Skip to main content

Spin-Orbit Coupling and Energy Transfer in Nonanuclear Lanthanide Clusters

  • Chapter
  • First Online:
Energy Transfer Processes in Polynuclear Lanthanide Complexes

Part of the book series: Springer Theses ((Springer Theses))

  • 296 Accesses

Abstract

Spin-orbit coupling is essential in lanthanide complexes for raising the yield of triplet excited state where the energy transfer to lanthanide ion mainly proceeds from, and therefore the sensitization efficiency of the lanthanide ion. However, since spin-orbit coupling mixes states of different multiplicity, strong spin-orbit coupling means that the decay of triplet excited state to the ground state is also enhanced, lowering the sensitization efficiency. This chapter explains the effect of spin-orbit coupling on the sensitization efficiency in [Ln9(μ-OH)10(butyl salicylate)16]NO3 \( \left( {{\text{Ln}} = {\text{Yb}}_{\text{n}} {\text{Gd}}_{{9 - {\text{n}}}} /{\text{Yb}}_{\text{n}} {\text{Lu}}_{{9 - {\text{n}}}} ,n = 0,1,3,7,9} \right) \) where Gd(III) and Lu(III) ions tune the spin-orbit coupling strength. It is revealed that a stronger spin-orbit coupling does not necessarily lead to higher sensitization efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore EG, Samuel APS, Raymond KN (2009) From antenna to assay: lessons learned in lanthanide luminescence. Acc Chem Res 42:542–552

    Article  CAS  Google Scholar 

  2. Huang, C (2010) Rare earth coordination chemistry: fundamentals and applications. Wiley

    Google Scholar 

  3. Lima NBD, Gonçalves SMC, Júnior SA, Simas AM (2013) A comprehensive strategy to boost the quantum yield of luminescence of europium complexes. Sci Rep 3:2395

    Article  Google Scholar 

  4. Marian CM (2012) Spin–orbit coupling and intersystem crossing in molecules. WIREs Comput Mol Sci 2:187–203

    Article  CAS  Google Scholar 

  5. Forster LS (2006) Intersystem crossing in transition metal complexes. Coord Chem Rev 250:2023–2033

    Article  CAS  Google Scholar 

  6. Tobita S, Arakawa M, Tanaka I (1985) The paramagnetic metal effect on the ligand localized S1. apprx. fwdarw. T1 intersystem crossing in the rare-earth-metal complexes with methyl salicylate. J Phys Chem 89:5649–5654

    Article  CAS  Google Scholar 

  7. Tobita S, Arakawa M, Tanaka I (1984) Electronic relaxation processes of rare earth chelates of benzoyltrifluoroacetone. J Phys Chem 88:2697–2702

    Article  CAS  Google Scholar 

  8. Guldi DM, Mody TD, Gerasimchuk NN, Magda D, Sessler JL (2000) Influence of large metal cations on the photophysical properties of texaphyrin, a rigid aromatic chromophore. J Am Chem Soc 122:8289–8298

    Article  CAS  Google Scholar 

  9. Nakanishi T, Suzuki Y, Doi Y, Seki T, Koizumi H, Fushimi K, Fujita K, Hinatsu Y, Ito H, Tanaka K, Hasegawa Y (2014) Enhancement of optical faraday effect of nonanuclear Tb (III) complexes. Inorg Chem 53:7635–7641

    Article  CAS  Google Scholar 

  10. Casanova D, Llunell M, Alemany P, Alvarez S (2005) The rich stereochemistry of eight‐vertex polyhedra: a continuous shape measures study. Chem Eur J 11:1479–1494

    Article  CAS  Google Scholar 

  11. Pinsky M, Avnir D (1998) Continuous symmetry measures. 5. The classical polyhedra. Inorg Chem 37:5575–5582

    Article  CAS  Google Scholar 

  12. SHAPE, version 2.1 (2010) Continuous shape measures calculations. Electronic Structure Group, Universitat de Barcelona, Spain

    Google Scholar 

  13. Xu J, Radkov E, Ziegler M, Raymond KN (2000) Plutonium (IV) Sequestration: Structural and Thermodynamic Evaluation of the Extraordinarily Stable Cerium (IV) Hydroxypyridinonate Complexes1. Inorg Chem 39:4156–4164

    Article  CAS  Google Scholar 

  14. Omagari S, Nakanishi T, Kitagawa Y, Seki T, Fushimi K, Ito H, Meijerink A, Hasegawa Y (2018) Spin-orbit coupling dependent energy transfer in luminescent nonanuclear Yb-Gd/Yb-Lu clusters. J Lumin 201:170–175

    Article  CAS  Google Scholar 

  15. Hasegawa Y, Ohkubo T, Nakanishi T, Kobayashi A, Kato M, Seki T, Ito H, Fushimi K (2013) Effect of ligand polarization on asymmetric structural formation for strongly luminescent lanthanide complexes. Eur J Inorg Chem 5911–5918

    Article  CAS  Google Scholar 

  16. Miyata K, Nakagawa T, Kawakami R, Kita Y, Sugimoto K, Nakashima T, Harada T, Kawai T, Hasegawa Y (2011) Remarkable luminescence properties of lanthanide complexes with asymmetric dodecahedron structures. Chem Eur J 17:521–528

    Article  CAS  Google Scholar 

  17. El-Sayed MA (1963) Spin—Orbit coupling and the radiationless processes in nitrogen heterocyclics. J Chem Phys 38:2834–2838

    Article  CAS  Google Scholar 

  18. Bünzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Omagari .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Omagari, S. (2019). Spin-Orbit Coupling and Energy Transfer in Nonanuclear Lanthanide Clusters. In: Energy Transfer Processes in Polynuclear Lanthanide Complexes. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-6049-7_4

Download citation

Publish with us

Policies and ethics