Skip to main content

The Brassinosteroids Family – Structural Diversity of Natural Compounds and Their Precursors

  • Chapter
  • First Online:
Book cover Brassinosteroids: Plant Growth and Development

Abstract

The members of the brassinosteroids family, defined as the 3-oxygenated (20β)-5α-cholestane-22α,23α-diols or their derived compounds isolated from plants, bearing additional alkyl or oxy substituents, are presented. Further, brassinosteroids are grouped into C27, C28, and C29 depending upon the number of carbons in their skeletons. Their structural variations occur due to the substitution in A and B-rings as well in the side chain. They occur in both free and conjugated forms to sugars, fatty and inorganic acids. Their presence in Algae, Bryophyta, Pteridophyta and Angiosperms indicates a ubiquitous distribution in the plant kingdom. The related brassinosteroids precursors, as well as their occurrence, are also presented. Brassinosteroids are considered as the 6th class of plant hormones which have been established after the discovery of brassinolide and other related compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, H. (1991). Rice-lamina inclination, endogenous levels in plant tissues and accumulation during pollen development of brassinosteroids. In H. G. Cutler, T. Yokota, & G. Adam (Eds.), Brassinosteroids: Chemistry, bioactivity and applications (pp. 200–207). Washington: American Chemical Society. https://doi.org/10.1021/bk-1991-0474.ch017.

    Chapter  Google Scholar 

  • Abe, H., Morishita, T., Uchiyama, M., Marumo, S., Munakata, K., Takatsuto, S., & Ikekawa, N. (1982). Identification of brassinolide-like substances in Chinese cabbage. Agricultural and Biological Chemistry, 46, 2609–2611.

    CAS  Google Scholar 

  • Abe, H., Morishita, T., Uchiyama, M., Takatsuto, S., Ikekawa, N., Ikeda, M., Sassa, T., Kitsuwa, T., & Marumo, S. (1983). Occurrence of three new brassinosteroids: Brassinone, (24S)-24-ethylbrassinone and 28-norbrassinolide, in higher plants. Experientia, 39, 351–353.

    Article  CAS  Google Scholar 

  • Abe, H., Morishita, T., Uchiyama, M., Takatsuto, S., & Ikekawa, N. (1984a). A new brassinolide-related steroid in the leaves of Thea sinensis. Agricultural and Biological Chemistry, 48, 2171–2172.

    CAS  Google Scholar 

  • Abe, H., Nakamura, K., Morishita, T., Uchiyama, M., Takatsuto, S., & Ikekawa, N. (1984b). Endogenous brassinosteroids of the rice plant: Castasterone and dolichosterone. Agricultural and Biological Chemistry, 48, 1103–1104.

    CAS  Google Scholar 

  • Abe, H., Honjo, C., Kyokawa, Y., Asakawa, S., Natsume, M., & Narushima, M. (1994). 3-Oxoteasterone and the epimerization of teasterone: Identification in lily anthers and Distylium racemosum leaves and its biotransformation into typhasterol. Bioscience, Biotechnology, and Biochemistry, 58, 986–989.

    Article  CAS  Google Scholar 

  • Abe, H., Takatsuto, S., Nakayama, M., & Yokota, T. (1995a). 28-Homotyphasterol, a new natural brassinosteroid from rice (Oryza sativa L.) bran. Bioscience, Biotechnology, and Biochemistry, 59, 176–178.

    Article  CAS  Google Scholar 

  • Abe, H., Takatsuto, S., Okuda, R., & Yokota, T. (1995b). Identification of castasterone, 6-deoxocastasterone, and typhasterol in the pollen of Robinia pseudo-acacia L. Bioscience, Biotechnology, and Biochemistry, 59, 309–310.

    Article  CAS  Google Scholar 

  • Antonchick, A. P., Schneider, B., Zhabinskii, V. N., Konstantinova, O. V., & Khripach, V. A. (2003). Biosynthesis of 2,3-epoxybrassinosteroids in seedlings of Secale cereale. Phytochemistry, 63, 771–776.

    Article  CAS  PubMed  Google Scholar 

  • Antonchick, A., Svatos, A., Schneider, B., Konstantinova, O. V., Zhabinskii, V. N., & Khripach, V. A. (2005). 2,3-epoxybrassinosteroids are intermediates in the biosynthesis of castasterone in seedlings of Secale cereale. Phytochemistry, 66, 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Antonchick, A. P., Svatos, A., Konstantinova, O. V., Zhabinskii, V. N., Khripach, V. A., & Schneider, B. (2006). Reversible conversion in the brassinosteroid quartet castasterone, brassinolide and their 3β-epimers. Zeitschrift für Naturforschung. B, A Journal of Chemical Sciences, 61, 1039–1044.

    Google Scholar 

  • Aremu, A. O., Stirk, W. A., Kulkarni, M. G., Tarkowska, D., Tureckova, V., Gruz, J., Subrtova, M., Pencik, A., Novak, O., Dolezal, K., Strnad, M., & Van Staden, J. (2015). Evidence of phytohormones and phenolic acids variability in garden-waste-derived vermicompost leachate, a well-known plant growth stimulant. Plant Growth Regulation, 75, 483–492.

    Article  CAS  Google Scholar 

  • Arima, M., Yokota, T., & Takahashi, N. (1984). Identification and quantification of brassinolide-related steroids in the insect gall and healthy tissues of the chestnut plant. Phytochemistry, 23, 1587–1591.

    Article  CAS  Google Scholar 

  • Asahina, M., Tamaki, Y., Sakamoto, T., Shibata, K., Nomura, T., & Yokota, T. (2014). Blue light-promoted rice leaf bending and unrolling are due to up-regulated brassinosteroid biosynthesis genes accompanied by accumulation of castasterone. Phytochemistry, 104, 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Asakawa, S., Abe, H., Kyokawa, Y., Nakamura, S., & Natsume, M. (1994). Teasterone 3-myristate: A new-type of brassinosteroid derivative in Lilium longiflorum anthers. Bioscience, Biotechnology, and Biochemistry, 58, 219–220.

    Article  CAS  PubMed  Google Scholar 

  • Asakawa, S., Abe, H., Nishikaa, N., Natsume, M., & Koshioka, M. (1996). Purification and identification of new acyl-conjugated teasterones in lily pollen. Bioscience, Biotechnology, and Biochemistry, 60, 1416–1420.

    Article  CAS  Google Scholar 

  • Baba, J., Yokota, T., & Takahashi, N. (1983). Brassinolide-related new bioactive steroids from Dolichos lablab seed. Agricultural and Biological Chemistry, 47, 659–661.

    CAS  Google Scholar 

  • Bajguz, A. (2009). Isolation and characterization of brassinosteroids from algal cultures of Chlorella vulgaris Beijerinck (Trebouxiophyceae). Journal of Plant Physiology, 166, 1946–1949.

    Google Scholar 

  • Bajguz, A., & Piotrowska-Niczyporuk, A. (2013). Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiology and Biochemistry, 71, 290–297.

    Google Scholar 

  • Bajguz, A., & Piotrowska-Niczyporuk, A. (2014). Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiology and Biochemistry, 80, 176–183.

    Google Scholar 

  • Bajguz, A., & Tretyn, A. (2003). The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry, 62, 1027–1046.

    Article  CAS  PubMed  Google Scholar 

  • Bancos, S., Nomura, T., Sato, T., Molnar, G., Bishop, G. J., Koncz, C., Yokota, T., Nagy, F., & Szekeres, M. (2002). Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiology, 130, 504–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bancos, S., Szatmari, A.-M., Castle, J., Kozma-Bognar, L., Shibata, K., Yokota, T., Bishop, G. J., Nagy, F., & Szekeres, M. (2006). Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis. Plant Physiology, 141, 299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardi, L., & Rosso, F. (2015). Extraction and characterization of brassinosteroids from residues of the biodiesel chain. Industrial Crops and Products, 75 (Part A), 24–28.

    Article  CAS  Google Scholar 

  • Benveniste, P. (2004). Biosynthesis and accumulation of sterols. Annual Review of Plant Biology, 55, 429–457.

    Article  CAS  PubMed  Google Scholar 

  • Best, N. B., Hartwig, T., Budka, J., Fujioka, S., Johal, G., Schulz, B., & Dilkes, B. P. (2016). nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis protein DWARF1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiology, 171, 2633–2647.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beste, L., Nahar, N., Dalman, K., Fujioka, S., Jonsson, L., Dutta, P. C., & Sitbon, F. (2011). Synthesis of hydroxylated sterols in transgenic Arabidopsis plants alters growth and steroid metabolism. Plant Physiology, 157, 426–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj, R., Kaur, S., Nagar, P. K., & Arora, H. K. (2007). Isolation and characterization of brassinosteroids from immature seeds of Camellia sinensis (O) Kuntze. Plant Growth Regulation, 53, 1–5.

    Article  CAS  Google Scholar 

  • Bishop, G. J., Nomura, T., Yokota, T., Harrison, K., Noguchi, T., Fujioka, S., Takatsuto, S., Jones, J. D. G., & Kamiya, Y. (1999). The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proceedings of the National Academy of Sciences, 96, 1761–1766.

    Article  CAS  Google Scholar 

  • Brosa, C., Capdevila, J. M., & Zamora, I. (1996). Brassinosteroids: A new way to define the structural requirements. Tetrahedron, 52, 2435–2448.

    Article  CAS  Google Scholar 

  • Carland, F., Fujioka, S., & Nelson, T. (2010). The sterol methyltransferases SMT1, SMT2, and SMT3 influence Arabidopsis development through nonbrassinosteroid products. Plant Physiology, 153, 741–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, M., Wang, R., Zhu, Y., Liu, M., Zhu, F., Xiao, J., & Chen, X. (2018). 4-Mercaptophenylboronic acid-modified spirally-curved mesoporous silica nanofibers coupled with ultra performance liquid chromatography-mass spectrometry for determination of brassinosteroids in plants. Food Chemistry, 263, 51–58.

    Article  CAS  PubMed  Google Scholar 

  • Choe, S., Fujioka, S., Noguchi, T., Takatsuto, S., Yoshida, S., & Feldmann, K. A. (2001). Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. The Plant Journal, 26, 573–582.

    Article  CAS  PubMed  Google Scholar 

  • Choe, S., Schmitz, R. J., Fujioka, S., Takatsuto, S., Lee, M. O., Yoshida, S., Feldmann, K. A., & Tax, F. E. (2002). Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3β-like kinase. Plant Physiology, 130, 1506–1515.

    Google Scholar 

  • Choi, Y. H., Inoue, T., Fujioka, S., Saimoto, H., & Sakurai, A. (1993). Identification of brassinosteroid-like active substances in plant-cell cultures. Bioscience, Biotechnology, and Biochemistry, 57, 860–861.

    Article  CAS  Google Scholar 

  • Choi, Y. H., Fujioka, S., Harada, A., Yokota, T., Takatsuto, S., & Sakurai, A. (1996). A brassinolide biosynthetic pathway via 6-deoxocastasterone. Phytochemistry, 43, 593–596.

    Article  CAS  Google Scholar 

  • Choi, Y. H., Fujioka, S., Nomura, T., Harada, A., Yokota, T., Takatsuto, S., & Sakurai, A. (1997). An alternative brassinolide biosynthetic pathway via late C-6 oxidation. Phytochemistry, 44, 609–613.

    Article  CAS  Google Scholar 

  • Choi, S., Cho, Y. H., Kim, K., Matsui, M., Son, S. H., Kim, S. K., Fujioka, S., & Hwang, I. (2013). BAT1, a putative acyltransferase, modulates brassinosteroid levels in Arabidopsis. The Plant Journal, 73, 380–391.

    Article  CAS  PubMed  Google Scholar 

  • Chung, H. Y., Fujioka, S., Choe, S., Lee, S., Lee, Y. H., Baek, N. I., & Chung, I. S. (2010). Simultaneous suppression of three genes related to brassinosteroid (BR) biosynthesis altered campesterol and BR contents, and led to a dwarf phenotype in Arabidopsis thaliana. Plant Cell Reports, 29, 397–402.

    Article  CAS  PubMed  Google Scholar 

  • Deng, T., Wu, D., Duan, C., & Guan, Y. (2016). Ultrasensitive quantification of endogenous brassinosteroids in milligram fresh plant with a quaternary ammonium derivatization reagent by pipette-tip solid-phase extraction coupled with ultra-high-performance liquid chromatography tandem mass spectrometry. Journal of Chromatography. A, 1456, 105–112.

    Article  CAS  PubMed  Google Scholar 

  • Dias, D. S., Ribeiro, L. M., Lopes, P. S. N., Munne-Bosch, S., & Garcia, Q. S. (2017). Hormonal profile and the role of cell expansion in the germination control of Cerrado biome palm seeds. Plant Physiology and Biochemistry, 118, 168–177.

    Article  CAS  PubMed  Google Scholar 

  • Ding, J., Mao, L. J., Wang, S. T., Yuan, B. F., & Feng, Y. Q. (2013a). Determination of endogenous brassinosteroids in plant tissues using solid-phase extraction with double layered cartridge followed by high-performance liquid chromatography-tandem mass spectrometry. Phytochemical Analysis, 24, 386–394.

    Article  CAS  PubMed  Google Scholar 

  • Ding, J., Mao, L. J., Yuan, B. F., & Feng, Y. Q. (2013b). A selective pretreatment method for determination of endogenous active brassinosteroids in plant tissues: Double layered solid phase extraction combined with boronate affinity polymer monolith microextraction. Plant Methods, 9, 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, J., Jiang, L., & Feng, Y. (2014a). An automatic and sensitive method for determination of endogenous brassinosteroids in plant tissues by an online trapping-in situ derivatization-ultra performance liquid chromatography-tandem mass spectrometry system. Chinese Journal of Chromatography, 32, 1094–1103.

    Article  CAS  PubMed  Google Scholar 

  • Ding, J., Wu, J. H., Liu, J. F., Yuan, B. F., & Feng, Y. Q. (2014b). Improved methodology for assaying brassinosteroids in plant tissues using magnetic hydrophilic material for both extraction and derivatization. Plant Methods, 10, 39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding, J., Mao, L. J., Guo, N., Yu, L., & Feng, Y. Q. (2016). Determination of endogenous brassinosteroids using sequential magnetic solid phase extraction followed by in situ derivatization/desorption method coupled with liquid chromatography-tandem mass spectrometry. Journal of Chromatography. A, 1446, 103–113.

    Article  CAS  PubMed  Google Scholar 

  • Dockter, C., Braumann, I., Gough, S. P., Lundqvist, J., Matyszczak, I., Muller, A. H., Zakhrabekova, S., Hansson, M., Gruszka, D., Kurowska, M., Marzec, M., Druka, A., Druka, I., Franckowiak, J., Janeczko, A., Lundqvist, U., Oklestkova, J., & Schulz, B. (2014). Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the “green revolution” genetic toolkit. Plant Physiology, 166, 1912–1927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franke, K., Nasher, A. K., & Schmidt, J. (2004). Constituents of Jatropha unicostata. Biochemical Systematics and Ecology, 32, 219–220.

    Article  CAS  Google Scholar 

  • Friebe, A., Volz, A., Schmidt, J., Voigt, B., Adam, G., & Schnabl, H. (1999). 24-Epi-secasterone and 24-epi-castasterone from Lychnis viscaria seeds. Phytochemistry, 52, 1607–1610.

    Article  CAS  Google Scholar 

  • Fujioka, S. (1999). Natural occurrence of brassinosteroids in the plant kingdom. In A. Sakurai, T. Yokota, & S. D. Clouse (Eds.), Brassinosteroids – Steroidal plant hormones (pp. 21–45). Tokyo: Springer.

    Google Scholar 

  • Fujioka, S., & Sakurai, A. (1997). Brassinosteroids. Natural Product Reports, 14, 1–10.

    Article  Google Scholar 

  • Fujioka, S., Inoue, T., Takatsuto, S., Yanagisawa, T., Yokota, T., & Sakurai, A. (1995a). Biological activities of biosynthetically-related congeners of brassinolide. Bioscience, Biotechnology, and Biochemistry, 59, 1973–1975.

    Article  CAS  Google Scholar 

  • Fujioka, S., Inoue, T., Takatsuto, S., Yanagisawa, T., Yokota, T., & Sakurai, A. (1995b). Identification of a new brassinosteroid, cathasterone, in cultured cells of Catharanthus roseus as a biosynthetic precursor of teasterone. Bioscience, Biotechnology, and Biochemistry, 59, 1543–1547.

    Article  CAS  Google Scholar 

  • Fujioka, S., Choi, Y. H., Takatsuto, S., Yokota, T., Li, J. M., Chory, J., & Sakurai, A. (1996). Identification of castasterone, 6-deoxocastasterone, typhasterol and 6-deoxotyphasterol from the shoots of Arabidopsis thaliana. Plant & Cell Physiology, 37, 1201–1203.

    Article  CAS  Google Scholar 

  • Fujioka, S., Li, J. M., Choi, Y. H., Seto, H., Takatsuto, S., Noguchi, T., Watanabe, T., Kuriyama, H., Yokota, T., Chory, J., & Sakurai, A. (1997). The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell, 9, 1951–1962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujioka, S., Noguchi, T., Takatsuto, S., & Yoshida, S. (1998a). Activity of brassinosteroids in the dwarf rice lamina inclination bioassay. Phytochemistry, 49, 1841–1848.

    Article  CAS  Google Scholar 

  • Fujioka, S., Noguchi, T., Yokota, T., Takatsuto, S., & Yoshida, S. (1998b). Brassinosteroids in Arabidopsis thaliana. Phytochemistry, 48, 595–599.

    Article  CAS  PubMed  Google Scholar 

  • Fujioka, S., Noguchi, T., Sekimoto, M., Takatsuto, S., & Yoshida, S. (2000a). 28-norcastasterone is biosynthesized from castasterone. Phytochemistry, 55, 97–101.

    Article  CAS  PubMed  Google Scholar 

  • Fujioka, S., Noguchi, T., Watanabe, T., Takatsuto, S., & Yoshida, S. (2000b). Biosynthesis of brassinosteroids in cultured cells of Catharanthus roseus. Phytochemistry, 53, 549–553.

    Article  CAS  PubMed  Google Scholar 

  • Fujioka, S., Takatsuto, S., & Yoshida, S. (2002). An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiology, 130, 930–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuta, N., Fujioka, S., Takatsuto, S., Yoshida, S., Fukuta, Y., & Nakayama, M. (2004). ‘Rinrei’, a brassinosteroid-deficient dwarf mutant of faba bean (Vicia faba). Physiologia Plantarum, 121, 506–512.

    Article  CAS  Google Scholar 

  • Fung, S., & Siddall, J. B. (1980). Stereoselective synthesis of brassinolide: A plant growth promoting steroidal lactone. Journal of the American Chemical Society, 102, 6580–6581.

    Article  CAS  Google Scholar 

  • Georges, P., Sylvestre, M., Ruegger, H., & Bourgeois, P. (2006). Ketosteroids and hydroxyketosteroids, minor metabolites of sugarcane wax. Steroids, 71, 647–652.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, P. G., Sasse, J. M., Yokota, T., & Cameron, D. W. (1995). 6-Deoxotyphasterol and 3-dehydro-6-deoxoteasterone, possible precursors to brassinosteroids in the pollen of Cupressus arizonica. Bioscience Biotechnology and Biochemistry, 59, 956–959.

    Article  CAS  Google Scholar 

  • Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Warthen, J. D., Steffens, G. L., Flippenanderson, J. L., & Cook, J. C. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 281, 216–217.

    Article  CAS  Google Scholar 

  • Gruszka, D., Szarejko, I., Janeczko, A., Dziurka, M., Pociecha, E., & Oklestkova, J. (2016). Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reaction to drought stress. Frontiers in Plant Science, 7, 1824.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guillen, M. D., & Manzanos, M. J. (2001). Some compounds detected for the first time in oak wood extracts by GC/MS. Sciences des Aliments, 21, 65–70.

    Article  CAS  Google Scholar 

  • Gupta, D., Bhardwaj, R., Nagar, P. K., & Kaur, S. (2004). Isolation and characterization of brassinosteroids from leaves of Camellia sinensis (L.) O. Kuntze. Plant Growth Regulation, 43, 97–100.

    Article  CAS  Google Scholar 

  • Habib, S. H., Ooi, S. E., Novak, O., Tarkowska, D., Rolcik, J., Dolezal, K., Syed-Alwee, S. S. R., Ho, C. L., & Namasivayam, P. (2012). Comparative mineral and hormonal analyses of wild type and TLS somaclonal variant derived from oil palm (Elaeis guineensis Jacq. var. tenera) tissue culture. Plant Growth Regulation, 68, 313–317.

    Article  CAS  Google Scholar 

  • Hai, T., Schneider, B., Porzel, A., & Adam, G. (1996). Metabolism of 24-epi-castasterone in cell suspension cultures of Lycopersicon esculentum. Phytochemistry, 41, 197–201.

    Article  CAS  Google Scholar 

  • Hartwig, T., Chuck, G. S., Fujioka, S., Klempien, A., Weizbauer, R., Potluri, D. P. V., Choe, S., Johal, G. S., & Schulz, B. (2011). Brassinosteroid control of sex determination in maize. Proceedings of the National Academy of Sciences, 108, 19814–19819.

    Article  CAS  Google Scholar 

  • He, J. X., Fujioka, S., Li, T. C., Kang, S. G., Seto, H., Takatsuto, S., Yoshida, S., & Jang, J. C. (2003). Sterols regulate development and gene expression in Arabidopsis. Plant Physiology, 131, 1258–1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou, S., Niu, H., Tao, Q., Wang, S., Gong, Z., Li, Z., Li, S., Weng, Y., Li, Z., Li, S., & Weng, Y. (2017). A mutant in the CsDET2 gene leads to a systemic brassinosteriod deficiency and super compact phenotype in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 130, 1693–1703.

    Article  CAS  PubMed  Google Scholar 

  • Huo, F., Wang, X., Han, Y., Bai, Y., Zhang, W., Yuan, H., & Liu, H. (2012). A new derivatization approach for the rapid and sensitive analysis of brassinosteroids by using ultra high performance liquid chromatography-electrospray ionization triple quadrupole mass spectrometry. Talanta, 99, 420–425.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, J. Y., Park, C. H., Namgung, H., & Kim, S. K. (2006). Identification of a new brassinosteroid, 23-dehydro-2-epicastasterone, from immature seeds of Phaseolus vulgaris. Journal of Plant Biology, 49, 409–412.

    Article  CAS  Google Scholar 

  • Hwang, J. Y., Park, C. H., & Kim, S. K. (2007). C-3 epimerization of 6-deoxocastasterone in Phaseolus vulgaris. Bulletin of the Korean Chemical Society, 28, 175–176.

    Article  CAS  Google Scholar 

  • Ikeda, M., Takatsuto, S., Sassa, T., Ikekawa, N., & Nukina, M. (1983). Identification of brassinolide and its analogs in chestnut gall tissue. Agricultural and Biological Chemistry, 47, 655–657.

    CAS  Google Scholar 

  • Ikekawa, N., & Takatsuto, S. (1984). Microanalysis of brassinosteroids in plants by gas chromatography/mass spectrometry. Journal of the Mass Spectrometry Society of Japan, 32, 55–70.

    Article  CAS  Google Scholar 

  • Ikekawa, N., Takatsuto, S., Kitsuwa, T., Saito, H., Morishita, T., & Abe, H. (1984). Analysis of natural brassinosteroids by gas chromatography and gas chromatography-mass spectrometry. Journal of Chromatography, 290, 289–302.

    Article  CAS  Google Scholar 

  • Ikekawa, N., Nishiyama, F., & Fujimoto, Y. (1988). Identification of 24-epibrassinolide in bee pollen of the broad bean, Vicia faba L. Chemical & Pharmaceutical Bulletin, 36, 405–407.

    Article  CAS  Google Scholar 

  • Ishiguro, M., Takatsuto, S., Morisaki, M., & Ikekawa, N. (1980). Synthesis of brassinolide, a steroidal lactone with plant-growth promoting activity. Journal of the Chemical Society, Chemical Communications, 20, 962–964.

    Article  Google Scholar 

  • Janeczko, A., & Swaczynova, J. (2010). Endogenous brassinosteroids in wheat treated with 24-epibrassinolide. Biologia Plantarum, 54, 477–482.

    Article  CAS  Google Scholar 

  • Jang, M. S., Han, K. S., & Kim, S. K. (2000). Identification of brassinosteroids and their biosynthetic precursors from seeds of pumpkin. Bulletin of the Korean Chemical Society, 21, 161–164.

    CAS  Google Scholar 

  • Joo, S. H., Kim, T. W., Son, S. H., Lee, W. S., Yokota, T., & Kim, S. K. (2012). Biosynthesis of a cholesterol-derived brassinosteroid, 28-norcastasterone, in Arabidopsis thaliana. Journal of Experimental Botany, 63, 1823–1833.

    Article  CAS  PubMed  Google Scholar 

  • Joo, S. H., Jang, M. S., Kim, M. K., Lee, J. E., & Kim, S. K. (2015). Biosynthetic relationship between C28-brassinosteroids and C29-brassinosteroids in rice (Oryza sativa) seedlings. Phytochemistry, 111, 84–90.

    Google Scholar 

  • Kanwar, M. K., Bhardwaj, R., Arora, P., Chowdhary, S. P., Sharma, P., & Kumar, S. (2012). Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere, 86, 41–49.

    Article  CAS  PubMed  Google Scholar 

  • Kanwar, M. K., Bhardwaj, R., Chowdhary, S. P., Arora, P., Sharma, P., & Kumar, S. (2013). Isolation and characterization of 24-epibrassinolide from Brassica juncea L. and its effects on growth, Ni ion uptake, antioxidant defense of Brassica plants and in vitro cytotoxicity. Acta Physiologiae Plantarum, 35, 1351–1362.

    Article  CAS  Google Scholar 

  • Kanwar, M. K., Poonam, & Bhardwaj, R. (2015). Arsenic induced modulation of antioxidative defense system and brassinosteroids in Brassica juncea L. Ecotoxicology and Environmental Safety, 115C, 119–125.

    Article  CAS  Google Scholar 

  • Kasote, D. M., Ghosh, R., Kim, J., Bae, H., Chung, J. Y., & Bae, I. (2016). Multiple reaction monitoring mode based liquid chromatography-mass spectrometry method for simultaneous quantification of brassinolide and other plant hormones involved in abiotic stresses. International Journal of Analytical Chemistry, 2016, 7214087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katsumata, T., Hasegawa, A., Fujiwara, T., Komatsu, T., Notomi, M., Abe, H., Natsume, M., & Kawaide, H. (2008). Arabidopsis CYP85A2 catalyzes lactonization reactions in the biosynthesis of 2-deoxy-7-oxalactone brassinosteroids. Bioscience, Biotechnology, and Biochemistry, 72, 2110–2117.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. K. (1991). Natural occurrences of brassinosteroids. In H. G. Cutler, T. Yokota, & G. Adam (Eds.), Brassinosteroids: Chemistry, bioactivity and appplications (pp. 26–35). Washington: American Chemical Society.

    Chapter  Google Scholar 

  • Kim, S. K., Yokota, T., & Takahashi, N. (1987). 25-Methyldolichosterone, a new brassinosteroid with a tertiary butyl group from immature seed of Phaseolus vulgaris. Agricultural and Biological Chemistry, 51, 2303–2305.

    CAS  Google Scholar 

  • Kim, S. K., Abe, H., Little, C. H. A., & Pharis, R. P. (1990). Identification of two brassinosteroids from the cambial region of Scots pine (Pinus silverstris) by gas chromatography-mass spectrometry, after detection using a dwarf rice lamina inclination bioassay. Plant Physiology, 94, 1709–1713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, T. W., Chang, S. C., Choo, J., Watanabe, T., Takatsuto, S., Takao, Y., Lee, J. S., Kim, S. Y., & Kim, S. K. (2000a). Brassinolide and [26,28-2H6]brassinolide are differently demethylated by loss of C-26 and C-28, respectively, in Marchantia polymorpha. Plant & Cell Physiology, 41, 1171–1174.

    Article  CAS  Google Scholar 

  • Kim, T. W., Han, K. S., Joo, S. H., Kang, M. W., & Kim, S. K. (2000b). Metabolism of brassinolide in suspension cultured cells of Phaseolus vulgaris. Bulletin of the Korean Chemical Society, 21, 1044–1046.

    CAS  Google Scholar 

  • Kim, T. W., Park, S. H., Han, K. S., Choo, J., Lee, J. S., Hwang, S., & Kim, S. K. (2000c). Occurrence of teasterone and typhasterol, and their enzymatic conversion in Phaseolus vulgaris. Bulletin of the Korean Chemical Society, 21, 373–374.

    CAS  Google Scholar 

  • Kim, Y. S., Sup, Y. H., Kim, T. W., Joo, S. H., & Kim, S. K. (2002). Identification of a brassinosteroid, castasterone from Marchantia polymorpha. Bulletin of the Korean Chemical Society, 23, 941–942.

    Article  CAS  Google Scholar 

  • Kim, G. T., Fujioka, S., Kozuka, T., Tax, F. E., Takatsuto, S., Yoshida, S., & Tsukaya, H. (2005a). CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. The Plant Journal, 41, 710–721.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y. S., Kim, T. W., & Kim, S. K. (2005b). Brassinosteroids are inherently biosynthesized in the primary roots of maize, Zea mays L. Phytochemistry, 66, 1000–1006. https://doi.org/10.1016/j.phytochem.2005.03.007.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. B., Kwon, M., Ryu, H., Fujioka, S., Takatsuto, S., Yoshida, S., An, C. S., Lee, I., Hwang, I., & Choe, S. (2006a). The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiology, 140, 548–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, Y. S., Joo, S. H., Hwang, J. Y., Park, C. H., & Kim, S. K. (2006b). Characterization of C29-brassinosteroids and their biosynthetic precursors in immature seeds of Phaseolus vulgaris. Bulletin of the Korean Chemical Society, 27, 1117–1118.

    Google Scholar 

  • Kim, Y. S., Kim, T. W., Chang, S. C., Pharis, R. P., Lee, J. S., Han, T. J., Takatsuto, S., Cheong, H., & Kim, S. K. (2006c). Regulation of castasterone level in primary roots of maize, Zea mays. Physiologia Plantarum, 127, 28–37.

    Article  CAS  Google Scholar 

  • Kim, B. K., Fujioka, S., Takatsuto, S., Tsujimoto, M., & Choe, S. (2008). Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice. Biochemical and Biophysical Research Communications, 374, 614–619.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M. K., Jang, M. S., Youn, J. H., Son, S. H., Lee, J. E., Kim, T. W., & Kim, S. K. (2015). Occurrence of phosphorylated castasterone in Arabidopsis thaliana and Lycopersicum esculentum. Physiologia Plantarum, 153, 58–67.

    Article  CAS  PubMed  Google Scholar 

  • Koka, C. V., Cerny, R. E., Gardner, R. G., Noguchi, T., Fujioka, S., Takatsuto, S., Yoshida, S., & Clouse, S. D. (2000). A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiology, 122, 85–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konstantinova, O. V., Antonchick, A. P., Oldham, N. J., Zhabinskii, V. N., Khripach, V. A., & Schneider, B. (2001). Analysis of underivatized brassinosteroids by HPLC/APCI-MS. Occurrence of 3-epibrassinolide in Arabidopsis thaliana. Collection of Czechoslovak Chemical Communications, 66, 1729–1734.

    Article  CAS  Google Scholar 

  • Lee, H. K., Kwon, M., Jeon, J. H., Fujioka, S., Kim, H. B., Park, S. Y., …Choe, S. (2006). An Arabidopsis short root and dwarfism mutant defines a novel locus that mediates both cell division and elongation. Journal of Plant Biology, 49, 61–69. https://doi.org/10.1007/BF03030789.

    Article  CAS  Google Scholar 

  • Lee, S. C., Hwang, J. Y., Joo, S. H., Son, S. H., Youn, J. H., & Kim, S. K. (2010). Biosynthesis and metabolism of dolichosterone in Arabidopsis thaliana. Bulletin of the Korean Chemical Society, 31, 3475–3478.

    Article  CAS  Google Scholar 

  • Lee, S. C., Joo, S. H., & Kim, S. K. (2011). Stereoisomers of castasterone, 3-epicastasterone and 2,3-diepicastasterone, in immature seeds of Phaseolus vulgaris. Journal of Plant Biology, 54, 10–14.

    Article  CAS  Google Scholar 

  • Li, H., Jiang, L., Youn, J. H., Sun, W., Cheng, Z., Jin, T., Ma, X., Guo, X., Wang, J., Zhang, X., Wu, F., Wu, C., Kim, S. K., & Wan, J. (2013). A comprehensive genetic study reveals a crucial role of CYP90D2/D2 in regulating plant architecture in rice (Oryza sativa). The New Phytologist, 200, 1076–1088.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Zhang, D., Sun, X., Ding, T., Lei, B., & Zhang, C. (2017). Structure-activity relationship of brassinosteroids and their agricultural practical usages. Steroids, 124, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Lv, T., Zhao, X. E., Zhu, S., Ji, Z., Chen, G., Sun, Z., Song, C., You, J., & Suo, Y. (2014). Development of an efficient HPLC fluorescence detection method for brassinolide by ultrasonic-assisted dispersive liquid-liquid microextraction coupled with derivatization. Chromatographia, 77, 1653–1660.

    Article  CAS  Google Scholar 

  • Maeda, E. (1965). Rate of lamina inclination in excised rice leaves. Physiologia Plantarum, 18, 813–827.

    Article  CAS  Google Scholar 

  • Mandava, N. B. (1988). Plant growth-promoting brassinosteroids. Annual Review of Plant Physiology and Plant Molecular Biology, 39, 23–52.

    Article  CAS  Google Scholar 

  • Mitchell, J. W., & Gregory, L. E. (1972). Enhancement of overall plant growth, a new response to brassins. Nature: New Biology, 239, 253–254.

    CAS  Google Scholar 

  • Mitchell, J. W., & Whitehead, M. R. (1941). Responses of vegetative parts of plants following application of extract of pollen of Zea mays. Botanical Gazette, 102, 770–791.

    Article  Google Scholar 

  • Mitchell, J. W., Skraggs, D. P., & Anderson, W. P. (1951). Plant growth stimulating hormones in immature bean seeds. Science, 114, 159–161.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, J. W., Mandava, N., Worley, J. F., Plimmer, J. R., & Smith, M. V. (1970). Brassins – a new family of plant hormones from rape pollen. Nature, 225, 1065–1066.

    Article  CAS  PubMed  Google Scholar 

  • Mori, K. (1980). Synthesis of a brassinolide analog with high plant growth promoting activity. Agricultural and Biological Chemistry, 44, 1211–1212.

    CAS  Google Scholar 

  • Mori, K., & Takeuchi, T. (1988). Synthesis of 25-methyldolichosterone, 25-methyl-2,3-diepidolichosterone, 25-methylcastasterone and 25-methylbrassinolide. Liebigs Annalen der Chemie, 1988, 815–818.

    Article  Google Scholar 

  • Mori, K., Sakakibara, M., Ichikawa, Y., Ueda, H., Okada, K., Umemura, T., Yabuta, G., Kuwahara, S., Kondo, Minobe, M., & Sogabe, A. (1982). Synthesis of (22S,23S)-homobrassinolide and brassinolide from stigmasterol. Tetrahedron, 38, 2099–2109.

    Article  CAS  Google Scholar 

  • Mori, M., Nomura, T., Ooka, H., Ishizaka, M., Yokota, T., Sugimoto, K., Okabe, K., Kajiwara, H., Satoh, K., Yamamoto, K., Hirochika, H., & Kikuchi, S. (2002). Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiology, 130, 1152–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morishita, T., Abe, H., Uchiyama, M., Marumo, S., Takatsuto, S., & Ikekawa, N. (1983). Evidence for plant growth promoting brassinosteroids in leaves of Thea sinensis. Phytochemistry, 22, 1051–1053.

    Article  CAS  Google Scholar 

  • Motegi, C., Takatsuto, S., & Gamoh, K. (1994). Identification of brassinolide and castasterone in the pollen of orange (Citrus sinensis Osbeck) by high-performance liquid chromatography. Journal of Chromatography A, 658, 27–30.

    Article  CAS  Google Scholar 

  • Nakamura, M., Satoh, T., Tanaka, S. I., Mochizuki, N., Yokota, T., & Nagatani, A. (2005). Activation of the cytochrome P450 gene, CYP72C1, reduces the levels of active brassinosteroids in vivo. Journal of Experimental Botany, 56, 833–840.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, A., Fujioka, S., Sunohara, H., Kamiya, N., Hong, Z., Inukai, Y., Miura, K., Takatsuto, S., Yoshida, S., Ueguchi-Tanaka, M., Hasegawa, Y., Kitano, H., & Matsuoka, M. (2006). The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiology, 140, 580–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Yoshida, S., Yuan, H., Feldmann, K. A., & Tax, F. E. (1999). Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiology, 121, 743–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Tax, F. E., Yoshida, S., & Feldmann, K. A. (2000). Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiology, 124, 201–209. https://doi.org/10.1104/pp.124.1.201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura, T., Nakayama, M., Reid, J. B., Takeuchi, Y., & Yokota, T. (1997). Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiology, 113, 31–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura, T., Sato, T., Bishop, G. J., Kamiya, Y., Takatsuto, S., & Yokota, T. (2001). Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis. Phytochemistry, 57, 171–178.

    Article  CAS  PubMed  Google Scholar 

  • Nomura, T., Jager, C. E., Kitasaka, Y., Takeuchi, K., Fukami, M., Yoneyama, K., Matsushita, Y., Nyunoya, H., Takatsuto, S., Fujioka, S., Smith, J. J., Kerckhoffs, L. H. J., Reid, J. B., & Yokota, T. (2004). Brassinosteroid deficiency due to truncated steroid 5a-reductase causes dwarfism in the lk mutant of pea. Plant Physiology, 135, 2220–2229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura, T., Kushiro, T., Yokota, T., Kamiya, Y., Bishop, G. J., & Yamaguchi, S. (2005). The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. The Journal of Biological Chemistry, 280, 17873–17879.

    Article  CAS  PubMed  Google Scholar 

  • Nomura, T., Ueno, M., Yamada, Y., Takatsuto, S., Takeuchi, Y., & Yokota, T. (2007). Roles of brassinosteroids and related mRNAs in pea seed growth and germination. Plant Physiology, 143, 1680–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi, T., Nomura, T., Watanabe, B., Ohta, D., Yokota, T., Miyagawa, H., Sakata, K., & Mizutani, M. (2006a). Tomato cytochrome P450 CYP734A7 functions in brassinosteroid catabolism. Phytochemistry, 67, 1895–1906.

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi, T., Szatmari, A.-M., Watanabe, B., Fujita, S., Bancos, S., Koncz, C., Lafos, M., Shibata, K., Yokota, T., Sakata, K., Szekeres, M., & Mizutani, M. (2006b). C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell, 18, 3275–3288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi, T., Godza, B., Watanabe, B., Fujioka, S., Hategan, L., Ide, K., Shibata, K., Yokota, T., Szekeres, M., & Mizutani, M. (2012). CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. The Journal of Biological Chemistry, 287, 31551–31560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikawa, A., Otsuka, T., Nakabayashi, R., Jikumaru, Y., Isuzugawa, K., Murayama, H., Saito, K., & Shiratake, K. (2015). Metabolic profiling of developing pear fruits reveals dynamic variation in primary and secondary metabolites, including plant hormones. PLoS One, 10, 0131408.

    Google Scholar 

  • Oklestkova, J., Tarkowska, D., Eyer, L., Elbert, T., Marek, A., Smrzova, Z., …Strnad, M. (2017). Immunoaffinity chromatography combined with tandem mass spectrometry: A new tool for the selective capture and analysis of brassinosteroid plant hormones. Talanta, 170, 432–440. https://doi.org/10.1016/j.talanta.2017.04.044.

    Article  CAS  PubMed  Google Scholar 

  • Pachthong, C., Supyen, D., Buddhasukh, D., & Jatisatienr, A. (2006). Isolation and characterization of brassinolide and castasterone in the pollen of pumpkin. Chiang Mai Journal of Science, 33, 95–101.

    CAS  Google Scholar 

  • Pachthong, C., Supyen, D., Buddhasukh, D., & Jatisatien, A. (2007). Isolation and characterization of brassinolide and castasterone from mature seeds of smooth loofah (Luffa cylindrica (L.) M.J. Roem). ACGC Chemical Research Communications, 21, 4–8.

    CAS  Google Scholar 

  • Pan, J., Hu, Y., Liang, T., & Li, G. (2012). Preparation of solid-phase microextraction fibers by in-mold coating strategy for derivatization analysis of 24-epibrassinolide in pollen samples. Journal of Chromatography. A, 1262, 49–55.

    Article  CAS  PubMed  Google Scholar 

  • Pan, J., Huang, Y., Liu, L., Hu, Y., & Li, G. (2013). A novel fractionized sampling and stacking strategy for online hyphenation of solid-phase-based extraction to ultra-high performance liquid chromatography for ultrasensitive analysis. Journal of Chromatography. A, 1316, 29–36.

    Article  CAS  PubMed  Google Scholar 

  • Park, K. H., Yokota, T., Sakurai, A., & Takahashi, N. (1987). Occurrence of castasterone, brassinolide and methyl 4-chloroindole-3-acetate in immature Vicia faba seeds. Agricultural and Biological Chemistry, 51, 3081–3086.

    CAS  Google Scholar 

  • Park, K. H., Saimoto, H., Nakagawa, S., Sakurai, A., Yokota, T., Takahashi, N., & Shono, K. (1989). Occurrence of brassinolide and castasterone in crown gall cells of Catharanthus roseus. Agricultural and Biological Chemistry, 53, 805–811.

    CAS  Google Scholar 

  • Park, K. H., Park, J. D., Hyun, K. H., Nakayama, M., & Yokota, T. (1994a). Brassinosteroids and monoglycerides in immature seeds of Cassia tora as the active principles in the rice lamina inclination bioassay. Bioscience, Biotechnology, and Biochemistry, 58, 1343–1344.

    Article  CAS  Google Scholar 

  • Park, K. H., Park, J. D., Hyun, K. H., Nakayama, M., & Yokota, T. (1994b). Brassinosteroids and monoglycerides with brassinosteroid like activity in immature seeds of Oryza sativa and Perilla frutescens and in cultured cells of Nicotiana tabacum. Bioscience, Biotechnology, and Biochemistry, 58, 2241–2243.

    Article  CAS  Google Scholar 

  • Park, C. H., Yokota, T., & Kim, S. K. (2009a). 2-Deoxy-25-methyldolichosterone and 3-epi-2-deoxy-25-methyldolichosterone in immature seeds of Phaseolus vulgaris. Bulletin of the Korean Chemical Society, 30, 2422–2424.

    Article  CAS  Google Scholar 

  • Park, C. H., Yokota, T., & Kim, S. K. (2009b). Characterization of 2-epicastasterone from immature seeds of Phaseolus vulgaris. Bulletin of the Korean Chemical Society, 30, 2193–2194.

    Article  CAS  Google Scholar 

  • Pereira-Netto, A. B., Roessner, U., Fujioka, S., Bacic, A., Asami, T., Yoshida, S., & Clouse, S. D. (2009). Shooting control by brassinosteroids: Metabolomic analysis and effect of brassinazole on Malus prunifolia, the Marubakaido apple rootstock. Tree Physiology, 29, 607–620.

    Article  CAS  PubMed  Google Scholar 

  • Pinto, F. C., Ascenso, J. R., & Ferreira, M. J. U. (2002). A short side chain cycloartane and other triterpenes from Euphorbia tuckeyana. In A. P. Rauter, F. B. Palma, J. Justino, M. E. Araújo, & S. Pina dos Santos (Eds.), Natural products in the new millennium: prospects and industrial application (pp. 73–79).

    Chapter  Google Scholar 

  • Plattner, R. D., Taylor, S. L., & Grove, M. D. (1986). Detection of brassinolide and castasterone in Alnus glutinosa (European alder) pollen by mass spectrometry/mass spectrometry. Journal of Natural Products, 49, 540–545.

    Article  CAS  Google Scholar 

  • Pociecha, E., Dziurka, M., Oklestkova, J., & Janeczko, A. (2016). Brassinosteroids increase winter survival of winter rye (Secale cereale L.) by affecting photosynthetic capacity and carbohydrate metabolism during the cold acclimation process. Plant Growth Regulation, 80, 127–135.

    Article  CAS  Google Scholar 

  • Polko, J. K., Pierik, R., van Zanten, M., Tarkowska, D., Strnad, M., Voesenek, L. A. C. J., & Peeters, A. J. M. (2013). Ethylene promotes hyponastic growth through interaction with ROTUNDIFOLIA3/CYP90C1 in Arabidopsis. Journal of Experimental Botany, 64, 613–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poppenberger, B., Fujioka, S., Soeno, K., George, G. L., Vaistij, F. E., Hiranuma, S., Seto, H., Takatsuto, S., Adam, G., Yoshida, S., & Bowles, D. (2005). The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proceedings of the National Academy of Sciences, 102, 15253–15258.

    Article  CAS  Google Scholar 

  • Pradko, A. G., Litvinovskaya, R. P., Sauchuk, A. L., Drach, S. V., Baranovsky, A. V., Zhabinskii, V. N., Mirantsova, T. V., & Khripach, V. A. (2015). A new ELISA for quantification of brassinosteroids in plants. Steroids, 97, 78–86.

    Article  CAS  PubMed  Google Scholar 

  • Qian, W., Wu, C., Fu, Y., Hu, G., He, Z., & Liu, W. (2017). Novel rice mutants overexpressing the brassinosteroid catabolic gene CYP734A4. Plant Molecular Biology, 93, 197–208.

    Article  CAS  PubMed  Google Scholar 

  • Ren, C. G., Chen, Y., & Dai, C. C. (2014). Cross-talk between calcium-calmodulin and brassinolide for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. Journal of Plant Growth Regulation, 33, 285–294.

    Article  CAS  Google Scholar 

  • Roh, H., Jeong, C. W., Fujioka, S., Kim, Y. K., Lee, S., Ahn, J. H., Choi, Y. D., & Lee, J. S. (2012). Genetic evidence for the reduction of brassinosteroid levels by a BAHD acyltransferase-like protein in Arabidopsis. Plant Physiology, 159, 696–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouleau, M., Marsolais, F., Richard, M., Nicolle, L., Voigt, B., Adam, G., & Varin, L. (1999). Inactivation of brassinosteroid biological activity by a salicylate-inducible steroid sulfotransferase from Brassica napus. The Journal of Biological Chemistry, 274, 20925–20930.

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara, M., & Mori, K. (1982). Facile synthesis of (22R,23R)-homobrassinolide. Agricultural and Biological Chemistry, 46, 2769–2779.

    CAS  Google Scholar 

  • Sakakibara, M., Okada, K., Ichikawa, Y., & Mori, K. (1982). Synthesis of brassinolide, a plant-growth-promoting steroidal lactone. Heterocycles, 17, 301–304.

    Article  CAS  Google Scholar 

  • Sakamoto, T., Morinaka, Y., Ohnishi, T., Sunohara, H., Fujioka, S., Ueguchi-Tanaka, M., Mizutani, M., Sakata, K., Takatsuto, S., Yoshida, S., Tanaka, H., Kitano, H., & Matsuoka, M. (2006). Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology, 24, 105–109.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, T., Ohnishi, T., Fujioka, S., Watanabe, B., & Mizutani, M. (2012). Rice CYP90D2 and CYP90D3 catalyze C-23 hydroxylation of brassinosteroids in vitro. Plant Physiology and Biochemistry, 58, 220–226.

    Article  CAS  PubMed  Google Scholar 

  • Sasse, J. M., Griffiths, P. G., Gaff, D. F., Yokota, T., & Cameron, D. W. (1998). Brassinosteroids of a ressurrection grass. In Abstracts of the 16th international conference on plant growth substances, Chiba, Japan (pp. 13–17).

    Google Scholar 

  • Schmidt, J., Yokota, T., Adam, G., & Takahashi, N. (1991). Castasterone and brassinolide in Raphanus sativus seeds. Phytochemistry, 30, 364–365.

    Article  CAS  Google Scholar 

  • Schmidt, J., Spengler, B., Yokota, T., & Adam, G. (1993a). The cooccurrence of 24-epi-castasterone and castasterone in seeds of Ornithopus sativus. Phytochemistry, 32, 1614–1615.

    Article  CAS  Google Scholar 

  • Schmidt, J., Tokota, T., Spengler, B., & Adam, G. (1993b). 28-Homoteasterone, a naturally occurring brassinosteroid from seeds of Raphanus sativus. Phytochemistry, 34, 391–392.

    Article  CAS  Google Scholar 

  • Schmidt, J., Kuhnt, C., & Adam, G. (1994). Brassinosteroids and sterols from seeds of Beta vulgaris. Phytochemistry, 36, 175–177.

    Article  CAS  Google Scholar 

  • Schmidt, J., Himmelreich, U., & Adam, G. (1995a). Brassinosteroids, sterols and lup-20(29)-en-2a,3b,28-triol from Rheum rhabarbarum. Phytochemistry, 40, 527–531.

    Article  CAS  Google Scholar 

  • Schmidt, J., Spengler, B., Yokota, T., Nakayama, M., Takatsuto, S., Voigt, B., & Adam, G. (1995b). Secasterone, the first naturally occurring 2,3-epoxybrassinosteroid from Secale cereale. Phytochemistry, 38, 1095–1097.

    Article  CAS  Google Scholar 

  • Schmidt, J., Voigt, B., & Adam, G. (1995c). 2-Deoxybrassinolide – a naturally occurring brassinosteroid from Apium graveolens. Phytochemistry, 40, 1041–1043.

    Article  CAS  Google Scholar 

  • Schmidt, J., Boehme, F., & Adam, G. (1996). 24-epibrassinolide from Gypsophila perfoliata. Zeitschrift fur Naturforschung C: Journal of Biosciences, 51, 897–899.

    Article  CAS  Google Scholar 

  • Schmidt, J., Altmann, T., & Adam, G. (1997). Brassinosteroids from seeds of Arabidopsis thaliana. Phytochemistry, 45, 1325–1327.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, J., Porzel, A., & Adam, G. (1998). Brassinosteroids and a pregnane glucoside from Daucus carota. Phytochemical Analysis, 9, 14–20.

    Article  CAS  Google Scholar 

  • Schneider, J. A., Yoshihara, K., Nakanishi, K., & Kato, N. (1983). Typhasterol (2-deoxycastasterone) – a new plant growth regulator from cat-tail pollen. Tetrahedron Letters, 24, 3859–3860.

    Article  CAS  Google Scholar 

  • Schneider, K., Breuer, C., Kawamura, A., Jikumaru, Y., Hanada, A., Fujioka, S., Ichikawa, T., Kondou, Y., Matsui, M., Kamiya, Y., Yamaguchi, S., & Sugimoto, K. (2012). Arabidopsis PIZZA has the capacity to acylate brassinosteroids. PLoS One, 7, 46805.

    Article  CAS  Google Scholar 

  • Sekimoto, H., Hoshi, M., Nomura, T., & Yokota, T. (1997). Zinc deficiency affects the levels of endogenous gibberellins in Zea mays L. Plant & Cell Physiology, 38, 1087–1090.

    Article  CAS  Google Scholar 

  • Shahnejat-Bushehri, S., Tarkowska, D., Sakuraba, Y., & Balazadeh, S. (2016). Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling. Nature Plants, 2, 16013.

    Article  CAS  PubMed  Google Scholar 

  • Shim, J. H., Kim, I. S., Lee, K. B., Suh, Y. T., & Morgan, E. D. (1996). Determination of brassinolide by HPLC equipped with fluorescence detector in rice (Oriza sativa L.). Journal of the Korean Chemical Society, 39, 84–88.

    CAS  Google Scholar 

  • Shimada, K., Abe, H., Takatsuto, S., Nakayama, M., & Yokota, T. (1996). Identification of castasterone and teasterone from seeds of canary grass (Phalaris canariensis). Recent Research and Development in Chemistry and Pharmaceutical Sciences, 1, 1–5.

    Google Scholar 

  • Shimada, Y., Goda, H., Nakamura, A., Takatsuto, S., Fujioka, S., & Yoshida, S. (2003). Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiology, 131, 287–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, A. P., Fridman, Y., Friedlander-Shani, L., Tarkowska, D., Strnad, M., & Savaldi-Goldstein, S. (2014). Activity of the brassinosteroid transcription factors BRASSINAZOLE RESISTANT1 and BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1/BRASSINAZOLE RESISTANT2 blocks developmental reprogramming in response to low phosphate availability. Plant Physiology, 166, 678–688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soeno, K., Asakawa, S., Natsume, M., & Abe, H. (2000a). Reversible conversion between teasterone and its ester conjugates in lily cell cultures. Journal of Pesticide Science, 25, 117–122.

    Article  CAS  Google Scholar 

  • Soeno, K., Kyokawa, Y., Natsume, M., & Abe, H. (2000b). Teasterone-3-O-β-D-glucopyranoside, a new conjugated brassinosteroid metabolite from lily cell suspension cultures and its identification in lily anthers. Bioscience, Biotechnology, and Biochemistry, 64, 702–709.

    Google Scholar 

  • Soeno, K., Fujioka, S., Hiranuma, S., Seto, H., & Yoshida, S. (2006). Metabolic conversion of castasterone and brassinolide into their glucosides in higher plants. Journal of Plant Growth Regulation, 25, 195–202.

    Article  CAS  Google Scholar 

  • Son, S. H., Youn, J. H., Kim, M. K., & Kim, S. K. (2013). C-26 demethylation of brassinosteroids in Arabidopsis thaliana. Bulletin of the Korean Chemical Society, 34, 259–262.

    Article  CAS  Google Scholar 

  • Sondhi, N., Bhardwaj, R., Kaur, S., Kumar, N., & Singh, B. (2008). Isolation of 24-epibrassinolide from leaves of Aegle marmelos and evaluation of its antigenotoxicity employing Allium cepa chromosomal aberration assay. Plant Growth Regulation, 54, 217–224.

    Article  CAS  Google Scholar 

  • Sondhi, N., Bhardwaj, R., Kaur, S., Chande, M., Kumar, N., & Singh, B. (2010). Inhibition of H2O2-induced DNA damage in single cell gel electrophoresis assay (comet assay) by castasterone isolated from leaves of Centella asiatica. Health, 2, 595–602.

    Article  Google Scholar 

  • Spengler, B., Schmidt, J., Voigt, B., & Adam, G. (1995). 6-Deoxo-28-norcastasterone and 6-deoxo-24-epicastasterone – 2 new brassinosteroids from Ornithopus sativus. Phytochemistry, 40, 907–910.

    Article  CAS  Google Scholar 

  • Stirk, W. A., Balint, P., Tarkowska, D., Novak, O., Strnad, M., Oerdoeg, V., & van Staden, J. (2013). Hormone profiles in microalgae: Gibberellins and brassinosteroids. Plant Physiology and Biochemistry, 70, 348–353.

    Article  CAS  PubMed  Google Scholar 

  • Stirk, W. A., Balint, P., Tarkowska, D., Novak, O., Maroti, G., Ljung, K., Tureckova, V., Strnad, M., Oerdoeg, V., & van Staden, J. (2014a). Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). Plant Physiology and Biochemistry, 79, 66–76.

    Article  CAS  PubMed  Google Scholar 

  • Stirk, W. A., Tarkowska, D., Turecova, V., Strnad, M., & van Staden, J. (2014b). Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. Journal of Applied Phycology, 26, 561–567.

    Google Scholar 

  • Stirk, W. A., Balint, P., Tarkowska, D., Strnad, M., van Staden, J., & Ordog, V. (2018). Endogenous brassinosteroids in microalgae exposed to salt and low temperature stress. European Journal of Phycology, 53(3), 273–279. https://doi.org/10.1080/09670262.2018.1441447.

    Article  CAS  Google Scholar 

  • Suzuki, Y., Yamaguchi, I., & Takahashi, N. (1985). Identification of castasterone and brassinone from immature seeds of Pharbitis purpurea. Agricultural and Biological Chemistry, 49, 49–54.

    CAS  Google Scholar 

  • Suzuki, Y., Yamaguchi, I., Yokota, T., & Takahashi, N. (1986). Identification of castasterone, typhasterol and teasterone from the pollen of Zea mays. Agricultural and Biological Chemistry, 50, 3133–3138.

    CAS  Google Scholar 

  • Suzuki, H., Fujioka, S., Takatsuto, S., Yokota, T., Murofushi, N., & Sakurai, A. (1993a). Biosynthesis of brassinolide from castasterone in cultured cells of Catharanthus roseus. Journal of Plant Growth Regulation, 12, 101–106.

    Article  CAS  Google Scholar 

  • Suzuki, H., Kim, S. K., Takahashi, N., & Yokota, T. (1993b). Metabolism of castasterone and brassinolide in mung bean explant. Phytochemistry, 33, 1361–1367.

    Article  CAS  Google Scholar 

  • Suzuki, H., Fujioka, S., Takatsuto, S., Yokota, T., Murofushi, N., & Sakurai, A. (1994a). Biosynthesis of brassinolide from teasterone via typhasterol and castasterone in cultured cells of Catharanthus roseus. Journal of Plant Growth Regulation, 13, 21–26.

    Article  CAS  Google Scholar 

  • Suzuki, H., Fujioka, S., Yokota, T., Murofushi, N., & Sakurai, A. (1994b). Identification of brassinolide, castasterone, typhasterol from the pollen of Lilium elegans. Bioscience, Biotechnology, and Biochemistry, 58, 2075–2076.

    Article  CAS  Google Scholar 

  • Suzuki, H., Inoue, T., Fujioka, S., Takatsuto, S., Yanagisawa, T., Yokota, T., Murofushi, N., & Sakurai, A. (1994c). Possible involvement of 3-dehydroteasterone in the conversion of teasterone to typhasterol in cultured cells of Catharanthus roseus. Bioscience, Biotechnology, and Biochemistry, 58, 1186–1188.

    Article  CAS  Google Scholar 

  • Suzuki, H., Fujioka, S., Takatsuto, S., Yokota, T., Murofushi, N., & Sakurai, A. (1995). Biosynthesis of brassinosteroids in seedlings of Catharanthus roseus, Nicotiana tabacum, and Oryza sativa. Bioscience, Biotechnology, and Biochemistry, 59, 168–172.

    Article  CAS  Google Scholar 

  • Suzuki, Y., Saso, K., Fujioka, S., Yoshida, S., Nitasaka, E., Nagata, S., Nagasawa, H., Takatsuto, S., & Yamaguchi, I. (2003). A dwarf mutant strain of Pharbitis nil, Uzukobito (kobito), has defective brassinosteroid biosynthesis. The Plant Journal, 36, 401–410.

    Article  CAS  PubMed  Google Scholar 

  • Swaczynova, J., Novak, O., Hauserova, E., Fuksova, K., Sisa, M., Kohout, L., & Strnad, M. (2007). New techniques for the estimation of naturally occurring brassinosteroids. Journal of Plant Growth Regulation, 26, 1–14.

    Article  CAS  Google Scholar 

  • Takahashi, N., Yokota, T., Kin, S. (1988). Isolation of brassinosteroids from bean seeds, as plant growth regulators. Japanese Kokkai Tokkyo Koho JP63255297A

    Google Scholar 

  • Takahashi, N., Nakazawa, M., Shibata, K., Yokota, T., Ishikawa, A., Suzuki, K., Kawashima, M., Ichikawa, T., Shimada, H., & Matsui, M. (2005). shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene, has altered brassinosteroid levels. The Plant Journal, 42, 13–22.

    Article  CAS  PubMed  Google Scholar 

  • Takatsuto, S. (1994). Brassinosteroids: Distribution in plants, bioassays and microanalysis by gas chromatography-mass spectrometry. Journal of Chromatography. A, 658, 3–15.

    Article  CAS  Google Scholar 

  • Takatsuto, S., & Makiuchi, K. (2000). Identification of castasterone and sterols in the seeds of Lagenaria siceraria. Journal of Japan Oil Chemists’ Society, 49, 169–171.

    Article  CAS  Google Scholar 

  • Takatsuto, S., Ying, B., Morisaki, M., & Ikekawa, N. (1981). Synthesis of 28-norbrassinolide. Chemical & Pharmaceutical Bulletin, 29, 903–905.

    Article  CAS  Google Scholar 

  • Takatsuto, S., Ying, B., Morisaki, M., & Ikekawa, N. (1982). Microanalysis of brassinolide and its analogs by gas chromatography and gas chromatography-mass spectrometry. Journal of Chromatography, 239, 233–241.

    Article  CAS  Google Scholar 

  • Takatsuto, S., Yazawa, N., Ikekawa, N., Morishita, T., & Abe, H. (1983a). Synthesis of (24R)-28-homobrassinolide analogs and structure-activity relationships of brassinosteroids in the rice-lamina inclination test. Phytochemistry, 22, 1393–1397.

    Google Scholar 

  • Takatsuto, S., Yazawa, N., Ikekawa, N., Takematsu, T., Takeuchi, Y., & Koguchi, M. (1983b). Structure-activity relationship of brassinosteroids. Phytochemistry, 22, 2437–2441.

    Article  CAS  Google Scholar 

  • Takatsuto, S., Ikekawa, N., Morishita, T., & Abe, H. (1987). Structure-activity relationship of brassinosteroids with respect to the A/B-ring functional groups. Chemical & Pharmaceutical Bulletin, 35, 211–216.

    Article  CAS  Google Scholar 

  • Takatsuto, S., Yokota, T., Omote, K., Gamoh, K., & Takahashi, N. (1989). Identification of brassinolide, castasterone and norcastasterone (brassinone) in sunflower (Helianthus annuus L.) pollen. Agricultural and Biological Chemistry, 53, 2177–2180.

    CAS  Google Scholar 

  • Takatsuto, S., Abe, H., & Gamoh, K. (1990a). Evidence for brassinosteroids in strobilus of Equisetum arvense L. Agricultural and Biological Chemistry, 54, 1057–1059.

    Article  CAS  Google Scholar 

  • Takatsuto, S., Omote, K., Gamoh, K., & Ishibashi, M. (1990b). Identification of brassinolide and castasterone in buckwheat (Fagopyrum esculentum Moench) pollen. Agricultural and Biological Chemistry, 54, 757–762.

    CAS  Google Scholar 

  • Takatsuto, S., Abe, H., Shimada, K., Nakayama, M., & Yokota, T. (1996a). Identification of teasterone and 4-desmethylsterols in the seeds of Ginkgo biloba L. Journal of Japan Oil Chemists’ Society, 45, 1349–1351.

    Article  CAS  Google Scholar 

  • Takatsuto, S., Abe, H., Yokota, T., Shimada, K., & Gamoh, K. (1996b). Identification of castasterone and teasterone in seeds of Cannabis sativa L. Journal of Japan Oil Chemists’ Society, 45, 871–873.

    Article  CAS  Google Scholar 

  • Takatsuto, S., Tsunokawa, E., Noguchi, T., & Fujioka, S. (1999). Identification of sterols and castasterone in the seeds of Amaranthus inamoenus. Journal of Japan Oil Chemists’ Society, 48, 347–349.

    Article  CAS  Google Scholar 

  • Tamiru, M., Takagi, H., Abe, A., Yokota, T., Kanzaki, H., Okamoto, H., Saitoh, H., Takahashi, H., Fujisaki, K., Oikawa, K., Uemura, A., Natsume, S., Jikumaru, Y., Matsuura, H., Umemura, K., Terry, M. J., & Terauchi, R. (2016). A chloroplast-localized protein LESION AND LAMINA BENDING affects defence and growth responses in rice. The New Phytologist, 210, 1282–1297.

    Article  CAS  PubMed  Google Scholar 

  • Tanabe, S., Ashikari, M., Fujioka, S., Takatsuto, S., Yoshida, S., Yano, M., Yoshimura, A., Kitano, H., Matsuoka, M., Fujisawa, Y., Kato, H., & Iwasaki, Y. (2005). A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 17, 776–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, P. E., Spuck, K., Smith, P. M., Sasse, J. M., Yokota, T., Griffiths, P. G., & Cameron, D. W. (1993). Detection of brassinosteroids in pollen of Lolium perenne L. by immunocytochemistry. Planta, 189, 91–100.

    CAS  Google Scholar 

  • Thompson, M. J., Mandava, N., Flippen-Anderson, J. L., Worley, J. F., Dutky, S. R., Robbins, W. E., & Lusby, W. (1979). Synthesis of brassino steroids: New plant-growth-promoting steroids. The Journal of Organic Chemistry, 44, 5002–5004.

    Google Scholar 

  • Thompson, M. J., Mandava, N. B., Meudt, W. J., Lusby, W. R., & Spaulding, D. W. (1981). Synthesis and biological activity of brassinolide and its 22β,23β-isomer: Novel plant growth-promoting steroids. Steroids, 38, 567–580.

    Google Scholar 

  • Thompson, M. J., Meudt, W. J., Mandava, N. B., Dutky, S. R., Lusby, W. R., & Spaulding, D. W. (1982). Synthesis of brassinosteroids and relationship of structure to plant growth-promoting effects. Steroids, 39, 89–105.

    Article  CAS  PubMed  Google Scholar 

  • Turk, E. M., Fujioka, S., Seto, H., Shimada, Y., Takatsuto, S., Yoshida, S., Denzel, M. A., Torres, Q. I., & Neff, M. M. (2003). CYP72B1 inactivates brassinosteroid hormones: An intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiology, 133, 1643–1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turk, E. M., Fujioka, S., Seto, H., Shimada, Y., Takatsuto, S., Yoshida, S., Wang, H. C., Torres, Q. I., Ward, J. M., Murthy, G., Zhang, J. Y., Walker, J. C., & Neff, M. M. (2005). BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. The Plant Journal, 42, 23–34.

    Article  CAS  PubMed  Google Scholar 

  • Van Meulebroek, L., Vanden Bussche, J., Steppe, K., & Vanhaecke, L. (2012). Ultra-high performance liquid chromatography coupled to high resolution orbitrap mass spectrometry for metabolomic profiling of the endogenous phytohormonal status of the tomato plant. Journal of Chromatography. A, 1260, 67–80.

    Article  PubMed  CAS  Google Scholar 

  • Verhoef, N., Yokota, T., Shibata, K., de Boer, G. J., Gerats, T., Vandenbussche, M., Koes, R., & Souer, E. (2013). Brassinosteroid biosynthesis and signalling in Petunia hybrida. Journal of Experimental Botany, 64, 2435–2448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villiers, F., Jourdain, A., Bastien, O., Leonhardt, N., Fujioka, S., Tichtincky, G., Parcy, F., Bourguignon, J., & Hugouvieux, V. (2012). Evidence for functional interaction between brassinosteroids and cadmium response in Arabidopsis thaliana. Journal of Experimental Botany, 63, 1185–1200.

    Article  CAS  PubMed  Google Scholar 

  • Vriet, C., Russinova, E., & Reuzeau, C. (2013). From squalene to brassinolide: The steroid metabolic and signaling pathways across the plant kingdom. Molecular Plant, 6, 1738–1757.

    Article  CAS  PubMed  Google Scholar 

  • Wada, K., Marumo, S., Ikekawa, N., Morisaki, M., & Mori, K. (1981). Brassinolide and homobrassinolide promotion of lamina inclination of rice seedlings. Plant & Cell Physiology, 22, 323–325. https://doi.org/10.1093/oxfordjournals.pcp.a076173.

    Article  CAS  Google Scholar 

  • Wada, K., Marumo, S., Mori, K., Takatsuto, S., Morisaki, M., & Ikekawa, N. (1983). The rice lamina inclination-promoting activity of synthetic brassinolide analogues with a modified side chain. Agricultural and Biological Chemistry, 47, 1139–1141.

    CAS  Google Scholar 

  • Wang, M. Y., & Lu, D. Z. (2008). Determination of brassinolide in Areca catechu pollen by HPLC. Anhui Nongye Kexue. Journal of Anhui Agricultural Sciences, 36, 1305–1306.

    CAS  Google Scholar 

  • Wang, L., Duan, C., Wu, D., & Guan, Y. (2014). Quantification of endogenous brassinosteroids in sub-gram plant tissues by in-line matrix solid-phase dispersion-tandem solid phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography. A, 1359, 44–51.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Cai, W. J., Yu, L., Ding, J., & Feng, Y. Q. (2017). Comprehensive profiling of phytohormones in honey by sequential liquid-liquid extraction coupled with liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 65, 575–585.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, T., Yokota, T., Shibata, K., Nomura, T., Seto, H., & Takatsuto, S. (2000). Cryptolide, a new brassinolide catabolite with a 23-oxo group from Japanese cedar pollen/anther and its synthesis. Journal of Chemical Research, Synopses, 2000, 18–19. Miniprint 215–236.

    Article  Google Scholar 

  • Watanabe, T., Noguchi, T., Yokota, T., Shibata, K., Koshino, H., Seto, H., Kim, S. K., & Takatsuto, S. (2001). Synthesis and biological activity of 26-norbrassinolide, 26-norcastasterone and 26-nor-6-deoxocastasterone. Phytochemistry, 58, 343–349.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C. Y., Trieu, A., Radhakrishnan, P., Kwok, S. F., Harris, S., Zhang, K., Wang, J., Wan, J., Zhai, H., Takatsuto, S., Matsumoto, S., Fujioka, S., Feldmann, K. A., & Pennell, R. I. (2008). Brassinosteroids regulate grain filling in rice. Plant Cell, 20, 2130–2145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Q., Wu, D., Shen, Z., Duan, C., & Guan, Y. (2013). Quantification of endogenous brassinosteroids in plant by on-line two-dimensional microscale solid phase extraction-on column derivatization coupled with high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography. A, 1297, 56–63.

    Article  CAS  PubMed  Google Scholar 

  • Xin, P., Yan, J., Fan, J., Chu, J., & Yan, C. (2013). An improved simplified high-sensitivity quantification method for determining brassinosteroids in different tissues of rice and Arabidopsis. Plant Physiology, 162, 2056–2066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin, P., Li, B., Fang, S., Yan, C., Chu, J., Yan, J., Fan, J., Tian, H., Shi, Y., & Tian, W. (2016). A comprehensive and effective mass spectrometry-based screening strategy for discovery and identification of new brassinosteroids from rice tissues. Frontiers in Plant Science, 7, 1786.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, F., Zhang, H., Zhang, C. J., Xi, Z. M., & Zhang, Z. W. (2015). Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera ‘cabernet sauvignon’ berries during veraison. Plant Physiology and Biochemistry, 94, 197–208.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Z., Lei, P., Feng, X., Li, S., & Xu, H. (2016). Analysis of the metabolic pathways affected by poly (γ-glutamic acid) in Arabidopsis thaliana based on genechip microarray. Journal of Agricultural and Food Chemistry, 64, 6257–6266.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, R., Fujioka, S., Demura, T., Takatsuto, S., Yoshida, S., & Fukuda, H. (2001). Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements. Plant Physiology, 125, 556–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto, R., Fujioka, S., Iwamoto, K., Demura, T., Takatsuto, S., Yoshida, S., & Fukuda, H. (2007). Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation. Plant & Cell Physiology, 48, 74–83.

    Article  CAS  Google Scholar 

  • Yasuta, E., Terahata, T., Nakayama, M., Abe, H., Takatsuto, S., & Yokota, T. (1995). Free and conjugated brassinosteroids in the pollen and anthers of Erythronium japonicum decne. Bioscience, Biotechnology, and Biochemistry, 59, 2156–2158.

    Article  CAS  Google Scholar 

  • Yokota, T., & Takahashi, N. (1988). Isolation of brassinosteroids as plant growth regulators from kidney beans. Japanese Kokai Tokkyo Koho JP 63216896 A.

    Google Scholar 

  • Yokota, T., Arima, M., & Takahashi, N. (1982a). Castasterone, a new phytosterol with plant-hormone potency, from chestnut insect gall. Tetrahedron Letters, 23, 1275–1278.

    Article  CAS  Google Scholar 

  • Yokota, T., Baba, J., & Takahashi, N. (1982b). A new steroidal lactone with plant growth-regulatory activity from Dolichos lablab seed. Tetrahedron Letters, 23, 4965–4966.

    Article  CAS  Google Scholar 

  • Yokota, T., Arima, M., Takahashi, N., Takatsuto, S., Ikekawa, N., & Takematsu, T. (1983a). 2-Deoxycastasterone, a new brassinolide-related bioactive steroid from Pinus pollen. Agricultural and Biological Chemistry, 47, 2419–2420.

    CAS  Google Scholar 

  • Yokota, T., Baba, J., & Takahashi, N. (1983b). Brassinolide-related bioactive sterols in Dolichos lablab: Brassinolide, castasterone and a new analog, homodolicholide. Agricultural and Biological Chemistry, 47, 1409–1411.

    CAS  Google Scholar 

  • Yokota, T., Morita, M., & Takahashi, N. (1983c). 6-Deoxocastasterone and 6-deoxodolichosterone – putative precursors for brassinolide-related steroids from Phaseolus vulgaris. Agricultural and Biological Chemistry, 47, 2149–2151.

    CAS  Google Scholar 

  • Yokota, T., Baba, J., Koba, S., & Takahashi, N. (1984). Purification and separation of eight steroidal plant-growth regulators from Dolichos lablab seed. Agricultural and Biological Chemistry, 48, 2529–2534.

    CAS  Google Scholar 

  • Yokota, T., Arima, M., Takahashi, N., & Crozier, A. (1985). Steroidal plant-growth regulators, castasterone and typhasterol (2-deoxycastasterone) from the shoots of sitka spruce (Picea sitchensis). Phytochemistry, 24, 1333–1335.

    Article  CAS  Google Scholar 

  • Yokota, T., Kim, S., Kosaka, Y., Ogino, Y., & Takahashi, N. (1987a). Conjugation of brassinosteroids. In K. Schreiber, H. Schütte, & G. Sembdner (Eds.), Conjugated Plant Hormones. Structure, metabolism and function (pp. 288–296). Berlin: VEB Deutscher Verlag der Wissenschaften.

    Google Scholar 

  • Yokota, T., Kim, S. K., Fukui, Y., Takahashi, N., Takeuchi, Y., & Takematsu, T. (1987b). Brassinosteroids and sterols from a green alga, Hydrodictyon reticulatum: Configuration at C-24. Phytochemistry, 26, 503–506.

    Article  CAS  Google Scholar 

  • Yokota, T., Koba, S., Kim, S. K., Takatsuto, S., Ikekawa, N., Sakakibara, M., Okada, K., Mori, K., & Takahashi, N. (1987c). Diverse structural variations of the brassinosteroids in Phaseolus vulgaris seed. Agricultural and Biological Chemistry, 51, 1625–1631.

    Article  CAS  Google Scholar 

  • Yokota, T., Ogino, Y., Takahashi, N., Saimoto, H., Fujioka, S., & Sakurai, A. (1990a). Brassinolide is biosynthesized from castasterone in Catharanthus roseus crown gall cells. Agricultural and Biological Chemistry, 54, 1107–1108.

    CAS  Google Scholar 

  • Yokota, T., Watanabe, S., Ogino, Y., Yamaguchi, I., & Takahashi, N. (1990b). Radioimmunoassay for brassinosteroids and its use for comparative analysis of brassinosteroids in stems and seeds of Phaseolus vulgaris. Journal of Plant Growth Regulation, 9, 151–159.

    Article  CAS  Google Scholar 

  • Yokota, T., Ogino, Y., Suzuki, H., Takahashi, N., Saimoto, H., Fujioka, S., & Sakurai, A. (1991). Metabolism and biosynthesis of brassinosteroids. In H. G. Cutler, T. Yokota, & G. Adam (Eds.), Brassinosteroids: Chemistry (pp. 86–96). Washington: Bioactivity and Applications. American Chemical Society.

    Chapter  Google Scholar 

  • Yokota, T., Nakayama, M., Wakisaka, T., Schmidt, J., & Adam, G. (1994). 3-Dehydroteasterone, a 3,6-diketobrassinosteroid as a possible biosynthetic intermediate of brassinolide from wheat grain. Bioscience, Biotechnology, and Biochemistry, 58, 1183–1185.

    Article  CAS  Google Scholar 

  • Yokota, T., Matsuoka, T., Koarai, T., & Nakayama, M. (1996). 2-Deoxybrassinolide, a brassinosteroid from Pisum sativum seed. Phytochemistry, 42, 509–511.

    Article  CAS  Google Scholar 

  • Yokota, T., Nomura, T., & Nakayama, M. (1997). Identification of brassinosteroids that appear to be derived from campesterol and cholesterol in tomato shoots. Plant & Cell Physiology, 38, 1291–1294.

    Article  CAS  Google Scholar 

  • Yokota, T., Higuchi, K., Takahashi, N., Kamuro, Y., Watanabe, T., & Takatsuto, S. (1998). Identification of brassinosteroids with epimerized substituents and/or the 23-oxo group in pollen and anthers of Japanese cedar. Bioscience, Biotechnology, and Biochemistry, 62, 526–531.

    Article  CAS  PubMed  Google Scholar 

  • Yokota, T., Sato, T., Takeuchi, Y., Nomura, T., Uno, K., Watanabe, T., & Takatsuto, S. (2001). Roots and shoots of tomato produce 6-deoxo-28-norcathasterone, 6-deoxo-28-nortyphasterol and 6-deoxo-28-norcastasterone, possible precursors of 28-norcastasterone. Phytochemistry, 58, 233–238.

    Article  CAS  PubMed  Google Scholar 

  • Yokota, T., Ohnishi, T., Shibata, K., Asahina, M., Nomura, T., Fujita, T., Ishizaki, K., & Kohchi, T. (2017). Occurrence of brassinosteroids in non-flowering land plants, liverwort, moss, lycophyte and fern. Phytochemistry, 136, 46–55.

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara, K., & Katou, N. (1985). A new steroid having plant growth control activity from Typha latifolia pollen. Japanese Kokai Tokkyo Koho JP 60011498 A.

    Google Scholar 

  • Youn, J. H., Kim, M. K., Son, S. H., Lee, J. E., Jang, M. S., Kim, E. J., Kim, T. W., & Kim, S. K. (2016). ARF7 increases the endogenous contents of castasterone through suppression of BAS1 expression in Arabidopsis thaliana. Phytochemistry, 122, 34–44.

    Article  CAS  PubMed  Google Scholar 

  • Yu, L., Ding, J., Wang, Y. L., Liu, P., & Feng, Y. Q. (2016). 4-Phenylaminomethyl-benzeneboric acid modified tip extraction for determination of brassinosteroids in plant tissues by stable isotope labeling-liquid chromatography-mass spectrometry. Analytical Chemistry, 88, 1286–1293.

    Article  CAS  PubMed  Google Scholar 

  • Yu, L., Ye, T., Bai, Y. L., Cai, W. J., Ding, J., Yuan, B. F., & Feng, Y. Q. (2017). Profiling of potential brassinosteroids in different tissues of rape flower by stable isotope labeling-liquid chromatography/mass spectrometry analysis. Analytica Chimica Acta, 1037, 55–62. https://doi.org/10.1016/j.aca.2017.08.038.

    Article  CAS  PubMed  Google Scholar 

  • Zaki, K., Schmidt, J., Hammouda, F. M., & Adam, G. (1993). Steroidal constituents from pollen grains of Phoenix dactylifera. Planta Med (Supplement Issue), 59, A613–A613.

    Article  Google Scholar 

  • Zhang, Z., Zhang, Y., Tan, W., Li, G., & Hu, Y. (2010). Preparation of styrene-co-4-vinylpyridine magnetic polymer beads by microwave irradiation for analysis of trace 24-epibrassinolide in plant samples using high performance liquid chromatography. Journal of Chromatography. A, 1217, 6455–6461.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, W., Wang, H., Fujioka, S., Zhou, T., Tian, H., Tian, W., & Wang, X. (2013). Homeostasis of brassinosteroids regulated by DRL1, a putative acyltransferase in Arabidopsis. Molecular Plant, 6, 546–558.

    Article  CAS  PubMed  Google Scholar 

  • Zullo, M. A. T. (2018). Brassinosteroids and related compounds. Beau Bassin: Lambert Academic Publishing.

    Google Scholar 

  • Zullo, M. A. T., & Adam, G. (2002). Brassinosteroid phytohormones: Structure, bioactivity and applications. Brazilian Journal of Plant Physiology, 14, 143–181.

    Article  CAS  Google Scholar 

  • Zullo, M. A. T., & Kohout, L. (2004). Semisystematic nomenclature of brassinosteroids. Plant Growth Regulation, 42, 15–28.

    Article  Google Scholar 

  • Zullo, M. A. T., Kohout, L., & de Azevedo, M. D. B. M. (2003). Some notes on the terminology of brassinosteroids. Plant Growth Regulation, 39, 1–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zullo, M.A.T., Bajguz, A. (2019). The Brassinosteroids Family – Structural Diversity of Natural Compounds and Their Precursors. In: Hayat, S., Yusuf, M., Bhardwaj, R., Bajguz, A. (eds) Brassinosteroids: Plant Growth and Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6058-9_1

Download citation

Publish with us

Policies and ethics