. Phytochemistry, 63, 771–776.

    Article  CAS  PubMed  Google Scholar 

  • Antonchick, A., Svatos, A., Schneider, B., Konstantinova, O. V., Zhabinskii, V. N., & Khripach, V. A. (2005). 2,3-Epoxybrassinosteroids are intermediates in the biosynthesis of castasterone in seedlings of Secale cereale. Phytochemistry, 66, 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Anuradha, S., & Rao, S. S. R. (2003). Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regulation, 40, 29–32.

    Article  CAS  Google Scholar 

  • Arora, N., Bhardwaj, R., Sharma, P., & Arora, H. K. (2008). 28-Homobrassinolide alleviates oxidative stress in salt treated maize (Zea mays L.) plants. Brazilian Journal of Plant Physiology, 20, 153–157.

    Article  CAS  Google Scholar 

  • Asahina, M., Tamaki, Y., Sakamoto, T., Shibata, K., Nomura, T., & Yokota, T. (2014). Blue light-promoted rice leaf bending and unrolling are due to up-regulated brassinosteroid biosynthesis genes accompanied by accumulation of castasterone. Phytochemistry, 104, 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj, R., Arora, N., Sharma, P., & Arora, H. K. (2007). Effects of 28-homobrassinolide on seedling growth, lipid peroxidation and antioxidative enzyme activities under nickel stress in seedlings of Zea mays L. Asian Journal of Plant Sciences, 6, 765–772.

    Article  CAS  Google Scholar 

  • Braun, P., & Wild, A. (1984). The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants. Journal of Plant Physiology, 116, 189–196.

    Article  CAS  PubMed  Google Scholar 

  • Clouse, S. D. (2011). Brassinosteroid signal transduction: From receptor kinase activation to transcriptional networks regulating plant development review. The Plant Cell, 23, 1219–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dockter, C., Gruszka, D., Braumann, I., Druka, A., Druka, I., Franckowiak, J., Gough, S. P., Janeczko, A., Kurowska, M., Lundqvist, J., Lundqvist, U., Marzec, M., Matyszczak, I., Müller, A. H., Oklešťková, J., Schulz, B., Zakhrabekova, S., & Hansson, M. (2014). Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the “Green Revolution” genetic toolkit. Plant Physiology, 166, 1912–1927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Feky, S. S., & Abo-Hamad, S. A. (2014). Effect of exogenous application of brassinolide on growth and metabolic activity of wheat seedlings under normal and salt stress conditions. Annual Research & Review in Biology, 4, 3687–3698.

    Article  Google Scholar 

  • El-Khallal, S. M., Hathout, T. A., Ashour, A. R. A., & Kerrit, A. A. (2009). Brassinolide and salicylic acid induced growth, biochemical activities and productivity of maize plants grown under salt stress. Research Journal of Agriculture and Biological Sciences, 5, 380–390.

    CAS  Google Scholar 

  • Farooq, M., Wahid, A., Basra, S. M. A., & Islam-ud-Din, I. (2009). Improving water relations and gas exchange with brassinosteroids in rice under drought stress. Journal of Agronomy and Crop Science, 195, 262–269.

    Article  CAS  Google Scholar 

  • Farooq, M., Wahid, A., Lee, D.-J., & Aziz, T. (2010). Drought stress: Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. Journal of Agronomy and Crop Science, 196, 336–345.

    Article  CAS  Google Scholar 

  • Filek, M., Rudolphi-Skórska, E., Sieprawska, A., Kvasnica, M., & Janeczko, A. (2017). Regulation of the membrane structure by brassinosteroids and progesterone in winter wheat seedlings exposed to low temperature. Steroids, 128, 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Fujii, S., & Saka, H. (2001). Distribution of assimilates to each organ in rice plants exposed to a low temperature at the ripening stage, and the effect of brassinolide on the distribution. Plant Production Science, 4, 136–144.

    Article  CAS  Google Scholar 

  • Fujioka, S., & Yokota, T. (1997). Biosynthesis and metabolism of brassinosteroids. Physiologia Plantarum, 100, 710–715.

    Article  CAS  Google Scholar 

  • Gamoh, K., Okamoto, N., Takatsuto, S., & Tejima, I. (1990). Determination of traces of natural brassinosteroids as dansylaminophenylboro-nates by liquid chromatography with fluorimetric detection. Analytica Chimica Acta, 228, 101–105.

    Article  CAS  Google Scholar 

  • Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Warthen, J. D., Jr., Steffens, G. L., Flippen-Anderson, J. L., & Cook, J. C., Jr. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 281, 216–217.

    Article  CAS  Google Scholar 

  • Gruszka, D., Szarejko, I., & Maluszynski, M. (2011a). New allele of HvBRI1 gene encoding brassinosteroid receptor in barley. Journal of Applied Genetics, 52, 257–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruszka, D., Szarejko, I., & Maluszynski, M. (2011b). Identification of barley DWARF gene involved in brassinosteroid synthesis. Plant Growth Regulation, 65, 343–358.

    Article  CAS  Google Scholar 

  • Gruszka, D., Gorniak, M., Glodowska, E., Wierus, E., Oklestkova, J., Janeczko, A., Maluszynski, M., & Szarejko, I. (2016a). A reverse-genetics mutational analysis of the barley HvDWARF gene results in identification of a series of alleles and mutants with short stature of various degree and disturbance in BR biosynthesis allowing a new insight into the process. International Journal of Molecular Sciences, 17, 600.

    Article  PubMed Central  CAS  Google Scholar 

  • Gruszka, D., Janeczko, A., Dziurka, M., Pociecha, E., Oklestkova, J., & Szarejko, I. (2016b). Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reaction to drought stress. Frontiers in Plant Science, 7, 1824.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartwig, T., Chuck, G. S., Fujioka, S., Klempien, A., Weizbauer, R., Potluri, D. P. V., Choe, S., Johal, G. S., & Schulz, B. (2011). Brassinosteroid control of sex determination in maize. PNAS, 108, 19814–19819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hnilička, F., Hniličková, H., Martinková, J., & Bláha, L. (2007). The influence of drought and the application of 24-epibrassinolide on the formation of dry matter and yield in wheat. Cereal Research Communications, 35, 457–460.

    Article  CAS  Google Scholar 

  • Hnilička, F., Hniličková, H., & Bláha, L. (2008). The effect of 24-epibrassinolide on gases exchange of wheat. Italian Journal of Agronomy/Riv. Agronomy, (3 Suppl), 451–452.

    Google Scholar 

  • Hnilička, F., Hniličková, H., Martinková, J., Bláha, L., & Kadlec, P. (2009). Impact of 24-Epibrassinolide on chemical structure and energy content in wheat grain. Vagos, 83, 17–22.

    Google Scholar 

  • Holá, D., Rothova, O., Kočová, M., Kohout, L., & Kvasnica, M. (2010). The effect of brassinosteroids on the morphology, development and yield of field-grown maize. Plant Growth Regulation, 61, 29–43.

    Article  CAS  Google Scholar 

  • Honnerová, J., Rothová, O., Holá, D., Kočová, M., Kohout, L., & Kvasnica, M. (2010). The exogenous application of brassinosteroids to Zea mays (L.) stressed by long-term chilling does not affect the activities of photosystem 1 or 2. Journal of Plant Growth Regulation, 29, 500–505.

    Article  CAS  Google Scholar 

  • Horváth, I., Glatz, A., Nakamoto, H., Mishkind, M. L., Munnik, T., Saidi, Y., Goloubinoff, P., Harwood, J. L., & Vigh, L. (2012). Heat shock response in photosynthetic organisms: Membrane and lipid connections. Progress in Lipid Research, 51, 208–220.

    Article  PubMed  CAS  Google Scholar 

  • Janeczko, A. (2016). Presence, transport and physiological activity of brassinosteroids in crop plants from Poaceae and Fabaceae family. 17 Monograph published by Institute of Plant Physiology Polish Academy of Sciences in Krakow (pp 1–75).

    Google Scholar 

  • Janeczko, A., & Swaczynová, J. (2010). Endogenous brassinosteroids in wheat treated with 24-epibrassinolide. Biologia Plantarum, 54, 477–482.

    Article  CAS  Google Scholar 

  • Janeczko, A., Biesaga-Kościelniak, J., Oklešťková, J., Filek, M., Dziurka, M., Szarek-Łukaszewska, G., & Kościelniak, J. (2010). Role of 24-epibrassinolide in wheat production: Physiological effects and uptake. Journal of Agronomy and Crop Science, 196, 311–321.

    CAS  Google Scholar 

  • Janeczko, A., Oklešťková, J., Pociecha, E., Kościelniak, J., & Mirek, M. (2011). Physiological effects and transport of 24-epibrassinolide in heat-stressed barley. Acta Physiologiae Plantarum, 33, 1249–1259.

    Article  CAS  Google Scholar 

  • Janeczko, A., Oklešťková, J., Siwek, A., Dziurka, M., Pociecha, E., Kocurek, M., & Novák, O. (2013). Endogenous progesterone and its cellular binding sites in wheat exposed to drought stress. The Journal of Steroid Biochemistry and Molecular Biology, 138, 384–394.

    Article  CAS  PubMed  Google Scholar 

  • Janeczko, A., Oklestkova, J., Novak, O., Śniegowska-Świerk, K., Snaczke, Z., & Pociecha, E. (2015). Disturbances in production of progesterone and their implications in plant studies. Steroids, 96, 153–163.

    Article  CAS  PubMed  Google Scholar 

  • Janeczko, A., Gruszka, D., Pociecha, E., Dziurka, M., Filek, M., Jurczyk, B., Kalaji, H. M., Kocurek, M., & Waligórski, P. (2016). Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis. Plant Physiology and Biochemistry, 99, 126–141.

    Article  CAS  PubMed  Google Scholar 

  • Janowiak, F., Luck, E., & Dörffling, K. (2003). Chilling tolerance of maize seedlings in the field during cold periods in spring is related to chilling-induced increase in abscisic acid level. Journal of Agronomy and Crop Science, 189, 156–161.

    Article  CAS  Google Scholar 

  • Joo, S. H., Jang, M. S., Kim, M. K., Lee, J. E., & Kim, S. K. (2015). Biosynthetic relationship between C28-brassinosteroids and C29-brassinosteroids in rice (Oryza sativa) seedlings. Phytochemistry, 111, 84–90.

    Article  CAS  PubMed  Google Scholar 

  • Khripach, N. B. (2010). New practical aspects of brassinosteroids and results of their ten-year agricultural use in Russia and Belarus. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids – Bioactivity and crop productivity (2010) (pp. 189–230). Dordrecht/Boston/London: Kluwer Academic Publishers.

    Google Scholar 

  • Kim, Y. S., Kim, T. W., & Kim, S. K. (2005). Brassinosteroids are inherently biosynthesized in the primary roots of maize, Zea mays L. Phytochemistry, 66, 1000–1006.

    Article  CAS  PubMed  Google Scholar 

  • Krishna, P. (2003). Brassinosteroid-mediated stress responses. Journal of Plant Growth Regulation, 22, 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Kroutil, M., Hejtmánková, A., & Lachman, J. (2010). Effect of spring wheat (Triticum aestivum L.) treatment with brassinosteroids on the content of cadmium and lead in plant aerial biomass and grain. Plant, Soil and Environment, 56, 43–50.

    Article  CAS  Google Scholar 

  • Makarevitch, I., Thompson, A., Muehlbauer, G. J., & Springer, N. M. (2012). Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One, 7, e30798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazorra, L. M., Núñez, M., Nápoles, M. C., Yoshida, S., Robaina, C., Coll, F., & Asami, T. (2004). Effects of structural analogs of brassinosteroids on the recovery of growth inhibition by a specific brassinosteriod biosynthesis inhibitor. Plant Growth Regulation, 44, 183–185.

    CAS  Google Scholar 

  • Morinaka, Y., Sakamoto, T., Inukai, Y., Agetsuma, M., Kitano, H., Ashikari, M., & Matsuoka, M. (2006). Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiology, 141, 924–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikawa, N., Toyama, S., Shida, A., & Futatsuya, F. (1994). The uptake and the transport of 14C-labeled epibrassinolide in intact seedlings of cucumber and wheat. Journal of Plant Research, 107, 125–130.

    Article  CAS  Google Scholar 

  • Nithila, S., Amutha, R., Muthulaksmi, S., Baby Rani, W., Indira, K., & Mareeswari, P. (2007). Influence of seed treatment on growth and yield of finger millet (Eleusine coracana L.). Research Journal of Agriculture and Biological Sciences, 3, 252–254.

    CAS  Google Scholar 

  • Núñez, M., Mazzafera, P., Mazorra, L. M., Siqueira, W. J., & Zullo, M. A. T. (2003). Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biologia Plantarum, 47, 67–70.

    Article  Google Scholar 

  • Park, K. H., Park, J. D., Hyun, K. H., Nakayama, M., & Yokota, T. (1994). Brassinosteroids and monoglycerides with brassinosteroidlike activity in immature seeds of Oryza sativa and Perilla frutescens and in cultured cells of Nicotiana tabacum. Bioscience, Biotechnology, and Biochemistry, 58, 2241–2243.

    Article  CAS  Google Scholar 

  • Pociecha, E., Dziurka, M., Oklestkova, J., & Janeczko, A. (2016). Brassinosteroids increase winter survival of winter rye (Secale cereale L.) by affecting photosynthetic capacity and carbohydrate metabolism during the cold acclimation process. Plant Growth Regulation, 80, 127–135.

    Article  CAS  Google Scholar 

  • Ramraj, V. M., Vyas, B. N., Godrej, N. B., Mistry, K. B., Swami, B. N., & Singh, N. (1997). Effects of 28-homobrassinolide on yields of wheat, rice, groundnut, mustard, potato and cotton. The Journal of Agricultural Science, 128, 405–413.

    Article  CAS  Google Scholar 

  • Rothová, O., Holá, D., Kočová, M., Tůmová, L., Hnilička, F., Hniličková, H., Kamlar, M., & Macek, T. (2014). 24-Epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach. Steroids, 85, 44–57.

    Article  PubMed  CAS  Google Scholar 

  • Sairam, R. K. (1994a). Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture-stress conditions of two wheat varieties. Plant Growth Regulation, 14, 173–181.

    Article  CAS  Google Scholar 

  • Sairam, R. K. (1994b). Effect of homobrassinolide application on metabolic activity and grain yield of wheat under normal and water-stress condition. Journal of Agronomy and Crop Science, 173, 11–16.

    Article  CAS  Google Scholar 

  • Saisho, D., Tanno, K., Chono, M., Honda, I., Kitano, H., & Takeda, K. (2004). Spontaneous brassinolide-insensitive barley mutants “uzu” adapted to East Asia. Breeding Science, 54, 409–416.

    Article  CAS  Google Scholar 

  • Schmidt, J., Spengler, B., Yokota, T., Nakayama, M., Takatsuto, S., Voigt, B., & Adam, G. (1995). Secasterone, the first naturally occurring 2,3-epoxybrassinosteroid from Secale cereale. Phytochemistry, 38, 1095–1097.

    Article  CAS  Google Scholar 

  • Shahbaz, M., & Ashraf, M. (2007). Influence of exogenous application of brassinosteroid on growth and mineral nutrients of wheat (Triticum aestivum L.) under saline conditions. Pakistan Journal of Botany, 39, 513–522.

    Google Scholar 

  • Shahbaz, M., Ashraf, M., & Athar, H. (2008). Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regulation, 55, 51–64.

    Article  CAS  Google Scholar 

  • Sharma, I., Ching, E., Saini, S., Bhardwaj, R., & Pati, P. K. (2013). Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiology and Biochemistry, 69, 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, P., Kumar, A., & Bhardwaj, R. (2016). Plant steroidal hormone epibrassinolide regulate – Heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environmental and Experimental Botany, 122, 1–9.

    Article  CAS  Google Scholar 

  • Shimada, K., Abe, H., Takatsuto, S., Nakayama, M., & Yokota, T. (1996). Identification of castasterone and teasterone from seeds of canary grass (Phalaris canariensis). Recent Research and Development in Chemistry and Pharmaceutical Sciences, 1, 1–5.

    Google Scholar 

  • Singh, I., Kumar, U., Singh, S. K., Gupta, C., Singh, M., & Kushwaha, S. R. (2012). Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. Physiology and Molecular Biology of Plants, 18, 229–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, S., Chen, D., Li, X., Qiao, S., Shi, C., Li, C., Shen, H., & Wang, X. (2015). Brassinosteroid signaling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Developmental Cell, 34, 220–228.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, Y., Yamaguchi, I., Yokota, T., & Takahashi, N. (1986). Identification of castasterone, typhasterol and teasterone from the pollen of Zea mays. Agricultural and Biological Chemistry, 50, 3133–3138.

    CAS  Google Scholar 

  • Symons, G. M., Davies, C., Shavrukov, Y., Dry, I. B., Reid, J. B., & Thomas, M. R. (2006). Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiology, 140, 150–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, P. E., Spuck, K., Smith, P. M., Sasse, J. M., Yokota, T., Griffiths, P. G., & Cameron, D. W. (1993). Detection of brassinosteroids in pollen of Lolium perenne L. by immunocytochemistry. Planta, 189, 91–100.

    CAS  Google Scholar 

  • Thussagunpanit, J., Jutamanee, K., Sonjaroon, W., Kaveeta, L., Chai-arree, W., Pankean, P., & Suksamrarn, A. (2015a). Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynthetica, 53, 312–320.

    Article  CAS  Google Scholar 

  • Thussagunpanit, J., Jutamanee, K., Kaveeta, L., Chai-arree, W., Pankean, P., Homvisasevongsa, S., & Suksamrarn, A. (2015b). Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation and rice seed set under heat stress. Journal of Plant Growth Regulation, 34, 320–331.

    Article  CAS  Google Scholar 

  • Tofighi, C., Khavari-Nejad, R. A., Najafi, F., Razavi, K., & Rejali, F. (2017). Brassinosteroid (BR) and arbuscular mycorrhizal (AM) fungi alleviate salinity in wheat. Journal of Plant Nutrition, 40, 1091–1098.

    Article  CAS  Google Scholar 

  • Tong, H., Xiao, Y., Liu, D., Gao, S., Liu, L., Yin, Y., Jin, Y., Qian, Q., & Chu, C. (2014). Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell, 26, 4376–4393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H., Feng, T., Peng, X., Yan, M., Zhou, P., & Tang, X. (2009). Ameliorative effects of brassinosteroid on excess manganese-induced oxidative stress in Zea mays L. leaves. Agricultural Sciences in China, 8, 1063–1074.

    Article  CAS  Google Scholar 

  • Wu, C., Trieu, A., Radhakrishnan, P., Kwok, S. F., Harris, S., Zhang, K., Wang, J., Wan, J., Zhai, H., Takatsuto, S., Matsumoto, S., Fujioka, S., Feldmann, K. A., & Pennell, R. I. (2008). Brassinosteroids regulate grain filling in rice. Plant Cell, 20, 2130–2145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, X.-J., Zhou, Y.-H., Shi, K., Zhou, J., Foyer, C. H., & Yu, J.-Q. (2015). Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany, 66, 2839–2856.

    Article  CAS  PubMed  Google Scholar 

  • Xu, R. J., He, Y. J., Wang, Y. Q., & Zhao, Y. J. (1994). Preliminary study of brassinosterone binding sites from mung bean epicotyls. Acta Phytophysiologica Sinica, 20, 298–302.

    CAS  Google Scholar 

  • Yamamuro, C., Ihara, Y., Wu, X., Noguchi, T., Fujioka, S., Takatsuto, S., Ashikari, M., Kitano, H., & Matsuoka, M. (2000). Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 12, 1591–1606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, G., Nakamura, H., Ichikawa, H., Kitano, H., & Komatsu, S. (2006). OsBLE3, a brassinolide-enhanced gene, is involved in the growth of rice. Phytochemistry, 67, 1442–1454.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C.-J., Zhang, C., Lu, Y.-N., Jin, J.-Q., & Wang, X.-L. (2011). The mechanisms of brassinosteroids’ action: From signal transduction to plant development. Molecular Plant, 4, 588–600.

    Article  CAS  PubMed  Google Scholar 

  • Yokota, T., Higuchi, K., Kosaka, Y., & Takahashi, N. (1992). Transport and metabolism of brassinosteroids in rice. In C. M. Karssen, L. C. van Loon, & D. Vreugdenhil (Eds.), Progress in plant growth regulation (pp. 298–305). The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Yokota, T., Nakayama, M., Wakisaka, T., Schmidt, J., & Adam, G. (1994). 3-Dehydroteasterone, a 3,6-diketobrassinosteroid as a possible biosynthetic intermediate of brassinolide from wheat grain. Bioscience, Biotechnology, and Biochemistry, 58, 1183–1185.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work was supported by grant No. 2013/09/B/NZ9/01653 (National Science Centre – POLAND).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Janeczko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Janeczko, A. (2019). Brassinosteroids in Cereals – Presence, Physiological Activity and Practical Aspects. In: Hayat, S., Yusuf, M., Bhardwaj, R., Bajguz, A. (eds) Brassinosteroids: Plant Growth and Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6058-9_3

Download citation

Publish with us

Policies and ethics