Skip to main content

Strategies for the Management of Soil-Borne Pathogens and Crop Production Under Saline Environment

  • Chapter
  • First Online:
Plant Health Under Biotic Stress

Abstract

Total agricultural land of the globe becomes insufficient due to the progressive nature of primary and secondary salinity. High salt content in the irrigation water or soil is a serious restriction factor to the cultivation of many crops. Salinity has significant influence in maintaining the balance nature of osmosis, the availability of water and nutrients, and the formation of free radicals in plant. The consequence of these factors causes undesirable effect on photosynthesis, growth, and development of numerous economically important plants. This review evaluates the management practices or strategies based on the combination of approaches through management of soil-borne pathogens, root-zone salinity management, quality irrigation, and cultural practices to accelerate the removal of salts and cultivation of salt-tolerant plants. Root-zone salinity is mainly controlled by different irrigation systems and leaching and by the use of appropriate plants to maintain the water table. There is a diverse strategy that can be applied through quality irrigation and cultural practices. Different modes of irrigation, tillage, and bio-drainage, addition of organic matters and gypsum, and application of sulfur are some of them. However, growing salt-tolerant plants along with the traditional methods of managing the saline environment take a momentum to reduce the effect of high salinity. Genetic engineering approach through the deep understanding of physiological response of plants to salinity would augment the identification of potential gens for developing transgenic plants. Application of microbes, organic matters, and green remediation also has proved the improvement of plant health and productivity under salinity and biotic stress. These management strategies provide an insight to the effective crop production under saline environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Allah, E. F., Hashem, A., Alqarawi, A. A., Bahkali, A. H., & Alwhibib, M. S. (2015). Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi Journal of Biological Sciences, 22(3), 274–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad, N., & Qadir, M. (1995). Reclamation methods for saline-sodic soils of Pakistan. In M. A. Khan & L. A. Ungar (Eds.), Biology of salt tolerant plants (pp. 19–324). Chelsea: Book Crafters.

    Google Scholar 

  • Alabouvette, C., Backhouse, D., Steinberg, C., Donovan, N. J., Edel-Hermann, V., & Burgess, L. W. (2004). Microbial diversity in soil: Effects on crop health. In P. Schjonning, S. Elmholt, & B. T. Christensen (Eds.), Managing soil quality: Challenges in modern agriculture (pp. 121–138). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Andriolo, J. L., da Luz, G. L., Witter, M. H., Godori, R. S., Barros, G. T., & Bortolotto, O. C. (2005). Growth and yield of lettuce plants under salinity. Hortic Braz, 23, 931–934.

    Article  Google Scholar 

  • Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.

    Google Scholar 

  • Aryantha, I. P., Cross, R., & Guest, D. J. (2000). Suppression of Phytophthora cinnamomi in potting mixes amended with uncomposted and composted animal manures. Phytopathology, 90, 775–782.

    Article  CAS  PubMed  Google Scholar 

  • Ashraf, M. Y., Ashraf, M., Mahmood, K., Akhter, J., Hussain, F., & Arshad, M. (2010). Phytoremediation of saline soils for sustainable agricultural productivity. In M. Ashraf, M. Ozturk, & M. S. A. Ahmad (Eds.), Plant adaptation and phytoremediation (pp. 335–3355). Berlin: Springer.

    Chapter  Google Scholar 

  • Aslam, M., Qureshi, R. H., & Ahmad, N. (1993). A rapid screening technique for salt tolerance in rice. Plant and Soil, 150, 99–107.

    Article  Google Scholar 

  • Asraf, M., & Akram, N. A. (2009). Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Advance in Biotechnology, 27(6), 744–752.

    Article  CAS  Google Scholar 

  • Assis, S. M. P., Silveira, E. B., Mariano, R. L. R., & Menezes, D. (1998). Endophytic bacteria: Method for isolation and antagonistic potential against cabbage black rot. Summa Phytopathologica, 24, 216–220.

    Google Scholar 

  • Bailey, K. L., & Lazarovits, G. (2003). Suppressing soil-borne diseases with residue management and organic amendments. Soil and Tillage Research, 72, 169–180.

    Article  Google Scholar 

  • Bais, H. P., Park, S. W., Weir, T. L., Callaway, R. M., & Vivanco, J. M. (2004). How plants communicate using the underground information superhighway. Trends in Plant Science, 9, 26–32.

    Article  CAS  PubMed  Google Scholar 

  • Beltran, J. M. (1999). Irrigation with saline water: Benefits and environmental impact. Agricultural Water Management, 40, 183–194.

    Article  Google Scholar 

  • Bernstein, L., & Francois, L. E. (1973). Leaching requirements studies: Sensitivity of alfalfa to salinity of irrigation and drainage waters. Proceedings of the Soil Science Society of America, 37, 931–943.

    Article  CAS  Google Scholar 

  • Bielorai, H., Shalhevet, J., & Levy, Y. (1988). Grapefruit response to variable salinity in irrigation water and soil. Irrigation Science, 1, 61–70.

    Article  Google Scholar 

  • Bonilla, N., José, A., Gutiérrez-Barranquero, de Vicente, A., & Francisco, M. C. (2012). Enhancing soil quality and plant health through suppressive organic amendments. Diversity, 4, 475.

    Article  Google Scholar 

  • Boumans, J. H., van Hoorn, J. W., Kruseman, G. P., & Tanwar, B. S. (1988). Water table control reuse and disposal of drainage water in Haryana. Agricultural Water Management, 14, 537–545.

    Article  Google Scholar 

  • Brown, J. W., & Hayward, H. E. (1956). Salt tolerance of alfalfa varieties. Agronomy Journal, 48, 18–20.

    Article  Google Scholar 

  • Carlier, E., Rovera, M., Jaume, A. R., & Rosas, S. (2008). Improvement of growth, under field conditions, of wheat inoculated with Pseudomonas chlororaphis subsp aurantiaca SR1. World Journal of Microbiology and Biotechnology, 24, 2653–2658.

    Article  Google Scholar 

  • Caro, M., Cruz, V., Cuartero, J., Estan, M. T., & Bolarin, M. C. (1991). Salinity tolerance of normal-fruited and cherry tomato cultivars. Plant and Soil, 136, 249–255.

    Article  CAS  Google Scholar 

  • Chandra, R. (2001). Development of irrigation water management strategies: A case study. ME thesis submitted to Maharana Pratap University of Agriculture and Technology Udaipur.

    Google Scholar 

  • Chaudhari, S. K., Dagar, J. C., Kumar, L. K. M., Kaur, A. (2012a). Modeling the water balance in Eucalyptus strip plantation (p. 71). National Seminar on Management of Salt Affected Soils and Waters, Lucknow.

    Google Scholar 

  • Chaudhari, S. K., Dagar, J. C., Singh, G. B., Sharma, D. K. (2012b). Shallow saline groundwater impacts on water-use and salt accumulation by Eucalyptus tereticornis and Casuarina equisetifolia (p. 114). National Seminar on Management of Salt Affected Soils and Waters, Lucknow.

    Google Scholar 

  • Chaudhry, M. R., Hamid, A., & Javid, M. A. (1984). Use of gypsum in amending sodic water for crop production (Pub. No.136, Mona Rec. Expt. Proj, p. 23), Pakistan.

    Google Scholar 

  • Chin-A-Woeng, T. F. C., Bloemberg, G. V., van der Bij, A. J., van der Drift, K. M. G. M., Schripsema, J., Kroon, B., Scheffer, R. J., Keel, C., Bakker, P. A. H. M., Tichy, H. V., de Bruijn, F. J., Thomas-Oates, J. E., & Lugtenberg, B. J. J. (1998). Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot cause by Fusarium oxysporum f. sp. radicis-lycopersici. Molecular Plant-Microbe Interactions, 11, 1069–1077.

    Article  CAS  Google Scholar 

  • Dulanjalee, P. H. E., & Pitawala, A. (2008). Salt mineralogy of soils in the area of Nawagatnthegama Sri Lanka. In Proceedings of the Peradeniya University Research Sessions, Sri Lanka. pp. 13.

    Google Scholar 

  • Egamberdieva, D. (2012). Pseudomonas chlororaphis: A salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiologiae Plantarum, 34(2), 751–756.

    Article  CAS  Google Scholar 

  • Egamberdieva, D., & Kucharova, Z. (2009). Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biology and Fertility of Soils, 45, 563–571.

    Article  Google Scholar 

  • Egamberdieva, D., Wirth, S., Jabborova, D., Räsänen, L. A., Berg, G., & Liao, H. (2017). Coordination between Bradyrhizobium and root colonizing Pseudomonas alleviates salt stress in soybean (Glycine max L.) through altering root system architecture and improving nodulation. Journal of Plant Microbe Interactions, 12(1), 100–107.

    Article  CAS  Google Scholar 

  • Epstein, E. (1985). Salt-tolerant crops: Origins development and prospects of the concept. Plant and Soil, 89, 187–198.

    Article  Google Scholar 

  • Epstein, E., & Rains, D. W. (1987). Advances in salt tolerance. Plant and Soil, 99, 17–29.

    Article  CAS  Google Scholar 

  • Epstein, E., Norlyn, J. D., Rush, D. W., Kingsbury, R. W., & Kelley, D. B. (1980). Saline culture of crops: A genetic approach. Science, 210, 399–404.

    Article  CAS  PubMed  Google Scholar 

  • Focht, D. D. (1979). Microbial kinetics of nitrogen losses in flooded soils. In Nitrogen and rice, international rice research institute Manila Philippines. pp 119–135.

    Google Scholar 

  • Francois, L. E. (1994). Growth seed yield and oil content of canola grown under saline conditions. Agronomy Journal, 86, 233–237.

    Article  Google Scholar 

  • Francois, L. E., & Kleiman, R. (1990). Salinity effects on vegetative growth seed yield and fatty acid composition of crambe. Agronomy Journal, 82, 1110–1114.

    Article  CAS  Google Scholar 

  • Francois, L. E., Donovan, T. J., & Maas, E. V. (1984). Salinity effects on seed yield growth and germination of grain sorghum. Agronomy Journal, 76, 741–744.

    Article  CAS  Google Scholar 

  • Francois, L. E., Donovan, T. J., Lorenz, K., & Maas, E. V. (1989). Salinity effects on rye grain yield quality vegetative growth and emergence. Agronomy Journal, 81, 707–712.

    Article  Google Scholar 

  • Ghafoor, A., & Muhammed, S. (1981). Comparison of H2S04, HC1, HN03 and gypsum for reclaiming calcareous saline-sodic soil and for plant growth. Bull Irrig Drainage Flood Control Res Council (Pakistan), 11, 69–75.

    Google Scholar 

  • Gismer, M. E., & Gates, T. K. (1988). Estimating saline water table contributions to crop water use. California Agriculture, 42(2), 23–24.

    Google Scholar 

  • Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18, 227–255.

    Article  Google Scholar 

  • Gong, Z. H., Kiowa, M. A., Cushman, A., Ray, D., Bufford, S., Kore-eda, T. K., Matsumoto, J., Zhu, J. C., Cushman, R. A., & Bressan, H. P. M. (2001). Genes that are uniquely stressed regulated in salt-overly sensitive (sos) mutants. Plant Physiology, 126, 363–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouinguené, S. P., & Turlings, T. C. J. (2002). The effect of abiotic factors on induced volatile emissions in corn plants. Plant Physiology, 129, 1296–1307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goyal, S. S., Sharma, S. K., Rains, D. W., & Lauchli, A. (1999). Long term reuse of drainage waters of varying salinity for crop irrigation in a cotton-safflower rotation system in the San Joaquin Valley of California–A nine year study. I cotton. Journal of Crop Production, 2, 181–214.

    Article  Google Scholar 

  • Graifenberg, A., Botrini, L., Giustiniani, L., & Lipucci di Paola, M. (1996). Yield growth and elemental content of zucchini squash grown under saline-sodic conditions. Journal of Horticultural Science, 71, 305–311.

    Article  Google Scholar 

  • Gurung, T. R., & Azad, A. K. (2013). Best practices and procedures of saline soil reclamation systems in SAARC countries (pp. 106–151). Dhaka: SAARC Agriculture Centre.

    Google Scholar 

  • Hadar, Y. (2011). Suppressive compost: When plant pathology met microbial ecology. Phytoparasitica, 39, 311–314.

    Article  Google Scholar 

  • Handawela, J. (1982). A study on inland salinity in Mahaweli H area. KRUSHI Quarterly Technical Bulletin for Researchers Extension Workers and Trainers in Agriculture, 5(1), 5–14.

    Google Scholar 

  • Handelsman, J., & Stabb, E. V. (1996). Biocontrol of soilborne plant pathogens. The Plant Cell, 8(10), 1855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haq, I., Muhammad, B., & Iqbal, F. (2007). Effect of gypsum and farm yard manure on soil properties and wheat crop irrigated with brackish water. Soil and Environ, 26(2), 164–171.

    Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M., Narasimha, M., Prasad, V., Ozturk, M., & Fujita, M. (2014). Potential use of halophytes to remediate saline soils. Bio Med Research International, 2014, 1.

    Google Scholar 

  • Hashem, A., Elsayed, F., Abd_Allah, A. A., Alqarawi, A. A., Al-Huqail, S. W., & Egamberdieva, D. (2016). The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in Plant Science, 7, 1089.

    Google Scholar 

  • Heuer, B., Meiri, A., & Shalhevet, J. (1986). Salt tolerance of eggplant. Plant and Soil, 95, 9–13.

    Article  CAS  Google Scholar 

  • Hoitink, H. A. L., & Boehm, M. J. (1999). Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. Annual Review of Phytopathology, 37, 427–446.

    Article  CAS  PubMed  Google Scholar 

  • Howell, T. A. (2001). Enhancing water use efficiency in irrigated agriculture. Agronomy Journal, 93(2), 281–289.

    Article  Google Scholar 

  • Hussain, N., Ali, A., Salim, M., & Nasim, A. R. (2000a). Management of saline sodic soil irrigated with brackish ground water employing gypsum and soil ripping. International Journal of Agriculture and Biology, 2(1), 69–73.

    Google Scholar 

  • Hussain, N., Ali, A., Salim, M., & Nasim, A. R. (2000b). Sodic water management with gypsum application for sustainable crop production. Pakistan Journal of Biological Sciences, 3(6), 996–997.

    Article  Google Scholar 

  • Kaffka, S., Dauxe, D., & Peterson, G. (1999). Saline water can be used to irrigate sugar beets but sugar may be low. California Agriculture, 53(1), 11–15.

    Article  Google Scholar 

  • Kahloon, M. A., & Gill, M. A. (2003). Managing saline sodic ground water in Indus Basin. Science Vision, 9(1-2), 1–10.

    Google Scholar 

  • Kim, H., Fonseca, J. M., Choi, J., Kubota, C., & Kwon, D. Y. (2008). Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L). Journal of Agricultural and Food Chemistry, 56, 3772–3776.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H., Hanseok, J., Jeon, J., & Bae, S. (2016). Effects of irrigation with saline water on crop growth and yield in greenhouse cultivation. Journal of Water, 8, 127.

    Article  CAS  Google Scholar 

  • Kumamoto, J., Scora, R. W., Clerx, W. A., Matsumura, M., Layfield, D., & Grieve, C. M. (1992). Purslane: A potential new vegetable crop rich in omega-3 fatty acid with a controllable sodium chloride content. In Proceedings of the first international conference on New Industrial Crops and Products, Riverside CA. pp. 229–233.

    Google Scholar 

  • Lakhdar, A., Rabhi, M., Ghnaya, T., Montemurro, F., Jedidi, N., & Abdelly, C. (2009). Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials, 171(1–3), 29–37.

    Article  CAS  PubMed  Google Scholar 

  • Lui, J., & Zhu, J. K. (1998). A calcium sensor homologue required for salt tolerance in crop plants. Science, 280, 1943–1945.

    Article  Google Scholar 

  • Magdalena, M. J., & Christa, T. (2015). Tuning plant signaling and growth to survive. Trends in Plant Science, 20(9), 586–594.

    Article  CAS  Google Scholar 

  • Martinez, C., Avis, T. J., Simard, J. N., Labonte´, J., Be’langer, R. R., & Tweddell, R. J. (2006). The role of antibiosis in the antagonism of different bacteria towards Helminthosporium solani, the causal agent of potato silver scurf. Phytoprotection, 87, 69–75.

    Article  Google Scholar 

  • Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42, 565–572.

    Article  CAS  PubMed  Google Scholar 

  • McKenzie, R. C. (1988). Tolerance of plants to soil salinity. In Proceedings of the Dryland Salinity Control Workshop, Calgary, Alberta. pp. 246–251.

    Google Scholar 

  • McNeil, S. D., Nuccio, M. L., & Hanson, A. D. (1999). Betaines and related osmo protectants. Targets for metabolic engineering of stress tolerance. Plant Physiology, 120, 945–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena, V. S., Maurya, B. R., Verma, J. P., Aeron, A., Kumar, A., Kim, K., & Bajpai, V. K. (2015). Potassium solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste mica. Ecological Engineering, 81, 340–347.

    Article  Google Scholar 

  • Meng, X., Zhou, J., & Sui, N. (2018). Mechanisms of salt tolerance in halophytes: Current understanding and recent advances. Open Life Sci., 13, 149–115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Milner, J. L., Stohl, E. A., & Handelsman, J. (1996a). Zwittermicin a resistance gene from Bacillus cereus. Journal of Bacteriology, 178, 4266–4272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milner, J. L., Silo-Suh, L. A., Lee, J. C., He, H., Clardy, J., & Handelsman, J. (1996b). Production of Kanosamine by Bacillus cereus UW85. Applied and Environmental Microbiology, 60, 2553–2560.

    Google Scholar 

  • Minhas, P. S., & Bajwa, M. S. (2001). Use and management of poor quality waters for the rice–wheat based production system. Journal of Crop Production, 4, 273–305.

    Article  CAS  Google Scholar 

  • Minhas, P. S., & Gupta, R. K. (1992). Quality of irrigation water – Assessment and management (p. 123). New Delhi: Indian Council of Agricultural Research.

    Google Scholar 

  • Minhas, P. S., Sharma, D. R., & Khosla, B. K. (1990). Mungbean response to irrigation with waters of different salinities. Irrigation Science, 11, 57–62.

    Article  Google Scholar 

  • Mishra, A., & Tanna, B. (2017). Halophytes: Potential resources for salt stress tolerance genes and promoters. Frontiers in Plant Science, 8, 829.

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanism of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  PubMed  Google Scholar 

  • Murtaza, G. A., Owens, G. G., Qadir, M., & Kahlon, U. Z. (2009). Environmental and economic benefits of saline-sodic soil reclamation using low-quality water and soil amendments in conjunction with a rice-wheat cropping system. Journal of Agronomy and Crop Science, 195, 124–136.

    Article  CAS  Google Scholar 

  • Murtaza, G. B., Murtaza, H. M., & Ghafoor, U. A. (2013). Amelioration of saline-sodic soil using gypsum and low-quality water in following sorghum-berseem crop rotation. International Journal of Agriculture and Biology, 15, 640–648.

    CAS  Google Scholar 

  • Newton, P. J., Myers, B. A., & West, D. W. (1991). Reduction in growth and yield of Jerusalem artichoke caused by soil salinity. Irrigation Science, 12, 213–221.

    Article  Google Scholar 

  • Nouri, H., Chavoshi Borujeni, S., Nirola, R., Hassanli, A., Beecham, S., Alaghmand, S., Saint, C., & Mulcahy, D. (2017). Application of green remediation on soil salinity treatment: A review on halophytoremediation. Process Safety and Environmental Protection, 107, 94–107.

    Article  CAS  Google Scholar 

  • Ouni, Y., Lakhdar, A., Scelza, R., Scotti, R., Abdelly, C., Barhoumi, Z., & Rao, M. A. (2013). Effects of two composts and two grasses on microbial biomass and biological activity in a salt-affected soil. Ecological Engineering, 60, 363–369.

    Article  Google Scholar 

  • Patil, P. K., Patil, V. K., & Ghonsikar, C. P. (1984). Effect of soil salinity on growth and nutritional status of guava (Psidium guajava L). International Journal of Tropical Agriculture, 2, 337–344.

    Google Scholar 

  • Qadir, M., & Oster, J. D. (2002). Vegetative bioremediation of calcareous sodic soils: History, mechanisms, and evaluation. Irrigation Science, 21, 91–101.

    Article  Google Scholar 

  • Qadir, M., & Oster, J. D. (2004). Crop and irrigation management strategies for saline sodic soils and waters aimed at environmentally sustainable agriculture. The Science of the Total Environment, 323, 1–19.

    Article  CAS  PubMed  Google Scholar 

  • Qadir, M., & Schubert, S. (2002). Degradation processes and nutrient constraints in sodic soils. Land Degradation and Development, 13, 275–294.

    Article  Google Scholar 

  • Qadir, M., Oster, J. D., Schubert, S., Noble, A. D., & Sahrawat, K. L. (2007). Phytoremediation of sodic and saline-sodic soils. Advances in Agronomy, 96, 197–247.

    Article  CAS  Google Scholar 

  • Rabhi, M., Talbi, O., Atia, A., Chedly, A., & Smaoui, A. (2008). Selection of halophyte that could be used in the bio reclamation of salt affected soils in arid and semi-arid regions. In Biosaline agriculture and high salinity tolerance. pp. 242–246.

    Google Scholar 

  • Rains, D. W., & Goyal, S. S. (2003). Strategies for crop production in saline environments: An overview. Journal of Crop Production, 7(1–2), 1–10.

    Article  Google Scholar 

  • Ram, J., Dagar, J. C., Singh, G. B., Lal Khajanchi Tanwar, V. S., Shoeran, S. S., Kaledhonkar, M. J., Dar, S. R., & Kumar, M. (2008). Biodrainage: Ecofriendly technique for combating waterlogging and salinity (Technical bulletin). Karnal: CSSRI.

    Google Scholar 

  • Rameshwaran, P., Tepe, A., Yazar, A., & Ragab, R. (2015). The effect of saline irrigation water on the yield of pepper: Experimental and modeling study. Irrigation and Drainage, 64, 41–49.

    Article  Google Scholar 

  • Rangarajan, S., Saleena, L. M., Vasudevan, P., & Nair, S. (2003). Biological suppression of rice diseases by Pseudomonas spp. under saline soil conditions. Plant and Soil, 251(1), 73–82.

    Article  Google Scholar 

  • Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology and Biochemistry, 39(10), 2661–2664.

    Article  CAS  Google Scholar 

  • Raza, Z. I., Rafiq, M. S., & Rauf, A. (2001). Gypsum application in slots for reclamation of saline sodic soils. International Journal of Agriculture and Biology, 3(3), 281–285.

    Google Scholar 

  • Reigosa, M. J., Pedrol, N., Sánchez-Moreiras, A., & González, L. (2002). Stress and allelopathy. In M. Reigosa & N. Pedrol (Eds.), Allelopathy from molecules to ecosystems (pp. 231–256). Enfield: Science Publishers.

    Google Scholar 

  • Rhoades, J. D., Kandiah, A., & Mashali, A. M. (1992). The use of saline waters for crop production (FAO’s irrigation and drainage, paper no 48). Rome: FAO.

    Google Scholar 

  • Ruiz-Lozano, J. M., Azcon, R., & Gomez, M. (1996). Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiologia Plantarum, 98, 767–772.

    Article  CAS  Google Scholar 

  • Samad, M. D., Merrey, D., Vermillion, D., Fuchs-Carsh, M., Mohtadullah, K., & Lenton, R. (1992). Irrigation management strategies for improving the performance of irrigated agriculture. Outlook on Agriculture, 21, 279–286.

    Article  Google Scholar 

  • Seckler, D., Molden, D., & Barker, R. (1999). Water scarcity in the twenty-first century. International Journal of Water Resources Development, 4, 34–45.

    Google Scholar 

  • Sharma, D. P., & Rao, K. V. G. K. (1996). Recycling drainage effluent for crop production In Proceedings of workshop on Waterlogging and Salinity in Irrigated Agriculture. 12–15 March 1996, CSSRI Karnal, pp. 134–147.

    Google Scholar 

  • Sharma, D. R., Sharma, D. K., & Minhas, P. S. (1993). Feasibility studies on use of saline/sodic waters in conjunction with canal water and amendments. In N. K. Tyagi, S. K. Kamra, P. S. Minhas, & N. T. Singh (Eds.), Sustainable irrigation in saline environment (pp. 110–117). Karnal: CSSRI.

    Google Scholar 

  • Sharma, D. R., Minhas, P. S., & Sharma, D. K. (2001). Response of rice–wheat to sodic irrigation and gypsum application. Journal of the Indian Society of Soil Science, 49(2), 324–327.

    Google Scholar 

  • Sirisena, D. N., Rathnayake, W. M. U. K., Herath, H. M. E., & Atapattu, K. B. (2011). Productivity improvement of saline rice lands in lands in Polonnaruwa district. Annals of Sri Lanka Department of Agriculture, 13, 113–125.

    Google Scholar 

  • Tyagi, N. K. (2001). Managing salinity in northwest India: some short and long term options. In Proceedings international conference on Agricultural Science and Technology, Beijing. 7–9 September 2001.

    Google Scholar 

  • Tyagi, N. K. (2003). In J. W. Kijne, R. Barker, & D. Molden (Eds.), Water productivity in agriculture: Limits and opportunities for improvement. Oxon: CAB International.

    Google Scholar 

  • Tyagi, N. K., & Sharma, D. P. (2000). Disposal of drainage water: recycling and reuse. In Proceedings 8th ICID International Drainage Workshop New Delhi, 31 Jan–4 Feb 2000. 3: 199–213.

    Google Scholar 

  • Umali, D. (1993). Irrigation-induced salinity: A growing problem for development and environment. In Key trends in feeding the world. Washington, DC: World Bank.

    Google Scholar 

  • Ãœnlükara, A., Cemek, B., Karaman, S., & Ersahin, S. (2008). Response of lettuce (Lactuca sativa var Crispa) to salinity of irrigation water. New Zealand Journal of Crop and Horticultural Science, 36, 263–271.

    Article  Google Scholar 

  • Vijayasatya, N., Chaganti, & Crohn, D. M. (2015). Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline–sodic soil amended with composts and biochar and leached with reclaimed water. Geoderma, 259(260), 45–55.

    Google Scholar 

  • Weller, D. M., Raaijmakers, J. M., McSpadden, B. B., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 309–348.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, J., Verma, J. P., Jaiswal, D. K., & Kumar, A. (2014). Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecological Engineering, 62, 123–128.

    Article  Google Scholar 

  • Yermiyahu, U., Nir, S., Benhayyim, G., & Kafkafi, U. (1994). Quantitative competition of calcium with sodium or magnesium for sorption sites on plasma-membrane vesicles of melon (Cucumis melo L) root-cells. The Journal of Membrane Biology, 138, 55–63.

    Article  CAS  PubMed  Google Scholar 

  • Yogev, A., Raviv, M., Hadar, Y., Cohen, R., Wolf, S., Gil, L., & Katan, J. (2010). Induced resistance as a putative component of compost suppressiveness. Biological Control, 54, 46–51.

    Article  Google Scholar 

  • Zeng, L., Shannon, M. C., & Lesch, S. M. (2001). Timing of salinity stress affects rice growth and yield components. Agricultural Water Management, 48, 191–206.

    Article  Google Scholar 

  • Zhang, H. X., & Blumwald, E. (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology, 19, 765–768.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H. X., Hodson, J. N., Williams, J. P., & Blumwald, E. (2001). Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proceedings of the National Academy of Sciences, 98, 12832–12836.

    Article  CAS  Google Scholar 

  • Zia, M. H., Ghafoor, A., & Saifullah, B. T. M. (2006). Comparison of sulphurus acid generator and alternate amendment to improve the quality of saline-sodic waters for sustainable rice yield. Paddy and Water Environment, 4, 153–162.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. S. Safeena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Safeena, M.I.S., Zakeel, M.C.M. (2019). Strategies for the Management of Soil-Borne Pathogens and Crop Production Under Saline Environment. In: Ansari, R., Mahmood, I. (eds) Plant Health Under Biotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-6043-5_11

Download citation

Publish with us

Policies and ethics