Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 387 Accesses

Abstract

The excited charge-transfer (CT) complex (exciplex) has attracted much attention from researchers in the fields of OLEDs and OPVs. Upon excitation, intermolecular CT between donor (D) and acceptor (A) molecules forms a CT state at a heterojunction. The CT state then either dissociates into positive and negative polarons or relaxes into the ground state by emitting light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltiac cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789

    Article  ADS  Google Scholar 

  2. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258(5087):1474–1476

    Article  ADS  Google Scholar 

  3. Jenekhe SA, Osaheni JA (1994) Excimers and exciplexes of conjugated polymers. Science 265(5173):765–768

    Article  ADS  Google Scholar 

  4. Wang JF et al (1998) Exciplex electroluminescence from organic bilayer devices composed of triphenyldiamine and quinoxaline derivatives. Adv Mater 10:230–233

    Article  Google Scholar 

  5. Gélinas S et al (2011) The binding energy of charge-transfer excitons localized at polymeric semiconductor heterojunctions. J Phys Chem C 115:7114–7119

    Article  Google Scholar 

  6. Offermans T, van Hal PA, Meskers SC, Koetse MM, Janssen RA (2005) Exciplex dynamics in a blend of π-conjugated polymers with electron donating and accepting properties: MDMO-PPV and PCNEPV. Phys Rev B 72:045213

    Article  ADS  Google Scholar 

  7. Morteani AC, Friend RH, Silva C (2004) Endothermic exciplex–exciton energy-transfer in a blue-emitting polymeric heterojunction system. Chem Phys Lett 391:81–84

    Article  ADS  Google Scholar 

  8. Goushi K, Adachi C (2012) Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes. Appl Phys Lett 101:023306. https://doi.org/10.1063/1.4737006

    Article  ADS  Google Scholar 

  9. Goushi K, Yoshida K, Sato K, Adachi C (2012) Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat Photonics 6:253–258. https://doi.org/10.1038/nphoton.2012.31

    Article  ADS  Google Scholar 

  10. Park Y-S, Kim K-H, Kim J-J (2013) Efficient triplet harvesting by fluorescent molecules through exciplexes for high efficiency organic light-emitting diodes. Appl Phys Lett 102:153306. https://doi.org/10.1063/1.4802716

    Article  ADS  Google Scholar 

  11. dos Santos PL, Dias FB, Monkman AP (2016) Investigation of the mechanisms giving rise to TADF in exciplex states. J Phys Chem C 120:18259–18267

    Article  Google Scholar 

  12. Liu XK et al (2015) Remanagement of singlet and triplet excitons in single-emissive-layer hybrid white organic light-emitting devices using thermally activated delayed fluorescent blue exciplex. Adv Mater 27:7079–7085. https://doi.org/10.1002/adma.201502897

    Article  Google Scholar 

  13. Liu XK et al (2015) Prediction and design of efficient exciplex emitters for high-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes. Adv Mater 27:2378–2383. https://doi.org/10.1002/adma.201405062

    Article  Google Scholar 

  14. Kim K-H, Yoo S-J, Kim J-J (2016) Boosting triplet harvest by reducing nonradiative transition of exciplex toward fluorescent organic light-emitting diodes with 100% internal quantum efficiency. Chem Mater 28:1936–1941

    Article  Google Scholar 

  15. Kim KH, Moon CK, Sun JW, Sim B, Kim JJ (2015) Triplet harvesting by a conventional fluorescent emitter using reverse intersystem crossing of host triplet exciplex. Adv Optical Mater 3:895–899

    Article  Google Scholar 

  16. Zhao B et al (2015) Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host. Sci Rep 5:10697

    Article  ADS  Google Scholar 

  17. Kim HG, Kim KH, Moon CK, Kim JJ (2017) Harnessing triplet excited states by fluorescent dopant utilizing codoped phosphorescent dopant in exciplex host for efficient fluorescent organic light emitting diodes. Adv Optical Mater 5(3):1600749

    Article  Google Scholar 

  18. Moon CK et al (2017) Combined inter-and intramolecular charge-transfer processes for highly efficient fluorescent organic light-emitting diodes with reduced triplet exciton quenching. Adv Mater 29(17):1606448. https://doi.org/10.1002/adma.201606448

    Article  Google Scholar 

  19. Müllen K, Scherf U (2006) Organic light emitting devices: synthesis, properties and applications. Wiley

    Google Scholar 

  20. Gould IR, Young RH, Mueller LJ, Albrecht A, Farid S (1994) Electronic structures of exciplexes and excited charge-transfer complexes. J Am Chem Soc 116:8188–8199

    Article  Google Scholar 

  21. Sreearunothai P et al (2006) Influence of copolymer interface orientation on the optical emission of polymeric semiconductor heterojunctions. Phys Rev Lett 96:117403

    Article  ADS  Google Scholar 

  22. Huang Y-S et al (2008) Electronic structures of interfacial states formed at polymeric semiconductor heterojunctions. Nat Mater 7:483

    Article  ADS  Google Scholar 

  23. Sasabe H et al (2011) Influence of substituted pyridine rings on physical properties and electron mobilities of 2-methylpyrimidine skeleton-based electron transporters. Adv Func Mater 21:336–342

    Article  Google Scholar 

  24. Su SJ, Gonmori E, Sasabe H, Kido J (2008) Highly efficient organic blue-and white-light-emitting devices having a carrier-and exciton-confining structure for reduced efficiency roll-off. Adv Mater 20:4189–4194

    Google Scholar 

  25. Graves D, Jankus V, Dias FB, Monkman A (2014) Photophysical investigation of the thermally activated delayed emission from films of m-MTDATA: PBD exciplex. Adv Func Mater 24:2343–2351. https://doi.org/10.1002/adfm.201303389

    Article  Google Scholar 

  26. Deotare PB et al (2015) Nanoscale transport of charge-transfer states in organic donor-acceptor blends. Nat Mater 14:1130–1134. https://doi.org/10.1038/nmat4424

    Article  ADS  Google Scholar 

  27. Frischeisen J, Yokoyama D, Adachi C, Brütting W (2010) Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements. Appl Phys Lett 96:073302. https://doi.org/10.1063/1.3309705

    Article  ADS  Google Scholar 

  28. Moon CK, Kim SY, Lee JH, Kim JJ (2015) Luminescence from oriented emitting dipoles in a birefringent medium. Optics Express 23(7):A279–A291. https://doi.org/10.1364/oe.23.00a279

    Article  Google Scholar 

  29. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochimica et Biophysica Acta (BBA)-Rev Bioenergetics 811:265–322

    Article  Google Scholar 

  30. Brédas JL, Cornil J, Heeger AJ (1996) The exciton binding energy in luminescent conjugated polymers. Adv Mater 8:447–452

    Article  Google Scholar 

  31. Baumeier B, Andrienko D, Rohlfing M (2012) Frenkel and charge-transfer excitations in donor-acceptor complexes from many-body green’s functions theory. J Chem Theory Comput 8:2790–2795. https://doi.org/10.1021/ct300311x

    Article  Google Scholar 

  32. Martin RL (2003) Natural transition orbitals. J Chem Phys 118:4775–4777. https://doi.org/10.1063/1.1558471

    Article  ADS  Google Scholar 

  33. Inai Y, Sisido M, Imanishi Y (1990) Distance and orientation dependence of electron transfer and exciplex formation of naphthyl and p-dimethylanilino groups fixed on a helical polypeptide chain. J Phys Chem 94:6237–6243

    Article  Google Scholar 

  34. Ogiwara T, Wakikawa Y, Ikoma T (2015) Mechanism of intersystem crossing of thermally activated delayed fluorescence molecules. J Phys Chem A 119:3415–3418

    Article  Google Scholar 

  35. Etherington MK, Gibson J, Higginbotham HF, Penfold TJ, Monkman AP (2016) Revealing the spin-vibronic coupling mechanism of thermally activated delayed fluorescence. Nat Commun 7:13680. https://doi.org/10.1038/ncomms13680

    Article  ADS  Google Scholar 

  36. Samanta PK, Kim D, Coropceanu V, Bredas JL (2017) Up-conversion intersystem crossing rates in organic emitters for thermally activated delayed fluorescence: impact of the nature of singlet versus triplet excited states. J Am Chem Soc 139:4042–4051. https://doi.org/10.1021/jacs.6b12124

    Article  Google Scholar 

  37. Gibson J, Monkman AP, Penfold TJ (2016) The importance of vibronic coupling for efficient reverse intersystem crossing in thermally activated delayed fluorescence molecules. Chem Phys Chem 17:2956–2961. https://doi.org/10.1002/cphc.201600662

    Article  Google Scholar 

  38. Dias FB et al (2016) The role of local triplet excited states and D-A relative orientation in thermally activated delayed fluorescence: photophysics and devices. Adv Sci 3(12):1600080. https://doi.org/10.1002/advs.201600080

    Article  Google Scholar 

  39. Lee K, Kim D (2016) Local-excitation versus charge-transfer characters in the triplet state: theoretical insight into the singlet-triplet energy differences of carbazolyl-phthalonitrile-based thermally activated delayed fluorescence materials. J Phys Chem C 120:28330–28336. https://doi.org/10.1021/acs.jpcc.6b10161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moon, CK. (2019). Analysis of the Electronic Structure and Emission Process of Exciplex in Solids. In: Molecular Orientation and Emission Characteristics of Ir Complexes and Exciplex in Organic Thin Films. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-6055-8_4

Download citation

Publish with us

Policies and ethics