Harnessing the Potential of Brassinosteroids in Abiotic Stress Tolerance in Plants

  • Navdeep Kaur
  • Pratap Kumar Pati


Brassinosteroids (BRs) are the steroidal plant hormones that play a pivotal role in growth and development of plants. They are ubiquitous within the plant kingdom and are well known for their pleotropic effects including growth, rhizogenesis, seed germination, flowering, maturation, senescence and abscission. In the past recent years, brassinosteroids are in the limelight for their potential to confer abiotic stress tolerance in plants. They are known to modulate a plethora of stress responsive pathways that in turn promotes the vigor of the plant under unfavorable conditions. The use of different genetic, biochemical and molecular tools have provided us convincing evidence and valuable insights on the regulation of abiotic stress tolerance using BRs. However, in depth knowledge of the different mechanisms how BRs confer abiotic stress adaptation in plants is still elusive. The present chapter is focused upon understanding the current knowledge of BR mediated abiotic stress tolerance in plants and highlighting the knowledge gaps in the area.


Abiotic stress Plant growth regulators Brassinosteroids Stress tolerance Reactive oxygen species Transcription factors 


  1. Ahmad, F., Singh, A., & Kamal, A. (2018). Crosstalk of brassinosteroids with other phytohormones under various abiotic stresses. Journal of Applied Biology & Biotechnology, 6, 56–62.Google Scholar
  2. Allagulova, C. R., Maslennikova, D. R., Avalbaev, A. M., Fedorova, K. A., Yuldashev, R. A., & Shakirova, F. M. (2015). Influence of 24-epibrassinolide on growth of wheat plants and the content of dehydrins under cadmium stress. Russian Journal of Plant Physiology, 62, 465–471.CrossRefGoogle Scholar
  3. Arif, N., Yadav, V., Singh, S., Singh, S., Ahmad, P., Mishra, R. K., Shivesh, S., Durgesh, K. T., Dubaey, N. K., & Devendra, K. C. (2016). Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Frontiers in Environmental Science, 4, 69.CrossRefGoogle Scholar
  4. Azhar, N., Su, N., Shabala, L., & Shabala, S. (2017). Exogenously applied 24-epibrassinolide (EBL) ameliorates detrimental effects of salinity by reducing K+efflux via depolarization-activated K+channels. Plant and Cell Physiology, 58, 802–810.PubMedCrossRefGoogle Scholar
  5. Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47, 1–8.PubMedCrossRefGoogle Scholar
  6. Bakshi, M., & Oelmüller, R. (2014). WRKY transcription factors Jack of many trades in plants. Plant Signaling and Behavior, 9, e27700.PubMedCrossRefGoogle Scholar
  7. Banerjee, A., & Roychoudhury, A. (2015). WRKY proteins: Signaling and regulation of expression during abiotic stress responses. The Scientific World Journal, 2015, 807560.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Belkhadir, Y., & Jaillais, Y. (2015). The molecular circuitry of brassinosteroid signaling. New Phytologist, 206, 522–540.PubMedCrossRefGoogle Scholar
  9. Benková, E. (2016). Plant hormones in interactions with the environment. Plant Molecular Biology, 91, 597–597.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chantre Nongpiur, R., Lata Singla-Pareek, S., & Pareek, A. (2016). Genomics approaches for improving salinity stress tolerance in crop plants. Current Genomics, 17, 343–357.CrossRefGoogle Scholar
  11. Che, P., Bussell, J. D., Zhou, W., Estavillo, G. M., Pogson, B. J., & Smith, S. M. (2010). Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis. Science Signal, 3, ra69.CrossRefGoogle Scholar
  12. Chen, J., & Yin, Y. (2017). WRKY transcription factors are involved in brassinosteroid signaling and mediate the crosstalk between plant growth and drought tolerance. Plant Signaling and Behavior, 12, e1365212.PubMedCrossRefGoogle Scholar
  13. Chen, B., Feder, M. E., & Kang, L. (2018). Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Molecular Ecology, 2018, 3040–3054.CrossRefGoogle Scholar
  14. Clouse, S. D., & Sasse, J. M. (1998). Brassinosteroids: Essential regulators of plant growth and development. Annual Review of Plant Biology, 49, 427–451.CrossRefGoogle Scholar
  15. Dalcorso, G., Manara, A., Piasentin, S., & Furini, A. (2014). Nutrient metal elements in plants. Metallomics, 6, 1770–1788.PubMedCrossRefGoogle Scholar
  16. Daszkowska-Golec, A., & Szarejko, I. (2013). Open or close the gate – stomata action under the control of phytohormones in drought stress conditions. Frontiers in Plant Science, 4, 1–16.CrossRefGoogle Scholar
  17. Derevyanchuk, M., Litvinovskaya, R., Khripach, V., & Kravets, V. (2016). Brassinosteroid-induced de novo protein synthesis in Zea mays under salinity and bioinformatic approach for identification of heat shock proteins. Plant Growth Regulation, 78, 297–305.CrossRefGoogle Scholar
  18. Di Rubbo, S., Irani, N. G., & Russinova, E. (2011). PP2A phosphatases: The “on-off” regulatory switches of brassinosteroid signaling. Science Signaling, 4, pe25.PubMedCrossRefGoogle Scholar
  19. Didi, V., Jackson, P., & Hejatko, J. (2015). Hormonal regulation of secondary cell wall formation. Journal of Experimental Botany, 66, 5015–5027.PubMedCrossRefGoogle Scholar
  20. Ding, H. D., Zhu, X. H., Zhu, Z. W., Yang, S. J., Zha, D. S., & Wu, X. X. (2012). Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biologia Platarum, 56, 767–770.CrossRefGoogle Scholar
  21. Divi, U. K., Rahman, T., & Krishna, P. (2010). Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology, 10, 151.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Divi, U. K., Rahman, T., & Krishna, P. (2016). Gene expression and functional analyses in brassinosteroid-mediated stress tolerance. Plant Biotechnology Journal, 14, 419–432.PubMedCrossRefGoogle Scholar
  23. Dröge-Laser, W., Snoek, B. L., Snel, B., & Weiste, C. (2018). The Arabidopsis bZIP transcription factor family—an update. Current Opinion in Plant Biology, 45, 36–49.PubMedCrossRefGoogle Scholar
  24. Duan, J., & Cai, W. (2012). OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One, 7, e45117.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Erpen, L., Devi, H. S., Grosser, J. W., & Dutt, M. (2017). Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell Tissue and Organ Culture (PCTOC), 2017, 1–25.Google Scholar
  26. Fang, Y., Liao, K., Du, H., Xu, Y., Song, H., Li, X., & Xiong, L. (2015). A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. Journal of Experimental Botany, 66, 6803–6817.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Goda, H., Shimada, Y., Asami, T., Fujioka, S., & Yoshida, S. (2002). Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiology, 130, 1319–1334.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Warthen, J. D., Jr., Steffens, G. L., Flippen-Anderson, J. L., & Cook, J. C., Jr. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 281, 216.CrossRefGoogle Scholar
  29. Gudesblat, G. E., Schneider-Pizoñ, J., Betti, C., Mayerhofer, J., Vanhoutte, I., Van Dongen, W., Boeren, S., Zhiponova, M., de Vries, S., Jonak, C., & Russinova, E. (2012). Speechless integrates brassinosteroid and stomata signalling pathways. Nature Cell Biology, 14, 548–554.PubMedCrossRefGoogle Scholar
  30. Gururani, M. A., Venkatesh, J., & Tran, L. S. P. (2015). Regulation of photosynthesis during abiotic stress induced photoinhibition. Molecular Plant, 8, 1304–1320.PubMedCrossRefGoogle Scholar
  31. Haslbeck, M., & Vierling, E. (2015). A first line of stress defense: Small heat shock proteins and their function in protein homeostasis. Journal of Molecular Biology, 427, 1537–1548.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Haworth, M., Elliott-Kingston, C., & McElwain, J. C. (2011). Stomatal control as a driver of plant evolution. Journal of Experimental Botany, 62, 2419–2423.PubMedCrossRefGoogle Scholar
  33. Hayat, S., Alyemeni, M. N., & Hasan, S. A. (2012). Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi Journal of Biological Sciences, 19, 325–335.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ho, H. L. (2015). Functional roles of plant protein kinases in signal transduction pathways during abiotic and biotic stress. Journal of Biodiversity, Bioprospecting and Development, 2, 147.Google Scholar
  35. Hoang, T. M. L., Tran, T. N., Nguyen, T. K. T., Williams, B., Wurm, P., Bellairs, S., & Mundree, S. (2016). Improvement of salinity stress tolerance in rice: Challenges and opportunities. Agronomy, 6, 54.CrossRefGoogle Scholar
  36. Hou, J., Zhang, Q., Zhou, Y., Ahammed, G. J., Zhou, Y., Yu, J., Fang, H., & Xia, X. (2018). Glutaredoxin GRXS16 mediates brassinosteroid-induced apoplastic H2O2 production to promote pesticide metabolism in tomato. Environmental Pollution, 240, 227–234.PubMedCrossRefGoogle Scholar
  37. Houston, K., Tucker, M. R., Chowdhury, J., Shirley, N., & Little, A. (2016). The plant cell wall: A complex and dynamic structure as revealed by the responses of genes under stress conditions. Frontiers in Plant Science, 7, 984.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jakubowska, D., & Janicka, M. (2017). The role of brassinosteroids in the regulation of the plasma membrane H+-ATPase and NADPH oxidase under cadmium stress. Plant Science, 264, 37–47.PubMedCrossRefGoogle Scholar
  39. Jia, D., Gong, X., Li, M., Li, C., Sun, T., & Ma, F. (2018). Overexpression of a novel apple NAC transcription factor gene, MdNAC1, confers the dwarf phenotype in transgenic apple (Malus domestica). Genes, 9, 5.CrossRefGoogle Scholar
  40. Kagale, S., Divi, U. K., Krochko, J. E., Keller, W. A., & Krishna, P. (2007). Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 225, 353–364.PubMedCrossRefGoogle Scholar
  41. Kaur, N., & Pati, P. K. (2017). Integrating classical with emerging concepts for better understanding of salinity stress tolerance mechanisms in rice. Frontiers in Environmental Science, 5, 42.CrossRefGoogle Scholar
  42. Kaur, N., Dhawan, M., Sharma, I., & Pati, P. K. (2016a). Interdependency of reactive oxygen species generating and scavenging system in salt sensitive and salt tolerant cultivars of rice. BMC Plant Biology, 16, 131.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kaur, N., Kirat, K., Saini, S., Sharma, I., Gantet, P., & Pati, P. K. (2016b). Reactive oxygen species generating system and brassinosteroids are linked to salt stress adaptation mechanisms in rice. Plant Signaling & Behavior, 11, e1247136.CrossRefGoogle Scholar
  44. Kim, T., Michnlewicz, M., Begmann, D., & Wang, Z. Y. (2012). Brassinosteroid regulates stomatal development by GSK3- mediated inhibition of a MAPK pathway. Nature, 482, 419–422.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kosová, K., Vítámvás, P., & Prášil, I. T. (2014). Wheat and barley dehydrins under cold, drought, and salinity–what can LEA-II proteins tell us about plant stress response? Frontiers in Plant Science, 5, 343.PubMedPubMedCentralGoogle Scholar
  46. Kosová, K., Vítámvás, P., Urban, M. O., Prášil, I. T., & Renaut, J. (2018). Plant abiotic stress proteomics: The major factors determining alterations in cellular proteome. Frontiers in Plant Science, 9, 122.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Krishna, P., Bishun, D. P., & Tawhidur, R. (2017). Brassinosteroid action in plant abiotic stresstolerance. In Brassinosteroids (pp. 193–202). New York: Humana Press.CrossRefGoogle Scholar
  48. Kundu, P., Gill, R., Ahlawat, S., Anjum, N. A., Sharma, K. K., Ansari, A. A., Hasanuzzaman, M., Ramakrishna, A., Chauhan, N., Tuteja, N., & Gill, S. S. (2018). Targeting the redox regulatory mechanisms for abiotic stress tolerance in crops. In Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants (pp. 151–220). London: Academic.CrossRefGoogle Scholar
  49. Kurepin, L. V., Ivanov, A. G., Zaman, M., Pharis, R. P., Hurry, V., & Hüner, N. P. (2017). Interaction of glycine betaine and plant hormones: protection of the photosynthetic apparatus during abioticstress. In Photosynthesis: Structures, mechanisms, and applications (pp. 185–202). Cham: Springer.CrossRefGoogle Scholar
  50. Lata, C., & Prasad, M. (2011). Role of DREBs in regulation of abiotic stress responses in plants. Journal of Experimental Botany, 62, 4731–4748.PubMedCrossRefGoogle Scholar
  51. Li, Z., Omranian, N., Neumetzler, L., Wang, T., Herter, T., Usadel, B., Demura, T., Giavalisco, P., Nikoloski, Z., & Persson, S. (2016). A transcriptional and metabolic framework for secondary wall formation in Arabidopsis. Plant Physiology, 172, 1334–1351.PubMedPubMedCentralGoogle Scholar
  52. Lin, F., Qu, Y., & Zhang, Q. (2014). Phospholipids: Molecules regulating cytoskeletal organization in plant abiotic stress tolerance. Plant Signaling & Behavior, 9, e28337.CrossRefGoogle Scholar
  53. Liu, J., Gao, H., Wang, X., Zheng, Q., Wang, C., Wang, X., & Wang, Q. (2014). Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt-stressed canola. Plant Biology, 16, 440–450.PubMedCrossRefGoogle Scholar
  54. Liu, X., Yang, Q., Wang, Y., Wang, L., Fu, Y., & Wang, X. (2018). Brassinosteroids regulate pavement cell growth by mediating BIN2-induced microtubule stabilization. Journal of Experimental Botany, 69, 1037–1049.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Martinez, V., Nieves-Cordones, M., Lopez-Delacalle, M., Rodenas, R., Mestre, T. C., Garcia-Sanchez, F., Rubio, F., Nortes, P. A., Mittler, R., & Rivero, R. M. (2018). Tolerance to stress combination in tomato plants: New insights in the protective role of melatonin. Molecules, 23, 1–20.CrossRefGoogle Scholar
  56. Mertens, J., Aliyu, H., & Cowan, D. A. (2018). LEA proteins and the evolution of the WHy domain. Applied and Environmental Microbiology, 25, AEM-00539.Google Scholar
  57. Miglani, G. S. (2017). Genome editing in crop improvement: Present scenario and future prospects. Journal of Crop Improvement, 31, 453–559.CrossRefGoogle Scholar
  58. Mitchell, J. W., Mandava, N., Worley, J. F., Plimmer, J. R., & Smith, M. V. (1970). Brassins—a new family of plant hormones from rape pollen. Nature, 225, 1065.PubMedCrossRefGoogle Scholar
  59. Moura, J. C., Bonine, C. A., de Oliveira Fernandes Viana, J., Dornelas, M. C., & Mazzafera, P. (2010). Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 52, 360–376.PubMedCrossRefGoogle Scholar
  60. Nakamura, A., Tochio, N., Fujioka, S., Ito, S., Kigawa, T., Shimada, Y., Makoto, M., Shigeo, Y., Toshinori, K., Tadao, A., Hideharu, S., & Takeshi, N. (2017). Molecular actions of two synthetic brassinosteroids, iso-carbaBL and 6-deoxoBL, which cause altered physiological activities between Arabidopsis and rice. PLoS One, 12, 0174015.Google Scholar
  61. Perdomo, J. A., Capó-Bauçà, S., Carmo-Silva, E., & Galmés, J. (2017). Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Frontiers in Plant Science, 8, 1–15.CrossRefGoogle Scholar
  62. Rademacher, W., & Jung, J. (2018). Plant growth regulating chemicals—cereal grains. In Plant growth regulating chemicals (pp. 253–271). Boca Raton: CRC Press.Google Scholar
  63. Raja, V., Majeed, U., Kang, H., Andrabi, K. I., & John, R. (2017). Abiotic stress: Interplay between ROS, hormones and MAPKs. Environmental and Experimental Botany, 137, 142–157.CrossRefGoogle Scholar
  64. Rao, X., & Dixon, R. A. (2017). Brassinosteroid mediated cell wall remodeling in grasses under abiotic stress. Frontiers in Plant Science, 8, 1–7l.CrossRefGoogle Scholar
  65. Rattan, A., Kapoor, N., & Bhardwaj, R. (2014). Role of brassinosteroids in osmolytes accumulation under salinity stress in Zea mays plants. International Journal of Science and Research, 3, 1822–1827.Google Scholar
  66. Saini, S., Kaur, N., & Pati, P. K. (2018). Reactive oxygen species dynamics in roots of salt sensitive and salt tolerant cultivars of rice. Analytical Biochemistry, 550, 99–108.PubMedCrossRefGoogle Scholar
  67. Serna, L. (2013). What causes opposing actions of brassinosteroids on stomatal development? Plant Physiology, 162, 3–8.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Shabala, S. (2013). Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, 112, 1209–1221.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Shahzad, B., Tanveer, M., Che, Z., Rehman, A., Cheema, S. A., Sharma, A., Song, H., ur Rehman, S., & Zhaorong, D. (2018). Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxicology and Environmental Safety, 147, 935–944.PubMedCrossRefGoogle Scholar
  70. Shakirova, F., Allagulova, C., Maslennikova, D., Fedorova, K., Yuldashev, R., Lubyanova, A., Bezrukova, M., & Avalbaev, A. (2016). Involvement of dehydrins in 24-epibrassinolide-induced protection of wheat plants against drought stress. Plant Physiology and Biochemistry, 108, 539–548.PubMedCrossRefGoogle Scholar
  71. Sharma, I. (2014). Studies on brassinosteroid mediated responses in Oryza sativa L. under pesticide and salt stress employing molecular and biochemical approaches. Doctoral Dissertation, Guru Nanak Dev University, Amritsar.Google Scholar
  72. Sharma, I., Bhardwaj, R., & Pati, P. K. (2013a). Stress modulation response of 24-epibrassinolide against imidacloprid in an elite indica rice variety Pusa Basmati-1. Pesticide Biochemistry and Physiology, 105, 144–153.CrossRefGoogle Scholar
  73. Sharma, I., Ching, E., Saini, S., Bhardwaj, R., & Pati, P. K. (2013b). Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiology and Biochemistry, 69, 17–26.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Sharma, I., Kaur, N., Saini, S., & Pati, P. K. (2013c). Emerging dynamics of brassinosteroids research. In R. K. Salar, S. K. Gahlawat, P. Siwach, & J. S. Duhan (Eds.), Biotechnology: Prospects and applications (pp. 3–17). New Delhi: Springer.CrossRefGoogle Scholar
  75. Sharma, I., Kaur, N., & Pati, P. K. (2017). Brassinosteroids: A promising option in deciphering remedial strategies for abiotic stress tolerance in rice. Frontiers in Plant Science, 8, 2151.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Shigeta, T., Zaizen, Y., Sugimoto, Y., Nakamura, Y., Matsuo, T., & Okamoto, S. (2015). Heat shock protein 90 acts in brassinosteroid signaling through interaction with BES1/BZR1 transcription factor. Journal of Plant Physiology, 178, 69–73.PubMedCrossRefGoogle Scholar
  77. Siddiqui, H., Hayat, S., & Bajguz, A. (2018). Regulation of photosynthesis by brassinosteroids in plants. Acta Physiologiae Plantarum, 40, 59.CrossRefGoogle Scholar
  78. Sies, H. (2018). H2O2 as a central redox signaling molecule in physiological oxidative stress. Free Radical Biology and Medicine, 120, S6.CrossRefGoogle Scholar
  79. Song, L. X., Xu, X. C., Wang, F. N., Wang, Y., Xia, X. J., Shi, K., Zhou, Y. H., Zhou, J., & Yu, J. Q. (2018). Brassinosteroids act as a positive regulator for resistance against root-knot nematode involving RESPIRATORY BURST OXIDASE HOMOLOG-dependent activation of MAPKs in tomato. Plant, Cell and Environment, 41, 1113–1125.PubMedCrossRefGoogle Scholar
  80. Taïbi, K., Taïbi, F., Ait Abderrahim, L., Ennajah, A., Belkhodja, M., & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. The South African Journal of Botany, 105, 306–312.CrossRefGoogle Scholar
  81. Tenhaken, R. (2015). Cell wall remodeling under abiotic stress. Frontiers in Plant Science, 5, 1–9.CrossRefGoogle Scholar
  82. Tong, H., Jin, Y., Liu, W., Li, F., Fang, J., Yin, Y., Qian, Q., Zhu, L., & Chu, C. (2009). DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. The Plant Journal, 1, 803–816.CrossRefGoogle Scholar
  83. Turan, S., Cornish, K., & Kumar, S. (2012). Salinity tolerance in plants: Breeding and genetic engineering. Australian Journal of Crop Science, 6, 1337.Google Scholar
  84. Vardhini, B. V., & Anjum, N. A. (2015). Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Frontiers in Environmental Science, 2, 1–16.CrossRefGoogle Scholar
  85. Vaughan, M. M., Block, A., Christensen, S. A., Allen, L. H., & Schmelz, E. A. (2018). The effects of climate change associated abiotic stresses on maize phytochemical defenses. Phytochemistry Reviews, 17, 37–49.CrossRefGoogle Scholar
  86. Wang, H., Wang, H., Shao, H., & Tang, X. (2016). Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Science, 7, 67.PubMedPubMedCentralGoogle Scholar
  87. Xia, X. J., Gao, C. J., Song, L. X., Zhou, Y. H., Shi, K., & Yu, J. Q. (2014). Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum. Plant, Cell & Environment, 37, 2036–2050.CrossRefGoogle Scholar
  88. Xia, X. J., Zhou, Y. H., Shi, K., Zhou, J., Foyer, C. H., & Yu, J. Q. (2015). Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany, 66, 2839–2856.PubMedCrossRefGoogle Scholar
  89. Xie, L., Yang, C., & Wang, X. (2011). Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. Journal of Experimental Botany, 62, 4495–4506.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Yamaguchi, M., Goue, N., Igarashi, H., Ohtani, M., Nakano, Y., Mortimer, J. C., Nishikubo, N., Kubo, M., Katayama, Y., Kakegawa, K., Dupree, P., & Demura, T. (2010). VASCULAR-RELATED NAC-DOMAIN6 and VASCULARRELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. Plant Physiology, 153, 906–914.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Yu, M., Lamattina, L., Spoel, S. H., & Loake, G. J. (2014). Nitric oxide function in plant biology: A redox cue in deconvolution. New Phytologist, 202, 1142–1156.PubMedCrossRefGoogle Scholar
  92. Zeng, H., Tang, Q., & Hua, X. (2010). Arabidopsis brassinosteroid mutants det2-1 and bin2-1 display altered salt tolerance. Journal of Plant Growth Regulation, 29, 44–52.CrossRefGoogle Scholar
  93. Zhang, A., Zhang, J., Zhang, J., Ye, N., Zhang, H., Tan, M., & Jiang, M. (2010). Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant and Cell Physiology, 52, 181–192.PubMedCrossRefGoogle Scholar
  94. Zhao, Q., & Dixon, R. A. (2011). Transcriptional networks for lignin biosynthesis: More complex than we thought? Trends in Plant Science, 16, 227–233.PubMedCrossRefGoogle Scholar
  95. Zhong, R. Q., Lee, C. H., Zhou, J. L., McCarthy, R. L., & Ye, Z. H. (2008). A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell, 20, 2763–2782.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Zhou, Y. L., Huo, S. F., Wang, L. T., Meng, J. F., Zhang, Z. W., & Xi, Z. M. (2018). Exogenous 24-Epibrassinolide alleviates oxidative damage from copper stress in grape (Vitis vinifera L.) cuttings. Plant Physiology and Biochemistry, 130, 555–565.PubMedCrossRefGoogle Scholar
  97. Zhu, Y., Zuo, M., Liang, Y., Jiang, M., Zhang, J., Scheller, H. V., Tan, M., & Zhang, A. (2013). MAP 65–1a positively regulates H2O2 amplification and enhances brassinosteroid-induced antioxidant defence in maize. Journal of Experimental Botany, 64, 3787–3802.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Navdeep Kaur
    • 1
  • Pratap Kumar Pati
    • 1
  1. 1.Department of BiotechnologyGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations