Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 435 Accesses

Abstract

Molecular orientation is an important factor in determining the electrical and optical properties of organic semiconductors. The molecular alignment of liquid crystals has long been significant for applications in flat panel displays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raynes P (1993) LIQUID CRYSTALS—Second Edition, by S CHANDRASEKHAR, Cambridge University Press, (1992), ISBN 0-521-41747-3 (HB), ISBN 0-521-42741-X (PB). Liq Cryst Today 3:7–7. https://doi.org/10.1080/13583149308628627

    Article  Google Scholar 

  2. Yeh P, Gu C (2010) Optics of liquid crystal displays, vol 67. Wiley

    Google Scholar 

  3. McBranch D, Campbell I, Smith D, Ferraris J (1995) Optical determination of chain orientation in electroluminescent polymer films. Appl Phys Lett 66:1175–1177

    Article  ADS  Google Scholar 

  4. Kim J-S, Ho PKH, Greenham NC, Friend RH (2000) Electroluminescence emission pattern of organic light-emitting diodes: implications for device efficiency calculations. J Appl Phys 88:1073–1081. https://doi.org/10.1063/1.373779

    Article  ADS  Google Scholar 

  5. Smith LH, Wasey JAE, Samuel IDW, Barnes WL (2005) Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield. Adv Func Mater 15:1839–1844. https://doi.org/10.1002/adfm.200500283

    Article  Google Scholar 

  6. Lin H-W et al (2004) Anisotropic optical properties and molecular orientation in vacuum-deposited ter(9,9-diarylfluorene)s thin films using spectroscopic ellipsometry. J Appl Phys 95:881–886. https://doi.org/10.1063/1.1635991

    Article  ADS  Google Scholar 

  7. Yokoyama D (2011) Molecular orientation in small-molecule organic light-emitting diodes. J Mater Chem 21:19187. https://doi.org/10.1039/c1jm13417e

    Article  Google Scholar 

  8. Yokoyama D, Sakaguchi A, Suzuki M, Adachi C (2008) Horizontal molecular orientation in vacuum-deposited organic amorphous films of hole and electron transport materials. Appl Phys Lett 93:173302. https://doi.org/10.1063/1.2996258

    Article  ADS  Google Scholar 

  9. Sasabe H et al (2011) Influence of substituted pyridine rings on physical properties and electron mobilities of 2-methylpyrimidine skeleton-based electron transporters. Adv Func Mater 21:336–342

    Article  Google Scholar 

  10. Mayr C, Brütting W (2015) Control of molecular dye orientation in organic luminescent films by the glass transition temperature of the host material. Chem Mater 27:2759–2762. https://doi.org/10.1021/acs.chemmater.5b00062

    Article  Google Scholar 

  11. Komino T, Tanaka H, Adachi C (2014) Selectively controlled orientational order in linear-shaped thermally activated delayed fluorescent dopants. Chem Mater 26:3665–3671. https://doi.org/10.1021/cm500802p

    Article  Google Scholar 

  12. Komino T, Nomura H, Koyanagi T, Adachi C (2013) Suppression of efficiency roll-off characteristics in thermally activated delayed fluorescence based organic light-emitting diodes using randomly oriented host molecules. Chem Mater 25:3038–3047. https://doi.org/10.1021/cm4011597

    Article  Google Scholar 

  13. Sirringhaus H et al (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401:685–688

    Article  ADS  Google Scholar 

  14. Sundar VC et al (2004) Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303:1644–1646

    Article  ADS  Google Scholar 

  15. Erb T et al (2005) Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv Func Mater 15:1193–1196

    Article  Google Scholar 

  16. Taminiau T, Stefani F, Segerink F, Van Hulst N (2008) Optical antennas direct single-molecule emission. Nat Photonics 2:234–237

    Article  Google Scholar 

  17. Duhm S et al (2008) Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies. Nat Mater 7:326–332

    Article  ADS  Google Scholar 

  18. Yamao T, Yamamoto K, Taniguchi Y, Miki T, Hotta S. (2008) Laser oscillation in a highly anisotropic organic crystal with a refractive index of 4.0. J Appl Phys 103:093115

    Article  ADS  Google Scholar 

  19. Horiuchi S, Tokura Y (2008) Organic ferroelectrics. Nat Mater 7:357–366

    Article  ADS  Google Scholar 

  20. Horowitz G (1998) Organic field-effect transistors. Adv Mater 10:365–377

    Article  Google Scholar 

  21. Janssen RA, Nelson J (2013) Factors limiting device efficiency in organic photovoltaics. Adv Mater 25:1847–1858

    Article  Google Scholar 

  22. Frischeisen J, Yokoyama D, Adachi C, Brütting W (2010) Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements. Appl Phys Lett 96:073302. https://doi.org/10.1063/1.3309705

    Article  ADS  Google Scholar 

  23. Flämmich M et al (2011) Oriented phosphorescent emitters boost OLED efficiency. Org Electron 12:1663–1668

    Article  Google Scholar 

  24. Liehm P et al (2012) Comparing the emissive dipole orientation of two similar phosphorescent green emitter molecules in highly efficient organic light-emitting diodes. Appl Phys Lett 101:253304

    Article  ADS  Google Scholar 

  25. Kim S-Y et al (2013) Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Adv Func Mater 23:3896–3900. https://doi.org/10.1002/adfm.201300104

    Article  Google Scholar 

  26. Kim KH et al (2014) Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nat Commun 5:4769. https://doi.org/10.1038/ncomms5769

    Article  Google Scholar 

  27. Mayr C et al (2014) Efficiency enhancement of organic light-emitting diodes incorporating a highly oriented thermally activated delayed fluorescence emitter. Adv Func Mater 24:5232–5239. https://doi.org/10.1002/adfm.201400495

    Article  Google Scholar 

  28. Kim KH et al (2015) Controlling emitting dipole orientation with methyl substituents on main ligand of iridium complexes for highly efficient phosphorescent organic light-emitting diodes. Adv Opt Mater 3:1191–1196

    Article  Google Scholar 

  29. Kim K-H, Ahn ES, Huh J-S, Kim Y-H, Kim J-J (2016) Design of heteroleptic Ir complexes with horizontal emitting dipoles for highly efficient organic light-emitting diodes with an external quantum efficiency of 38%. Chem Mater 28:7505–7510

    Article  Google Scholar 

  30. Jurow MJ et al (2016) Understanding and predicting the orientation of heteroleptic phosphors in organic light-emitting materials. Nat Mater 15:85–91. https://doi.org/10.1038/nmat4428

    Article  ADS  Google Scholar 

  31. Komino T et al (2016) Electroluminescence from completely horizontally oriented dye molecules. Appl Phys Lett 108:241106. https://doi.org/10.1063/1.4954163

    Article  ADS  Google Scholar 

  32. Kim SY et al (2013) Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Adv Func Mater 23:3896–3900

    Article  Google Scholar 

  33. Moon C-K (2014) Analysis of orientation of the transition dipole moment of phosphorescent dyes in the energy-transferring condition. Master thesis, Seoul National University

    Google Scholar 

  34. Purcell EM (1946) Spontaneous emission probabilities at radio frequnecy. Phys Rev 69:681

    Google Scholar 

  35. Chance RR, Prock A, Silbey R (1978) Molecular fluorescence and energy transfer near interfaces. Adv Chem Phys 37:1–65

    Google Scholar 

  36. Barnes WL (1998) Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 45:661–699. https://doi.org/10.1080/09500349808230614

    Article  ADS  Google Scholar 

  37. Wasey JAE, Barnes WL (2000) Efficiency of spontaneous emission from planar microcavities. J Mod Opt 47:725–741. https://doi.org/10.1080/09500340008233393

    Article  ADS  Google Scholar 

  38. Neyts K (2005) Microcavity effects and the outcoupling of light in displays and lighting applications based on thin emitting films. Appl Surf Sci 244:517–523. https://doi.org/10.1016/j.apsusc.2004.09.156

    Article  ADS  Google Scholar 

  39. Furno M, Meerheim R, Hofmann S, Lüssem B, Leo K (2012) Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys Rev B 85. https://doi.org/10.1103/physrevb.85.115205

  40. Kuhn H (1970) Classical aspects of energy transfer in molecular systems. J Chem Phys 53:101–108. https://doi.org/10.1063/1.1673749

    Article  ADS  Google Scholar 

  41. Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913. https://doi.org/10.1063/1.98799

    Article  ADS  Google Scholar 

  42. Charalambos C, Katsidis DIS (2002) General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl Opt 41:4978

    Google Scholar 

  43. Baldo MA et al (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154

    Article  ADS  Google Scholar 

  44. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl Phys Lett 75:4–6. https://doi.org/10.1063/1.124258

    Article  ADS  Google Scholar 

  45. Tsuboyama A et al (2003) Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode. J Am Chem Soc 125:12971–12979

    Article  Google Scholar 

  46. Lamansky S et al (2001) Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. J Am Chem Soc 123:4304–4312

    Article  Google Scholar 

  47. Schmidt TD et al (2011) Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter’s radiative quantum efficiency. Appl Phys Lett 99:163302. https://doi.org/10.1063/1.3653475

    Article  ADS  Google Scholar 

  48. Lampe T et al (2016) Dependence of phosphorescent emitter orientation on deposition technique in doped organic films. Chem Mater 28:712–715. https://doi.org/10.1021/acs.chemmater.5b04607

    Article  Google Scholar 

  49. Kim KH, Moon CK, Lee JH, Kim SY, Kim JJ (2014) Highly efficient organic light-emitting diodes with phosphorescent emitters having high quantum yield and horizontal orientation of transition dipole moments. Adv Mater 26:3844–3847. https://doi.org/10.1002/adma.201305733

    Article  Google Scholar 

  50. Moon C-K, Kim K-H, Lee JW, Kim J-J (2015) Influence of host molecules on emitting dipole orientation of phosphorescent iridium complexes. Chem Mater 27:2767–2769. https://doi.org/10.1021/acs.chemmater.5b00469

    Article  Google Scholar 

  51. Shin H et al (2014) Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit. Adv Mater 26:4730–4734

    Article  Google Scholar 

  52. Lee JH et al (2015) Finely tuned blue iridium complexes with varying horizontal emission dipole ratios and quantum yields for phosphorescent organic light-emitting diodes. Adv Opt Mater 3:211–220

    Article  Google Scholar 

  53. Goushi K, Adachi C (2012) Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes. Appl Phys Lett 101:023306. https://doi.org/10.1063/1.4737006

    Article  ADS  Google Scholar 

  54. Liu W et al (2016) Novel strategy to develop exciplex emitters for high-performance OLEDs by employing thermally activated delayed fluorescence materials. Adv Func Mater 26:2002–2008. https://doi.org/10.1002/adfm.201505014

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moon, CK. (2019). Introduction. In: Molecular Orientation and Emission Characteristics of Ir Complexes and Exciplex in Organic Thin Films. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-6055-8_1

Download citation

Publish with us

Policies and ethics