Skip to main content

Brassinosteroid Regulated Physiological Process: An Omics Perspective

  • Chapter
  • First Online:
Brassinosteroids: Plant Growth and Development

Abstract

Transcriptomes is referred to an entire set of transcripts and their number present in a cell at a particular developmental phase or physiological state. Study of the transcriptome is necessary to identify different genes and their functions, and elucidating various signalling pathways. The key intend of transcriptomics is to index all sort of transcripts (coding and non-coding RNAs) to establish the transcriptional organization of genes. Genes act as blueprint whereas proteins act as a functional unit of cell that is regulated by gene expression/repression. Proteomics is a broad scale analysis of a complete set of proteins (proteome) in a cell, tissue or organ at a particular time. As proteins are final product of a gene they are closer to the function as compared to genes. Hence, this “omics” study will facilitate more rapid advancement in understanding of different biochemical pathways of plants. Brassinosteroids (BRs), a class of plant hormone regulates various developmental and physiological processes. This chapter deal with the application of transcriptomics and proteomics to elucidate the hormonal targets for growth and development of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahammed, G., Xia, X. J., Li, X., Shi, K., Yu, J. Q., & Zhou, Y. H. (2015). Role of brassinosteroid in plant adaptation to abiotic stresses and its interplay with other hormones. Current Protein & Peptide Science, 16, 462–473.

    Article  CAS  Google Scholar 

  • Ahsan, N., Donnart, T., Nouri, M. Z., & Komatsu, S. (2010). Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. Journal of Proteome Research, 9, 4189–4204.

    Article  CAS  PubMed  Google Scholar 

  • Alabadí, D., Gil, J., Blázquez, M. A., & García-Martínez, J. L. (2004). Gibberellins repress photomorphogenesis in darkness. Plant Physiology, 134, 1050–1057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alfonso, P., Dolado, I., Swat, A., Núñez, A., Cuadrado, A., Nebreda, A. R., & Casal, J. I. (2007). Proteomic analysis of p38α MAP kinase-regulated changes in membrane fractions of Ras-transformed fibroblasts. In Regulation of malignant cell transformation by the stress-activated kinase (Vol. 6, pp. S262–S271).

    Google Scholar 

  • Allen, G. J., Chu, S. P., Schumacher, K., Shimazaki, C. T., Vafeados, D., Kemper, A., & Chory, J. (2000). Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science, 289, 2338–2342.

    Article  CAS  PubMed  Google Scholar 

  • Bai, M. Y., Shang, J. X., Oh, E., Fan, M., Bai, Y., Zentella, R., & Wang, Z. Y. (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 14, 810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajguz, A. (2009). Isolation and characterization of brassinosteroids from algal cultures of Chlorella vulgaris Beijerinck (Trebouxiophyceae). Journal of Plant Physiology, 166, 1946–1949.

    Article  CAS  PubMed  Google Scholar 

  • Bao, F., Shen, J., Brady, S. R., Muday, G. K., Asami, T., & Yang, Z. (2004). Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiology, 134, 1624–1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamins, R., & Scheres, B. (2008). Auxin: The looping star in plant development. Annual Review of Plant Biology, 59, 443–465.

    Article  CAS  PubMed  Google Scholar 

  • Bernardo-García, S., de Lucas, M., Martínez, C., Espinosa-Ruiz, A., Davière, J. M., & Prat, S. (2014). BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes & Development, 28, 1681–1694.

    Article  CAS  Google Scholar 

  • Biesgen, C., & Weiler, E. W. (1999). Structure and regulation of OPR1 and OPR2, two closely related genes encoding 12-oxophytodienoic acid-10, 11-reductases from Arabidopsis thaliana. Planta, 208, 155–165.

    Article  CAS  PubMed  Google Scholar 

  • Bouquin, T., Meier, C., Foster, R., Nielsen, M. E., & Mundy, J. (2001). Control of specific gene expression by gibberellin and brassinosteroid. Plant Physiology, 127, 450–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burla, B., Pfrunder, S., Nagy, R., Francisco, R. M., Lee, Y., & Martinoia, E. (2013). Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis. Plant Physiology, 163, 1446–1458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter, C., Pan, S., Zouhar, J., Avila, E. L., Girke, T., & Raikhel, N. V. (2004). The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. The Plant Cell, 16, 3285–3303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casati, P., Zhang, X., Burlingame, A. L., & Walbot, V. (2005). Analysis of leaf proteome after UV-B irradiation in maize lines differing in sensitivity. Molecular & Cellular Proteomics, 4, 1673–1685.

    Article  CAS  Google Scholar 

  • Chaiwanon, J., & Wang, Z. Y. (2015). Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Current Biology, 25, 1031–1042.

    Article  CAS  PubMed  Google Scholar 

  • Chung, Y., Maharjan, P. M., Lee, O., Fujioka, S., Jang, S., Kim, B., & Park, T. (2011). Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. The Plant Journal, 66, 564–578.

    Article  CAS  PubMed  Google Scholar 

  • Clouse, S. D. (2011). Brassinosteroid signal transduction: From receptor kinase activation to transcriptional networks regulating plant development. The Plant Cell, 23, 1219–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockcroft, S. (1998). Phosphatidylinositol transfer proteins: A requirement in signal transduction and vesicle traffic. Bio Essays, 20, 423–432.

    CAS  Google Scholar 

  • Coll-Garcia, D., Mazuch, J., Altmann, T., & Müssig, C. (2004). EXORDIUM regulates brassinosteroid-responsive genes. FEBS Letters, 563, 82–86.

    Article  CAS  PubMed  Google Scholar 

  • Crafts-Brandner, S. J., & Salvucci, M. E. (2002). Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiology, 129, 1773–1780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, J. X., Zhou, Y. H., Ding, J. G., Xia, X. J., Shi, K. A. I., Chen, S. C., & Yu, J. Q. (2011). Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant, Cell and Environment, 34, 347–358.

    Article  CAS  PubMed  Google Scholar 

  • Deng, Z., Zhang, X., Tang, W., Oses-Prieto, J. A., Suzuki, N., Gendron, J. M., & Burlingame, A. L. (2007). A proteomics study of brassinosteroid response in Arabidopsis. Molecular & Cellular Proteomics, 6, 2058–2071.

    Article  CAS  Google Scholar 

  • Dhaubhadel, S., Chaudhary, S., Dobinson, K. F., & Krishna, P. (1999). Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Molecular Biology, 40, 333–342.

    Article  CAS  PubMed  Google Scholar 

  • Divi, U. K., Rahman, T., & Krishna, P. (2010). Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology, 10, 151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Divi, U. K., Rahman, T., & Krishna, P. (2016). Gene expression and functional analyses in brassinosteroid-mediated stress tolerance. Plant Biotechnology Journal, 14, 419–432.

    Article  CAS  PubMed  Google Scholar 

  • Du, L., & Poovaiah, B. W. (2005). Ca 2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature, 437, 741.

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin, Q., Ahmad, A., Hayat, S., & Alvi, S. (2000). The response of chickpea, raised from the seeds pretreated with 28-homobrassinolide. In National seminar on plant physiological paradigm for fostering agro and biotechnology and augmenting environmental productivity in millennium (p. 134).

    Google Scholar 

  • Fedina, E. O., Karimova, F. G., Tarchevsky, I. A., Toropygin, I. Y., & Khripach, V. A. (2008). Effect of epibrassinolide on tyrosine phosphorylation of the Calvin cycle enzymes. Russian Journal of Plant Physiology, 55(2), 193–200.

    Article  CAS  Google Scholar 

  • Feng, L., Wang, K., Li, Y., Tan, Y., Kong, J., Li, H., & Zhu, Y. (2007). Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Reports, 26, 1635–1646.

    Article  CAS  PubMed  Google Scholar 

  • Fujioka, S., & Yokota, T. (2003). Biosynthesis and metabolism of brassinosteroids. Annual Review of Plant Biology, 54, 137–164.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda, H. (1997). Tracheary element differentiation. The Plant Cell, 9, 1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego-Bartolomé, J., Minguet, E. G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S. G., & Blázquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 109, 13446–13451.

    Article  Google Scholar 

  • Gendron, J. M., Liu, J. S., Fan, M., Bai, M. Y., Wenkel, S., Springer, P. S., & Wang, Z. Y. (2012). Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Proceedings of the National Academy of Sciences, 109, 21152–21157.

    Article  CAS  Google Scholar 

  • Goda, H., Shimada, Y., Asami, T., Fujioka, S., & Yoshida, S. (2002). Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiology, 130, 1319–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goda, H., Sawa, S., Asami, T., Fujioka, S., Shimada, Y., & Yoshida, S. (2004). Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiology, 134, 1555–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin, T. J., Gygi, S. P., Ideker, T., Rist, B., Eng, J., Hood, L., & Aebersold, R. (2002). Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 1, 323–333.

    Article  CAS  Google Scholar 

  • Guilfoyle, T. J., & Hagen, G. (2007). Auxin response factors. Current Opinion in Plant Biology, 10, 453–460.

    Article  CAS  PubMed  Google Scholar 

  • Guo, H., Li, L., Ye, H., Yu, X., Algreen, A., & Yin, Y. (2009). Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 106, 7648–7653.

    Article  CAS  Google Scholar 

  • Han, F., Chen, H., Li, X. J., Yang, M. F., Liu, G. S., & Shen, S. H. (2009). A comparative proteomic analysis of rice seedlings under various high-temperature stresses. Biochimica et Biophysica Acta, Proteins and Proteomics, 1794, 1625–1634.

    Article  CAS  Google Scholar 

  • Harrison, E. P., Willingham, N. M., Lloyd, J. C., & Raines, C. A. (1997). Reduced sedoheptulose-1, 7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. Planta, 204, 27–36.

    Article  Google Scholar 

  • Hayat, S., Ali, B., Hasan, S. A., & Ahmad, A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 60, 33–41.

    Article  CAS  Google Scholar 

  • Hayat, S., Hasan, S. A., Hayat, Q., & Ahmad, A. (2010). Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma, 239, 3–14.

    Article  CAS  PubMed  Google Scholar 

  • He, J. X., Gendron, J. M., Sun, Y., Gampala, S. S., Gendron, N., Sun, C. Q., & Wang, Z. Y. (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 307, 1634–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou, Y., Qiu, J., Wang, Y., Li, Z., Zhao, J., Tong, X., et al. (2017). A quantitative proteomic analysis of Brassinosteroid-induced protein phosphorylation in Rice (Oryza sativa L.). Frontiers in Plant Science, 8, 514.

    PubMed  PubMed Central  Google Scholar 

  • Howe, G. A., & Ryan, C. A. (1999). Suppressors of systemin signaling identify genes in the tomato wound response pathway. Genetics, 153, 1411–1421.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, M. Y., Ming, L. U. O., Xiao, Y. H., Li, X. B., Tan, K. L., Lei, H. O. U., & Zang, Z. L. (2011). Brassinosteroids and auxin down-regulate DELLA genes in fiber initiation and elongation of cotton. Agricultural Sciences in China, 10, 1168–1176.

    Article  CAS  Google Scholar 

  • Huang, B., Chu, C. H., Chen, S. L., Juan, H. F., & Chen, Y. M. (2006). A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress. Cellular & Molecular Biology Letters, 11(2), 264.

    Article  CAS  Google Scholar 

  • Huang, D., Wu, W., Abrams, S. R., & Cutler, A. J. (2008). The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. Journal of Experimental Botany, 59, 2991–3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber, M., Bahr, I., Krätzschmar, J. R., Becker, A., Müller, E. C., Donner, P., & Sommer, A. (2004). Comparison of proteomic and genomic analyses of the human breast cancer cell line T47D and the antiestrogen-resistant derivative T47D-r. Molecular & Cellular Proteomics, 3, 43–55.

    Article  CAS  Google Scholar 

  • Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K., & Hood, L. (2001). Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science, 292, 929–934.

    Article  CAS  PubMed  Google Scholar 

  • Iliev, E. A., Xu, W., Polisensky, D. H., Oh, M. H., Torisky, R. S., Clouse, S. D., & Braam, J. (2002). Transcriptional and posttranscriptional regulation of Arabidopsis TCH4 expression by diverse stimuli. Roles of cis regions and brassinosteroids. Plant Physiology, 130, 770–783.

    Article  PubMed  PubMed Central  Google Scholar 

  • Im, K. H., Cosgrove, D. J., & Jones, A. M. (2000). Subcellular localization of expansin mRNA in xylem cells. Plant Physiology, 123, 463–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishiguro, S., Watanabe, Y., Ito, N., Nonaka, H., Takeda, N., Sakai, T., & Okada, K. (2002). SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins. The EMBO Journal, 21, 898–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolkman, A., Dirksen, E. H., Slijper, M., & Heck, A. J. (2005). Double standards in quantitative proteomics direct comparative assessment of difference in gel electrophoresis and metabolic stable isotope labeling. Molecular & Cellular Proteomics, 4, 255–266.

    Article  CAS  Google Scholar 

  • Konishi, H., & Komatsu, S. (2003). A proteomics approach to investigating promotive effects of brassinolide on lamina inclination and root growth in rice seedlings. Biological & Pharmaceutical Bulletin, 26, 401–408.

    Article  CAS  Google Scholar 

  • Kurepin, L. V., Qaderi, M. M., Back, T. G., Reid, D. M., & Pharis, R. P. (2008). A rapid effect of applied brassinolide on abscisic acid concentrations in Brassica napus leaf tissue subjected to short-term heat stress. Plant Growth Regulation, 55, 165–167.

    Article  CAS  Google Scholar 

  • Kwon, S. I., Cho, H. J., Jung, J. H., Yoshimoto, K., Shirasu, K., & Park, O. K. (2010). The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. The Plant Journal, 64, 151–164.

    CAS  PubMed  Google Scholar 

  • Lee, M. W., Qi, M., & Yang, Y. (2001). A novel jasmonic acid-inducible rice myb gene associates with fungal infection and host cell death. Molecular Plant-Microbe Interactions, 14, 527–535.

    Article  CAS  PubMed  Google Scholar 

  • Lee, D. G., Ahsan, N., Lee, S. H., Kang, K. Y., Bahk, J. D., Lee, I. J., & Lee, B. H. (2007). A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics, 7, 3369–3383.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q. F., & He, J. X. (2013). Mechanisms of signaling crosstalk between brassinosteroids and gibberellins. Plant Signaling & Behavior, 8, e24686.

    Article  CAS  Google Scholar 

  • Li, L., Staden, J. V., & Jäger, A. K. (1998). Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Regulation, 25, 81–87.

    Article  CAS  Google Scholar 

  • Li, X., Xie, Z., & Bankaitis, V. A. (2000). Phosphatidylinositol/phosphatidylcholine transfer proteins in yeast. Biochimica et Biophysica Acta, Molecular and Cell Biology of Lipids, 1486, 55–71.

    Article  CAS  Google Scholar 

  • Li, Y., Darley, C. P., Ongaro, V., Fleming, A., Schipper, O., Baldauf, S. L., & McQueen-Mason, S. J. (2002). Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiology, 128(3), 854–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, C., Liu, G., Xu, C., Lee, G. I., Bauer, P., Ling, H. Q., & Howe, G. A. (2003). The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. The Plant Cell, 15, 1646–1661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Xu, J., Xu, Z. H., & Xue, H. W. (2005). Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. The Plant Cell, 17(10), 2738–2753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z. Y., Xu, Z. S., He, G. Y., Yang, G. X., Chen, M., Li, L. C., & Ma, Y. Z. (2012). A mutation in Arabidopsis BSK5 encoding a brassinosteroid-signaling kinase protein affects responses to salinity and abscisic acid. Biochemical and Biophysical Research Communications, 426, 522–527.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Yang, P., Kang, J., Gan, Y., Yu, J., Calderón-Urrea, A., & Xie, J. (2016). Transcriptome analysis of pepper (Capsicum annuum) revealed a role of 24-epibrassinolide in response to chilling. Frontiers in Plant Science, 7, 1281.

    PubMed  PubMed Central  Google Scholar 

  • Lin, L. L., Wu, C. C., Huang, H. C., Chen, H. J., Hsieh, H. L., & Juan, H. F. (2013). Identification of microRNA 395a in 24-epibrassinolide-regulated root growth of Arabidopsis thaliana using microRNA arrays. International Journal of Molecular Sciences, 14, 14270–14286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin, L. L., Hsu, C. L., Hu, C. W., Ko, S. Y., Hsieh, H. L., Huang, H. C., & Juan, H. F. (2015). Integrating phosphoproteomics and bioinformatics to study brassinosteroid-regulated phosphorylation dynamics in Arabidopsis. BMC Genomics, 16, 533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lisso, J., Steinhauser, D., Altmann, T., Kopka, J., & Müssig, C. (2005). Identification of brassinosteroid-related genes by means of transcript co-response analyses. Nucleic Acids Research, 33(8), 2685–2696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, G. T., Ma, L., Duan, W., Wang, B. C., Li, J. H., Xu, H. G., & Wang, L. J. (2014). Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery. BMC Plant Biology, 14, 110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Logan, D. C., Domergue, O., de la Serve, B. T., & Rossignol, M. (1997). A new family of plasma membrane polypeptides differentially regulated during plant development. IUBMB Life, 43, 1051–1062.

    Article  CAS  Google Scholar 

  • Maharjan, P. M., & Choe, S. (2011). High temperature stimulates DWARF4 (DWF4) expression to increase hypocotyl elongation in Arabidopsis. Journal of Plant Biology, 54, 425.

    Article  CAS  Google Scholar 

  • Maharjan, P. M., Schulz, B., & Choe, S. (2011). BIN2/DWF12 antagonistically transduces brassinosteroid and auxin signals in the roots of Arabidopsis. Journal of Plant Biology, 54, 126–134.

    Article  CAS  Google Scholar 

  • Majoul-Haddad, T., Bancel, E., Martre, P., Triboi, E., & Branlard, G. (2013). Effect of short heat shocks applied during grain development on wheat (Triticum aestivum L.) grain proteome. Journal of Cereal Science, 57, 486–495.

    Article  CAS  Google Scholar 

  • Marino, D., Dunand, C., Puppo, A., & Pauly, N. (2012). A burst of plant NADPH oxidases. Trends in Plant Science, 17, 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Marmagne, A., Rouet, M. A., Ferro, M., Rolland, N., Alcon, C., Joyard, J., & Ephritikhine, G. (2004). Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome. Molecular & Cellular Proteomics, 3, 675–691.

    Article  CAS  Google Scholar 

  • Mei, C., Qi, M., Sheng, G., & Yang, Y. (2006). Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Molecular Plant-Microbe Interactions, 19, 1127–1137.

    Article  CAS  PubMed  Google Scholar 

  • Mouchel, C. F., Osmont, K. S., & Hardtke, C. S. (2006). BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature, 443, 458.

    Article  CAS  PubMed  Google Scholar 

  • Muday, G. K., Rahman, A., & Binder, B. M. (2012). Auxin and ethylene: Collaborators or competitors? Trends in Plant Science, 17, 181–195.

    Article  CAS  PubMed  Google Scholar 

  • Müssig, C., & Altmann, T. (2003). Genomic brassinosteroid effects. Journal of Plant Growth Regulation, 22, 313–324.

    Article  PubMed  CAS  Google Scholar 

  • Müssig, C., Biesgen, C., Lisso, J., Uwer, U., Weiler, E. W., & Altmann, T. (2000). A novel stress-inducible 12-oxophytodienoate reductase from Arabidopsis thaliana provides a potential link between brassinosteroid-action and jasmonic-acid synthesis. Journal of Plant Physiology, 157, 143–152.

    Article  Google Scholar 

  • Nahar, K., Kyndt, T., Hause, B., Höfte, M., & Gheysen, G. (2013). Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Molecular Plant-Microbe Interactions, 26, 106–115.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, A., Fujioka, S., Sunohara, H., Kamiya, N., Hong, Z., Inukai, Y., et al. (2006). The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiology, 140(2), 580–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson, C. J., Hegeman, A. D., Harms, A. C., & Sussman, M. R. (2006). A quantitative analysis of Arabidopsis plasma membrane using trypsin-catalyzed 18O labeling. Molecular & Cellular Proteomics, 5, 1382–1395.

    Article  CAS  Google Scholar 

  • Nemhauser, J. L., Mockler, T. C., & Chory, J. (2004). Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biology, 2, e258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nie, S., Huang, S., Wang, S., Cheng, D., Liu, J., Lv, S., & Wang, X. (2017). Enhancing brassinosteroid signaling via overexpression of tomato (Solanum lycopersicum) SlBRI1 improves major agronomic traits. Frontiers in Plant Science, 8, 1386.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. The Journal of Biological Chemistry, 250, 4007–4021.

    PubMed  Google Scholar 

  • Oh, E., Zhu, J. Y., & Wang, Z. Y. (2012). Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature Cell Biology, 14, 802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi-Ito, K., & Fukuda, H. (2010). Transcriptional regulation of vascular cell fates. Current Opinion in Plant Biology, 13, 670–676.

    Article  CAS  PubMed  Google Scholar 

  • Ohashi-Ito, K., Kubo, M., Demura, T., & Fukuda, H. (2005). Class III homeodomain leucine-zipper proteins regulate xylem cell differentiation. Plant and Cell Physiology, 46, 1646–1656.

    Article  CAS  PubMed  Google Scholar 

  • Paparella, S., Araújo, S. S., Rossi, G., Wijayasinghe, M., Carbonera, D., & Balestrazzi, A. (2015). Seed priming: State of the art and new perspectives. Plant Cell Reports, 34, 1281–1293.

    Article  CAS  PubMed  Google Scholar 

  • Peleg, Z., Reguera, M., Tumimbang, E., Walia, H., & Blumwald, E. (2011). Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnology Journal, 9, 747–758.

    Article  CAS  PubMed  Google Scholar 

  • Penfield, S., Rylott, E. L., Gilday, A. D., Graham, S., Larson, T. R., & Graham, I. A. (2004). Reserve mobilization in the Arabidopsis endosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid, and requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1. The Plant Cell, 16, 2705–2718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, H., Zhao, J., & Neff, M. M. (2015). ATAF2 integrates Arabidopsis brassinosteroid inactivation and seedling photomorphogenesis. Development, 142, 4129–4138.

    Article  CAS  PubMed  Google Scholar 

  • Peterman, T. K., Ohol, Y. M., McReynolds, L. J., & Luna, E. J. (2004). Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiology, 136, 3080–3094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips, S. E., Vincent, P., Rizzieri, K. E., Schaaf, G., Bankaitis, V. A., & Gaucher, E. A. (2006). The diverse biological functions of phosphatidylinositol transfer proteins in eukaryotes. Critical Reviews in Biochemistry and Molecular Biology, 41, 21–49.

    Article  CAS  PubMed  Google Scholar 

  • Polko, J. K., Pierik, R., van Zanten, M., Tarkowská, D., Strnad, M., Voesenek, L. A., & Peeters, A. J. (2013). Ethylene promotes hyponastic growth through interaction with ROTUNDIFOLIA3/CYP90C1 in Arabidopsis. Journal of Experimental Botany, 64, 613–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raines, C. A. (2011). Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: Current and future strategies. Plant Physiology, 155, 36–42.

    Article  CAS  PubMed  Google Scholar 

  • Rokka, A., Zhang, L., & Aro, E. M. (2001). Rubisco activase: An enzyme with a temperature-dependent dual function? The Plant Journal, 25, 463–471.

    Article  CAS  PubMed  Google Scholar 

  • Rossignol, M., Peltier, J.-B., Mock, H.-P., Matros, A., Maldonado, A. M., & Jorrín, J. V. (2006). Plant proteome analysis: A 2004–2006 update. Proteomics, 6, 5529–5548.

    Article  CAS  PubMed  Google Scholar 

  • Routt, S. M., & Bankaitis, V. A. (2004). Biological functions of phosphatidylinositol transfer proteins. Biochemistry and Cell Biology, 82, 254–262.

    Article  CAS  PubMed  Google Scholar 

  • Rylott, E. L., Gilday, A. D., & Graham, I. A. (2003). The gluconeogenic enzyme phosphoenolpyruvate carboxykinase in Arabidopsis is essential for seedling establishment. Plant Physiology, 131, 1834–1842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saini, S., Sharma, I., & Pati, P. K. (2015). Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Frontiers in Plant Science, 6, 950.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvucci, M. E., & Crafts-Brandner, S. J. (2004). Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiology, 134, 1460–1470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano, N., Kim, J. S., Onda, Y., Nomura, T., Mochida, K., Okamoto, M., & Seo, M. (2017). RNA-Seq using bulked recombinant inbred line populations uncovers the importance of brassinosteroid for seed longevity after priming treatments. Scientific Reports, 7, 8095.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasse, J. (1999). Physiological actions of brassinosteroids. Brassinosteroids-Steroidal Plant Hormones, 1, 137–161.

    Google Scholar 

  • Sazer, S., & Dasso, M. (2000). The ran decathlon: Multiple roles of ran. Journal of Cell Science, 113, 1111–1118.

    CAS  PubMed  Google Scholar 

  • Scafaro, A. P., Haynes, P. A., & Atwell, B. J. (2009). Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. Journal of Experimental Botany, 61, 191–202.

    Article  PubMed Central  CAS  Google Scholar 

  • Schomburg, F. M., Bizzell, C. M., Lee, D. J., Zeevaart, J. A., & Amasino, R. M. (2003). Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. The Plant Cell, 15, 151–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sechet, J., Frey, A., Effroy-Cuzzi, D., Berger, A., Perreau, F., Cueff, G., & Marion-Poll, A. (2016). Xyloglucan metabolism differentially impacts the cell wall characteristics of the endosperm and embryo during Arabidopsis seed germination. Plant Physiology, 170, 1367–1380.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharmin, S. A., Alam, I., Rahman, M. A., Kim, K. H., Kim, Y. G., & Lee, B. H. (2013). Mapping the leaf proteome of Miscanthus sinensis and its application to the identification of heat-responsive proteins. Planta, 238, 459–474.

    Article  CAS  PubMed  Google Scholar 

  • Shigeyama, T., Watanabe, A., Tokuchi, K., Toh, S., Sakurai, N., Shibuya, N., & Kawakami, N. (2016). α-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana. Journal of Experimental Botany, 6719, 5615–5629.

    Article  CAS  Google Scholar 

  • Siddiqui, H., Hayat, S., & Bajguz, A. (2018a). Regulation of photosynthesis by brassinosteroids in plants. Acta Physiologiae Plantarum, 40, 59.

    Article  CAS  Google Scholar 

  • Siddiqui, H., Ahmed, K. B. M., & Hayat, S. (2018b). Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the performance of different components influencing the photosynthetic machinery in Brassica juncea L. Plant Physiology and Biochemistry, 29, 198–212.

    Article  CAS  Google Scholar 

  • Singh, A., Breja, P., Khurana, J. P., & Khurana, P. (2016). Wheat Brassinosteroid-Insensitive1 (TaBRI1) interacts with members of TaSERK gene family and cause early flowering and seed yield enhancement in Arabidopsis. PLoS One, 11, e0153273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steber, C. M., & McCourt, P. (2001). A role for brassinosteroids in germination in Arabidopsis. Plant Physiology, 125, 763–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, T. P. (2011). The molecular mechanism and evolution of the GA–GID1–DELLA signaling module in plants. Current Biology, 21, R338–R345.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Fan, X. Y., Cao, D. M., Tang, W., He, K., Zhu, J. Y., & Patil, S. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell, 19, 765–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szekeres, M. (2003). Brassinosteroid and systemin: Two hormones perceived by the same receptor. Trends in Plant Science, 8, 102–104.

    Article  CAS  PubMed  Google Scholar 

  • Szekeres, M., Németh, K., Koncz-Kálmán, Z., Mathur, J., Kauschmann, A., Altmann, T., & Koncz, C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 85, 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, K., Nakamura, Y., Asami, T., Yoshida, S., Matsuo, T., & Okamoto, S. (2003). Physiological roles of brassinosteroids in early growth of Arabidopsis: Brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. Journal of Plant Growth Regulation, 22, 259–271.

    Article  CAS  Google Scholar 

  • Tanaka, K., Asami, T., Yoshida, S., Nakamura, Y., Matsuo, T., & Okamoto, S. (2005). Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiology, 138(2), 1117–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, W., Deng, Z., Oses-Prieto, J. A., Suzuki, N., Zhu, S., Zhang, X., et al. (2008). Proteomics studies of brassinosteroid signal transduction using prefractionation and two-dimensional DIGE. Molecular & Cellular Proteomics, 7(4), 728–738.

    Article  CAS  Google Scholar 

  • Tian, Q., Stepaniants, S. B., Mao, M., Weng, L., Feetham, M. C., Doyle, M. J., & Goodlett, D. (2004). Integrated genomic and proteomic analyses of gene expression in mammalian cells. Molecular & Cellular Proteomics, 3, 960–969.

    Article  CAS  Google Scholar 

  • Todd, J., Post-Beittenmiller, D., & Jaworski, J. G. (1999). KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. The Plant Journal, 17, 119–130.

    Article  CAS  PubMed  Google Scholar 

  • Tong, H., Xiao, Y., Liu, D., Gao, S., Liu, L., Yin, Y., & Chu, C. (2014). Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. The Plant Cell, 26, 4376–4393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonge, R., Shaw, J., Middleton, B., Rowlinson, R., Rayner, S., Young, J., & Davison, M. (2001). Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics: International Education, 1, 377–396.

    Article  CAS  Google Scholar 

  • Tzivion, G., & Avruch, J. (2002). 14-3-3 proteins: Active cofactors in cellular regulation by serine/threonine phosphorylation. The Journal of Biological Chemistry, 277, 3061–3064.

    Article  CAS  PubMed  Google Scholar 

  • Ünlü, M., Morgan, M. E., & Minden, J. S. (1997). Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Electrophoresis, 18, 2071–2077.

    Article  PubMed  Google Scholar 

  • Vandenbussche, F., Callebert, P., Zadnikova, P., Benkova, E., & Van Der Straeten, D. (2013). Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components. American Journal of Botany, 100, 215–225.

    Article  CAS  PubMed  Google Scholar 

  • Varier, A., Vari, A. K., & Dadlani, M. (2010). The subcellular basis of seed priming. Current Science, 99, 450–456.

    CAS  Google Scholar 

  • Vert, G., Walcher, C. L., Chory, J., & Nemhauser, J. L. (2008). Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proceedings of the National Academy of Sciences, 105, 9829–9834.

    Article  CAS  Google Scholar 

  • Wang, Z. Y., & He, J. X. (2004). Brassinosteroid signal transduction–choices of signals and receptors. Trends in Plant Science, 9, 91–96.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z. Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., & Chory, J. (2002). Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell, 2, 505–513.

    Article  CAS  PubMed  Google Scholar 

  • Wang, K. L. C., Yoshida, H., Lurin, C., & Ecker, J. R. (2004). Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature, 428, 945.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F., Bai, M. Y., Deng, Z., Oses-Prieto, J. A., Burlingame, A. L., Lu, T., & Wang, Z. Y. (2010). Proteomic study identifies proteins involved in brassinosteroid regulation of rice growth. Journal of Integrative Plant Biology, 52, 1075–1085.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Dinler, B. S., Vignjevic, M., Jacobsen, S., & Wollenweber, B. (2015). Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars. Plant Science, 230, 33–50.

    Article  CAS  PubMed  Google Scholar 

  • Xia, X. J., Huang, L. F., Zhou, Y. H., Mao, W. H., Shi, K., Wu, J. X., & Yu, J. Q. (2009). Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 230, 1185.

    Article  CAS  PubMed  Google Scholar 

  • Xu, C., & Huang, B. (2010). Differential proteomic response to heat stress in thermal Agrostis scabra and heat-sensitive Agrostis stolonifera. Physiologia Plantarum, 139, 192–204.

    Article  CAS  PubMed  Google Scholar 

  • Xu, W., Purugganan, M. M., Polisensky, D. H., Antosiewicz, D. M., Fry, S. C., & Braam, J. (1995). Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. The Plant Cell, 7, 1555–1567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamuro, C., Ihara, Y., Wu, X., Noguchi, T., Fujioka, S., Takatsuto, S., et al. (2000). Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. The Plant Cell, 12(9), 1591–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, A., Wu, M., Yan, L., Hu, R., Ali, I., & Gan, Y. (2014). AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. PLoS One, 9, e85208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, G., & Komatsu, S. (2004). Microarray and proteomic analysis of brassinosteroid-and gibberellin-regulated gene and protein expression in rice. Genomics, Proteomics & Bioinformatics, 2(2), 77–83.

    Article  CAS  Google Scholar 

  • Yi, H. C., Joo, S., Nam, K. H., Lee, J. S., Kang, B. G., & Kim, W. T. (1999). Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Molecular Biology, 41, 443–454.

    Article  CAS  PubMed  Google Scholar 

  • Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., & Chory, J. (2005). A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 120, 249–259.

    Article  CAS  PubMed  Google Scholar 

  • Yu, X., Li, L., Zola, J., Aluru, M., Ye, H., Foudree, A., & Rodermel, S. (2011). A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. The Plant Journal, 65, 634–646.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, T., Fujioka, S., Takatsuto, S., Matsumoto, S., Gou, X., He, K., & Li, J. (2007). BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in Arabidopsis thaliana. The Plant Journal, 51, 220–233.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, A., Zhang, J., Zhang, J., Ye, N., Zhang, H., Tan, M., & Jiang, M. (2010a). Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant and Cell Physiology, 52, 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, M., Li, G., Huang, W., Bi, T., Chen, G., Tang, Z., Su, W., & Sun, W. (2010b). Proteomic study of Carissa spinarum in response to combined heat and drought stress. Proteomics, 10, 3117–3129.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Xu, Y., Xie, Z., Li, X., He, Z. H., & Peng, X. X. (2016). Association–dissociation of glycolate oxidase with catalase in rice: A potential switch to modulate intracellular H2O2 levels. Molecular Plant, 9, 737–748.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J., Wang, J., Li, X., Xia, X. J., Zhou, Y. H., Shi, K., & Yu, J. Q. (2014). H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. Journal of Experimental Botany, 65, 4371–4383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zúñiga-Sánchez, E., Soriano, D., Martínez-Barajas, E., Orozco-Segovia, A., & Gamboa-deBuen, A. (2014). BIIDXI, the At4g32460 DUF642 gene, is involved in pectin methyl esterase regulation during Arabidopsis thaliana seed germination and plant development. BMC Plant Biology, 14, 338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. Juan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddiqui, H., Sami, F., Juan, H.F., Hayat, S. (2019). Brassinosteroid Regulated Physiological Process: An Omics Perspective. In: Hayat, S., Yusuf, M., Bhardwaj, R., Bajguz, A. (eds) Brassinosteroids: Plant Growth and Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6058-9_10

Download citation

Publish with us

Policies and ethics