Skip to main content

Biocontrol Potential of Trichoderma spp.: Current Understandings and Future Outlooks on Molecular Techniques

  • Chapter
  • First Online:

Abstract

Trichoderma species are ubiquitous ascomycetous fungi that have a wide distribution in diverse ecological zones and display remarkable interactions with other microbes and plants in the rhizosphere. Biotic stress is raised as a major problem in front of the agricultural economist. In this context, Trichoderma strain-based biocontrol practices could help to achieve the goal of sustainable agriculture. Modern biotechnological tool-based analysis locks out the inherent information of Trichoderma persistence in extreme conditions. Advance biotechnological tools have been developed to map the genome and transcriptome of Trichoderma spp. that will unlock the information of novel genes and their significant role in disease protection, abiotic stress tolerance, and plant growth promotion. In the present chapter, we are discussing the molecular mechanisms of Trichoderma that helps the plant in growth promotion as well as pathogen defense.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abo-Elyousr, K. A., Abdel-Hafez, S. I., & Abdel-Rahim, I. R. (2014). Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. Journal of Phytopathology, 162(9), 567–574.

    Article  Google Scholar 

  • Ahuja, D. B., Ahuja, R. U., Srinivas, P., et al. (2012). Development of farmer-led integrated management of major pests of cauliflower cultivated in rainy season in India. The Journal of Agricultural Science, 4(2), 79–90.

    Google Scholar 

  • Aliferis, K. A., & Jabaji, S. (2010). Metabolite composition and bioactivity of Rhizoctonia solani sclerotial exudates. Journal of Agricultural and Food Chemistry, 58, 7604–7615.

    Article  CAS  PubMed  Google Scholar 

  • Ambuse, M. G., Chatage, V. S., & Bhale, U. N. (2012). Influence of Trichoderma spp. against Alternaria tenuissima inciting leaf spot of Rumex Acetosa L. Bioscience Discovery, 3, 259–262.

    Google Scholar 

  • Anand, P., Isar, J., Saran, S., et al. (2006). Bioaccumulation of copper by Trichoderma viride. Bioresource Technology, 97, 1018–1025.

    Article  CAS  PubMed  Google Scholar 

  • Anitha, K. N. (2011). Physiological and biochemical basis of resistance to purple seed stain of soybean Glycine max (L.) Merrill. Karnataka Journal of Agricultural Science, 25(4), 557–608.

    Google Scholar 

  • Antal, Z., Manczinger, L., Szakacs, G., et al. (2000). Colony growth, in vitro antagonism and secretion of extracellular enzymes in cold-tolerant strains of Trichoderma species. Mycological Research, 104, 545–549.

    Article  CAS  Google Scholar 

  • Bae, H., Sicher, R. C., Kim, M. S., et al. (2009). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60, 3279–3295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagwan, N. B. (2011). Evaluation of biocontrol potential of Trichoderma species against Sclerotium rolfsii, Aspergillus niger and Aspergillus flavus. Internation Journal of Plant Protection, 4, 107–111.

    Google Scholar 

  • Bailey, B. A., Bae, H., Strem, M. D., et al. (2006). Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta, 224(6), 1449–1464.

    Article  CAS  PubMed  Google Scholar 

  • Balaji, L. P., & Ahir, R. R. (2011). Evaluation of plant extracts and biocontrol agents against leaf spot disease of brinjal. Indian Phytopathology, 64(4), 378–380.

    Google Scholar 

  • Baroncelli, R., Zapparata, A., Piaggeschi, G., et al. (2016). Draft whole-genome sequence of Trichoderma gamsii T6085, a promising biocontrol agent of Fusarium head blight on wheat. Genome Announcements, 4(1), e01747–e01715.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartnicki-García, S. (1968). Cell wall chemistry, morphogenesis and taxonomy of fungi. Annual Review of Microbiology, 22, 87–108.

    Article  PubMed  Google Scholar 

  • Basu, A. (2009). Employing eco-friendly potato disease management allows organic tropical Indian production systems to prosper. Asian Journal of Food and Agro-Industry, Special Issue, S80–S87.

    Google Scholar 

  • Bebber, D. P. (2015). Range-expanding pests and pathogens in a warming world. Annual Review of Phytopathology, 53, 335–356.

    Article  CAS  PubMed  Google Scholar 

  • Begum, M. F., Rahman, M. A., & Alam, M. F. (2010). Biological control of Alternaria fruit rot of chili by Trichoderma species under field conditions. Mycobiology, 38(2), 113–117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benítez, T., Delgado-Jarana, J., Rincón, A. M., Rey, M., & Limón, M. C. (1998). Biofungicides: Trichoderma as a biocontrol agent against phytopathogenic fungi. In S. G. Pandalai (Ed.), Recent research developments in microbiology (Vol. 2, pp. 129–150). Trivandrum: Research Signpost.

    Google Scholar 

  • Benitez, T., Rincon, A. M., Limon, M. C., et al. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7, 249–260.

    CAS  PubMed  Google Scholar 

  • Bhat, K. A., Ali, A., & Wani, A. H. (2009). Evaluation of biocontrol agents against Rhizoctonia solani Kuhn and sheath blight disease of rice under temperate ecology. Plant Diseases Research, 24(1), 15–18.

    Google Scholar 

  • Bhatnagar-Mathur, P., Vadez, V., & Sharma, K. K. (2008). Transgenic approaches for abiotic stress tolerance in plants: Retrospect and prospects. Plant Cell Reports, 27(3), 411–424. https://doi.org/10.1007/s00299-007-0474-9.

    Article  CAS  PubMed  Google Scholar 

  • Biswas, K. K., & Sen, C. (2000). Management of stem rot of groundnut caused by Sclerotium rolfsii through Trichoderma harzianum. Indian Phytopathology, 53(3), 290–295.

    Google Scholar 

  • Błaszczyk, L., Popiel, D., Chełkowski, J., et al. (2011). Species diversity of Trichoderma in Poland. Journal of Applied Genetics, 52, 233–243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brian, P. W., & Hemming, H. G. (1945). Gliotoxin, a fungistatic metabolic product of Trichoderma viride. The Annals of Applied Biology, 32, 214–220.

    Article  CAS  PubMed  Google Scholar 

  • Brotman, Y., Briff, E., Viterbo, A., & Chet, I. (2008). Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiology, 147, 779–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brotman, Y., Landau, U., Cuadros-Inostroza, Á., et al. (2013). Trichoderma-plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathogens, 9, e1003221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushley, K. E., & Turgeon, B. G. (2010). Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evolutionary Biology, 10, 26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carsolio, C., Benhamou, N., Haran, S., et al. (1999). Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Applied and Environmental Microbiology, 65, 929–935.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarthy, S., Nagamani, K., Ratnakumari, A. R., et al. (2011). Antagonistic ability against Rhizoctonia solani and pesticide tolerance of Trichoderma strains. Advances in Environmental Biology, 5(9), 2631–2638.

    Google Scholar 

  • Chawla, N., & Gangopadhyay, S. (2009). Integration of organic amendments and bioagents in suppressing cumin wilt caused by Fusarium oxysporum f. sp. cumini. Indian Phytopathology, 62(2), 209–216.

    Google Scholar 

  • Cohen-Kupiec, R., Broglie, K. E., Friesem, D., et al. (1999). Molecular characterization of a novel β-1,3-exoglucanase related to mycoparasitism of Trichoderma harzianum. Gene, 226, 147–154.

    Article  CAS  PubMed  Google Scholar 

  • Coley-Smith, J. R., Ghaffar, A., & Javed, Z. U. R. (1974). The effect of dry conditions on subsequent leakage and rotting of fungal sclerotia. Soil Biology and Biochemistry, 6, 307–312.

    Article  Google Scholar 

  • Contreras-Cornejo, H. A., Macias-Rodríguez, L., Cortés-Penagos, C., et al. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology, 149, 1579–1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Cornejo, H. A., Macías-Rodríguez, L., del Val, E., et al. (2016). Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS Microbiology Ecology, 92, fiw036.

    Article  PubMed  CAS  Google Scholar 

  • Cortes, C., Gutierrez, A., Olmedo, V., Inbar, J., Chet, I., & Herrera Estrella, A. (1998). The expression of genes involved in parasitism by Trichoderma harzianum is triggered by a diffusible factor. Molecular & General Genetics, 260, 218–225.

    Article  CAS  Google Scholar 

  • Cruz, J., Pintor-Toro, J. A., Benítez, T., et al. (1995). A novel endo-b-1, 3-glucanase, BGN13.1, involved in the mycoparasitism of Trichoderma harzianum. Journal of Bacteriology, 77(23), 6937–6945.

    Article  Google Scholar 

  • da Silva, L. C., Honorato, T. L., Cavalcante, R. S., Franco, T. T., & Rodrigues, S. (2012). Effect of pH and temperature on enzyme activity of chitosanase produced under solid stated fermentation by Trichoderma spp. Indian Journal of Microbiology, 52, 60–65.

    Article  PubMed  CAS  Google Scholar 

  • Degenkolb, T., Gräfenhan, T., Berg, A., et al. (2006). Peptaibiomics: Screening for polypeptide antibiotics (peptaibiotics) from plant-protective Trichoderma species. Chemistry and Biodiversity, 3, 593–610.

    Article  CAS  PubMed  Google Scholar 

  • Degenkolb, T., Dieckmann, R., Nielsen, K. F., et al. (2008). The Trichoderma brevicompactum clade: A separate lineage with new species, new peptaibiotics, and mycotoxins. Mycological Progress, 7, 177–219.

    Article  Google Scholar 

  • Delgado-Jarana, J., Rincon, A. M., & Benitez, T. (2002). Aspartyl protease from Trichoderma harzianum CECT 2413: Cloning and characterization. Microbiology, 148, 1305–1315.

    Article  CAS  PubMed  Google Scholar 

  • Dilbo, C., Alemu, M., Lencho, A., & Hunduma, T. (2015). Integrated Management of Garlic White rot (Sclerotium cepivorum Berk) using some fungicides and antifungal Trichoderma species. Journal of Plant Pathology & Microbiology, 6(1), 251. https://doi.org/10.4172/2157-7471.1000251.

    Article  CAS  Google Scholar 

  • Djonovic, S., Pozo, M. J., Dangott, L. J., et al. (2006). Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Molecular Plant-Microbe Interactions, 19, 838–853.

    Article  CAS  PubMed  Google Scholar 

  • Djonovic, S., Vargas, W. A., Kolomiets, M. V., Horndeski, M., Wiest, A., & Kenerley, C. M. (2007). A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiology, 145, 875–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domínguez, S., Rubio, M. B., Cardoza, R. E., et al. (2016). Nitrogen metabolism and growth enhancement in tomato plants challenged with Trichoderma harzianum expressing the Aspergillus nidulans Acetamidase amdS gene. Frontiers in Microbiology, 7, 1182.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donoso, E. P., Bustamante, R. O., Carú, M., et al. (2008). Water deficit as a driver of the mutualistic relationship between the fungus Trichoderma harzianum and two wheat genotypes. Applied and Environmental Microbiology, 74, 1412–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donzelli, B. G. G., Lorito, M., Scala, F., et al. (2001). Cloning, sequence and structure of a gene encoding an antifungal glucan 1,3-β-glucosidase from Trichoderma atroviride (T. harzianum). Gene, 277, 199–208.

    Article  CAS  PubMed  Google Scholar 

  • Druzhinina, I. S., Kubicek, C. P., Komón-Zelazowska, M., et al. (2011). The Trichoderma harzianum demon: Complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evolutionary Biology, 10, 94.

    Article  CAS  Google Scholar 

  • Dubey, S. C., & Patel, B. (2001). Evaluation of fungal antagonists against Thanatephorus cucumeris causing web blight of urd and mung bean. Indian Phytopathology, 54(2), 206–209.

    Google Scholar 

  • Dubey, S. C., Tripathi, A., Bhavani, R., & Singh, B. (2011). Evaluation of seed dressing and soil application formulations of Trichoderma species for integrated management of dry root rot of chickpea. Biocontrol Science and Technology, 21, 93–100.

    Article  Google Scholar 

  • Elad, Y., Freeman, S., & Monte, E. (Eds.). (2000). Biocontrol agents: Mode of action and interaction with other means of control (IOBC WPRS Bulletin) (Vol. 24). España: Sevilla.

    Google Scholar 

  • El-Fiky, Z. A., Shalaby, O. Y., & Ahmed, N. F. (2006). Characterization of some Trichoderma isolates antagonistic to Rhizoctonia solani the causal of bean root rot. Proceeding of the second conference on farm integrated pest management 16–18 Jan 2006 (pp. 154–171).

    Google Scholar 

  • El-Katatny, M. H., Gudelj, M., Robra, K. H., et al. (2001). Characterization of a chitinase and an endo-β-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Applied Microbiology and Biotechnology, 56, 137–143.

    Article  CAS  PubMed  Google Scholar 

  • El Komy, M. H., Saleh, A. A., Eranthodi, A., & Molan, Y. Y. (2014). Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. Plant Pathology Journal, 31(1), 50–60.

    Article  Google Scholar 

  • Evidente, A., Cabras, A., Maddau, L., et al. (2003). Videpyronone, a new antifungal 6-substituted 2H-pyran-2-one produce by Trichoderma viride. Journal of Agricultural and Food Chemistry, 51, 6957–6960.

    Article  CAS  PubMed  Google Scholar 

  • Fenice, M., & Gooday, G. W. (2006). Mycoparasitic actions against fungi and oomycetes by a strain (CCFEE 5003) of the fungus Lecanicillium muscarium isolated in Continental Antarctica. Annals of Microbiology, 56(1), 1–6.

    Article  Google Scholar 

  • Fenice, M., Selbmann, L., Di Giambattista, R., et al. (1998). Chitinolytic activity at low temperature of an Antarctic strain (A3) of Verticillium lecanii. Research in Microbiology, 149, 289–300.

    Article  CAS  PubMed  Google Scholar 

  • Figueirêdo, G. S., Figueiredo, L. C., Cavalcanti, F. C. N., Santos, A. C., Costa, A. F., & Oliveira, N. T. (2010). Biological and chemical control of Sclerotinia sclerotiorum using Trichoderma spp. and Ulocladium atrum and pathogenicity to bean plants. Brazilian Archives of Biology and Technology, 53(1), 1–9.

    Article  Google Scholar 

  • Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., et al. (2015). Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Frontiers in Plant Science, 6, 978.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujita, M., Fujita, Y., Noutoshi, Y., et al. (2006). Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9, 436–442.

    Article  PubMed  Google Scholar 

  • Garo, E., Starks, C. M., Jensen, P. R., et al. (2003). Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens. Journal of Natural Products, 66, 423–426.

    Article  CAS  PubMed  Google Scholar 

  • Gaur, R. B., Sharma, R. N., & Singh, V. (2005). Manipulations in the mycoparasite application techniques against Rhizoctonia root rot of cotton. Indian Phytopathology, 58(4), 402–409.

    Google Scholar 

  • Geremia, R. A., Goldman, G. H., Jacobs, D., et al. (1993). Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. Molecular Microbiology, 8, 603–613.

    Article  CAS  PubMed  Google Scholar 

  • Gill, S. S., Gill, R., Anjum, N. A., et al. (2013). Transgenic approaches for abiotic stress tolerance in crop plants. Plant Stress, 7, 73–83.

    Google Scholar 

  • Gomathinayagam, S., Rekha, M., Murugan, S. S., et al. (2010). The biological control of paddy disease brown spot (Bipolaris oryzae) by using Trichoderma viride in vitro condition. Journal of Biopesticides, 3(1), 93–95.

    Google Scholar 

  • Gruber, S., & Seidl-Seiboth, V. (2012). Self versus non-self: Fungal cell wall degradation in Trichoderma. Microbiology, 158, 26–34.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, M., Dohroo, N. P., Gangta, V., & Shanmugam, V. (2010). Effect of microbial inoculants on rhizome diseaseand growth parameters of ginger. Indian Phytopathology., 63(4), 438–441.

    Google Scholar 

  • Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96, 190–194.

    Article  CAS  PubMed  Google Scholar 

  • Harman, G. E. (2011). Multifunctional fungal plant symbionts: New tools to enhance plant growth and productivity. The New Phytologist, 189, 647–649.

    Article  PubMed  Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., et al. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Henis, Y., Adam, P. B., Lewis, L. A., et al. (1984). Penetration of sclerotia of Sclerotium rolfsii by Trichoderma spp. Phytopathology, 73, 1043–1046.

    Article  Google Scholar 

  • Herrera-Estrella, A., & Chet, I. (2003). In D. Arora (Ed.), Handbook of fungal biotechnology. New York:Dekker (in press).

    Google Scholar 

  • Heydari, A., & Pessarakli, M. A. (2010). Review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10(4), 273–290.

    Article  Google Scholar 

  • Howell, C. R. (1998). In G. E. Harman & C. P. Kubicek (Eds.), The role of antibiosis in biocontrol in Trichoderma and Gliocladium (Vol. 2, pp. 173–183). London: Taylor and Francis Ltd..

    Google Scholar 

  • Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases; the history and evolution of current concepts. Plant Disease, 87, 4–10.

    Article  CAS  PubMed  Google Scholar 

  • Howell, C. R. (2006). Understanding the mechanisms employed by Trichoderma virens to affect biological control of cotton diseases. Phytopathology, 96, 178–180.

    Article  PubMed  Google Scholar 

  • Hukma, R., & Pandey, R. N. (2011). Efficacy of biocontrol agents and fungicides in the management of wilt of pigeonpea. Indian Phytopathology, 64(3), 269–271.

    Google Scholar 

  • Ihrmark, K., Asmail, N., Ubhayasekera, W., et al. (2010). Comparative molecular evolution of Trichoderma chitinases in response to mycoparasitic interactions. Evolutionary Bioinformatics, 6, 1–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadon, K. S. (2009). Eco-friendly management of brinjal collar rot caused by Sclerotium rolfsii Sacc. Indian Phytopathology, 62(3), 345–347.

    Google Scholar 

  • Jat, J. G., & Agalave, H. R. (2013). Antagonistic properties of Trichoderma species against oilseed-borne fungi. Scientific Research Reporter, 3(2), 171–174.

    Google Scholar 

  • Jayelakshmi, C., Rettinassababady, N., & Sushma, C. (2013). Integrated management of sesame diseases. Journal of Biopesticides, 6(1), 68–70.

    Google Scholar 

  • John, R. P., Tyagi, R. D., Prévost, D., et al. (2010). Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Protection, 2, 1452–1459.

    Article  Google Scholar 

  • Joshi, B. B., Bhatt, R. P., & Bahukhandi, D. (2010). Antagonistic and plant growth activity of Trichoderma isolates of Western Himalayas. Journal of Environmental Biology, 31(6), 921–928.

    CAS  PubMed  Google Scholar 

  • Kapoor, A. S. (2008). Biocontrol potential of Trichoderma spp. against important soilborne diseases of vegetable crops. Indian Phytopathology, 61(4), 492–498.

    Google Scholar 

  • Karthikeyan, M., Radhika, K., Bhaskaran, R., et al. (2006). Rapid detection of Ganoderma disease of coconut and assessment of inhibition effect of various control measures by immunoassay and PCR. Plant Protection Science, 42, 49–57.

    Article  Google Scholar 

  • Khan, M. Y., Haque, M. M., Molla, A. H., et al. (2016). Antioxidant compounds and minerals in tomatoes by Trichoderma enriched biofertilizer and their relationship with the soil environments. Journal of Integrative Agriculture, 15, 60345–60347.

    Google Scholar 

  • Khodke, S. W., & Raut, B. T. (2010). Management of root rot/collar rot of soybean. Indian Phytopathology, 63(3), 298–301.

    Google Scholar 

  • Khosla, C. (2009). Structures and mechanisms of polyketide synthases. The Journal of Organic Chemistry, 74, 6416–6420.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D. J., Baek, J. M., Uribe, P., et al. (2002). Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Current Genetics, 40, 374–384.

    Article  CAS  PubMed  Google Scholar 

  • Kishore, G. K., Pande, S., Rao, J. N., et al. (2001). Biological control of crown rot of groundnut by Trichoderma harzianum and T. viride. International Arachis Newsletter, 21, 39–40.

    Google Scholar 

  • Kotake, T., Kaneko, S., Kubomoto, A., et al. (2004). Molecular cloning and expression in Escherichia coli of a Trichoderma viride endo-β-(1→6)-galactanase gene. Biochemical Journal, 377, 749–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotasthane, A., Agrawal, T., Kushwah, R., et al. (2015). In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. European Journal of Plant Pathology, 141, 523–543.

    Article  CAS  Google Scholar 

  • Kubicek, C. P., & Penttila, M. E. (1998). Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In G. E. Harman & C. P. Kubicek (Eds.), Trichoderma and Gliocladium enzymes biological control and commercial applications (Vol. 2, pp. 49–71). London: Taylor and Francis.

    Google Scholar 

  • Kubicek, C. P., Mach, R. L., Peterbauer, C. K., et al. (2001). Trichoderma: From genes to biocontrol. Journal of Plant Pathology, 83, 11–24.

    CAS  Google Scholar 

  • Kubicek, C. P., Herrera-Estrella, A., Seidl-Seiboth, V., et al. (2011). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biology, 12–40.

    Google Scholar 

  • Kumar, A., Keren, S., Mukherjee, M., et al. (2010). Overlapping and distinct functions of two Trichoderma virens MAP kinases in cell-wall integrity, antagonistic properties and repression of conidiation. Biochemical and Biophysical Research Communications, 398, 765–770.

    Article  CAS  PubMed  Google Scholar 

  • Kundu, A., & Chatterjee, N. C. (2003). Antagonism of Trichoderma species to Polyporus sanguineus- an incitant of bamboo decay. The Indian Forester, 129(10), 1281–1288.

    Google Scholar 

  • Latge, J. P. (2007). The cell wall: A carbohydrate armour for the fungal cell. Molecular Microbiology, 66, 279–290.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., & Yang, Q. (2007). Isolation and characterization of a β-tubulin gene from Trichoderma harzianum. Biochemical Genetics, 45, 529–534.

    Article  CAS  PubMed  Google Scholar 

  • Limón, M. C., Chacón, M. R., Mejías, R., Delgado-Jarana, J., Rincón, A. M., Codón, A. C., & Benítez, T. (2004). Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding-domain. Applied Microbiology and Biotechnology, 64, 675–685.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y. R., Lo, C. T., Liu, S. Y., et al. (2012). Involvement of pachybasin and emodin in self-regulation of Trichoderma harzianum myco-parasitic coiling. Journal of Agricultural and Food Chemistry, 60, 2123–2128.

    Article  CAS  PubMed  Google Scholar 

  • Liu, R., Gu, Q. Q., Zhu, W. M., et al. (2005). Trichodermamide A and aspergillazine A, two cytotoxic modified dipeptides from a marine derived fungus Spicaria elegans. Archives of Pharmacal Research, 28, 1042–1046.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Yang, Q., & Song, J. (2009). A new serine protease gene from Trichoderma harzianum is expressed in Saccharomyces cerevisiae. Applied Biochemistry and Microbiology, 45(1), 22–26.

    Article  CAS  Google Scholar 

  • López-Bucio, J., Pelagio-Flores, R., & Herrera-Estrella, A. (2015). Trichoderma as biostimulant: Exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae, 196, 109–123.

    Article  Google Scholar 

  • LopezMondejar, R., Ros, M., & Pascual, J. A. (2011). Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biological Control, 56, 59–66.

    Article  CAS  Google Scholar 

  • Lorito, M., Woo, S. L., Harman, G. E., et al. (2010). Translational research on Trichoderma: From ‘omics to the field. Annual Review of Phytopathology, 48, 395–417.

    Article  CAS  PubMed  Google Scholar 

  • Mahdizadehnaraghi, R., Heydari, A., Zamanizadeh, H. R., Rezaee, S., & Nikan, J. (2015). Biological control of garlic (Allium) white rot disease using antagonistic fungi-based bioformulations. Journal of Plant Protection Research, 55(2), 136–141.

    Article  CAS  Google Scholar 

  • Marcello, C. M., Steindorff, A. S., Silva, S. P., Silva, R. N., & Bataus, L. A. M. (2010). Expression analysis of the exo-β-1,3-glucanase from the mycoparasitic fungus Trichoderma asperellum. Microbiological Research, 165, 75–81.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, D., Berka, R. M., Henrissat, B., et al. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26, 553–560.

    Article  CAS  PubMed  Google Scholar 

  • Marzano, M., Gallo, A., & Altomare, C. (2013). Improvement of biocontrol efficacy of Trichoderma harzianum vs. Fusarium oxysporum f. Sp. lycopersici through UV-induced tolerance to fusaric acid. Biological Control, 67, 397–408.

    Article  CAS  Google Scholar 

  • McIntyre, M., Nielsen, J., Arnau, J., et al. (2004) Proceedings of the 7th European conference on fungal genetics. Copenhagen, Denmark.

    Google Scholar 

  • Mendoza-Mendoza, A., Rosales-Saavedral, T., Cortés, C., et al. (2007). The MAP kinase TVK1 regulates conidiation, hydrophobicity and the expression of genes encoding cell wall proteins in the fungus Trichoderma virens. Microbiology, 153, 2137–2147.

    Article  CAS  PubMed  Google Scholar 

  • Min, Y. S., Kim, B. G., Lee, C., et al. (2002). Purification, characterization, and cDNA cloning of Xylanase from fungus Trichoderma strain SY. Journal of Microbiology and Biotechnology, 12(6), 1–5.

    Google Scholar 

  • Mishra, R. K., & Gupta, R. P. (2012). In vitro evaluation of plant extracts, bio-agents and fungicides against purple blotch and Stemphylium blight of onion. J Med Plants Res, 6(48), 5840–5843.

    Google Scholar 

  • Mishra, D. S., Gupta, A. K., Prajapati, C. R., et al. (2011). Combination of fungal and bacterial antagonists for management of root and stem rot disease of soybean. Pakistan Journal of Botany, 43(5), 2569–2574.

    Google Scholar 

  • Montero, M., Sanz, L., Rey, M., et al. (2007). Cloning and characterization of bgn16·3, coding for a β-1,6-glucanase expressed during Trichoderma harzianum mycoparasitism. Journal of Applied Microbiology, 103, 1291–1300.

    Article  CAS  PubMed  Google Scholar 

  • Montero-Barrientos, M., Hermosa, R., Cardoza, R. E., et al. (2010). Transgenic expression of the Trichoderma harzianumHSP70 gene increases Arabidopsis resistance to heat and other abiotic stresses. Journal of Plant Physiology, 167, 659–665.

    Article  CAS  PubMed  Google Scholar 

  • MoranDiez, E., Hermosa, R., Ambrosino, P., Cadoza, R. E., & Gutierrez, S. (2009). The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum-plant beneficial interaction. Am Phytopathol Soc, 22(8), 1021–1031.

    CAS  Google Scholar 

  • Mukherjee, P., Latha, J., Hadar, R., et al. (2003). TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryotic Cell, 2, 446–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee, P. K., Wiest, A., Ruiz, N., Keightley, A., Moran-Diez, M. E., McCluskey, K., Pouchus, Y. F., & Kenerley, C. M. (2011). Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. The Journal of Biological Chemistry, 286, 4544–4554.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, M., Mukherjee, P. K., Horwitz, B. A., Zachow, C., Berg, G., & Zeilinger, S. (2012). Trichoderma–plant–pathogen interactions: Advances in genetics of biological control. Indian Journal of Microbiology, 52(4), 522–529.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naeimi, S., Okhovvat, S. M., Javan-Nikkhah, M., Vágvölgyi, C., Khosravi, V., & Kredics, L. (2010). Biological control of Rhizoctonia solani AG1-1A, the causal agent of rice sheath blight with Trichoderma strains. Phytopathologia Mediterranea, 49, 287–300.

    Google Scholar 

  • Nath, V. S., John, N. S., Anjanadevi, I. P., et al. (2014). Characterization of Trichoderma spp. antagonistic to Phytophthora colocasiae associated with leaf blight of taro. Annales de Microbiologie, 64(4), 1513–1522.

    Article  CAS  Google Scholar 

  • Neuhof, T., Dieckmann, R., Druzhinina, I. S., et al. (2007). Intact-Cell MALDI-TOF mass spectrometry analysis of peptaibol formation by the genus Trichoderma: can molecular phylogenic knowledge predict peptaibol structures? Microbiology, 153(10), 3417–3437.

    Article  CAS  PubMed  Google Scholar 

  • Nicolás, C., Hermosa, R., Rubio, B., et al. (2014). Trichoderma genes in plants for stress tolerance- status and prospects. Plant Science, 228, 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, K. F., Gräfenhan, T., Zafari, D., et al. (2005). Trichothecene production by Trichoderma brevicompactum. Journal of Agricultural and Food Chemistry, 53, 8190–8196.

    Article  CAS  PubMed  Google Scholar 

  • Omann, M. R., Lehner, S., Escobar Rodriguez, C., Brunner, K., & Zeilinger, S. (2012). The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology, 158, 107–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omero, C., Inbar, J., Rocha-Ramírez, V., et al. (1999). G protein activators and cAMP promote mycoparasitic behaviour in Trichoderma harzianum. Mycological Research, 103, 1637–1642.

    Article  CAS  Google Scholar 

  • Pal, K. K., & Gardener, B. M. (2006). Biological control of plant pathogens. The Plant Health Instructor. https://doi.org/10.1094/PHI-A-2006-1117-02. APSnet. p25.

  • Pan, S., & Das, A. (2011). Control of cowpea (Vigna sinensis) root and collar rot (Rhizoctonia solani) with some organic formulations of Trichoderma harzianum under field condition. The Journal of Plant Protection Science, 3(2), 20–25.

    Google Scholar 

  • Pandey, S., & Pundhir, V. S. (2013). Mycoparasitism of potato black scurf pathogen (Rhizoctonia solani Kuhn) by biological control agents to sustain production. Indian J Hort, 70(1), 71–75.

    Google Scholar 

  • Papapostolou, I., & Georgiou, C. D. (2010). Superoxide radical induces sclerotial differentiation in filamentous phytopathogenic fungi: A superoxide dismutase mimetics study. Microbiology, 156, 960–966.

    Article  CAS  PubMed  Google Scholar 

  • Patil, H. J., & Solanki, M. K. (2016). Microbial inoculant: Modern era of fertilizers and pesticides. In Microbial inoculants in sustainable agricultural productivity (pp. 319–343). New Delhi: Springer.

    Chapter  Google Scholar 

  • Patron, N. J., Waller, R. F., Cozijnsen, A. J., Straney, D. C., Gardiner, D. M., Nierman, W. C., & Howlett, B. J. (2007). Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes. BMC Evolutionary Biology, 7, 174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pautasso, M., Döring, T. F., Garbelotto, M., et al. (2012). Impacts of climate change on plant diseases-opinions and trends. European Journal of Plant Pathology, 133, 295–313.

    Article  Google Scholar 

  • Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., et al. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375.

    Article  CAS  PubMed  Google Scholar 

  • Pinto, R. J., Mapeli, N. C., Cremon, C., & Silva, E. F. (2014). Germinação e crescimento inicial de mangaba (Hancornia speciosa Gomes) em função de preparados homeopáticos Carbo vegetabilis e dias após o despolpamento para semeadura. Revista Agrarian, 7(24), 244–250.

    Google Scholar 

  • Pozo, M. J., JongMin, B., Garcia, J. M., et al. (2004). Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genetics and Biology, 41, 336–348.

    Article  CAS  PubMed  Google Scholar 

  • Prakasam, V., & Sharma, P. (2012). Trichoderma harzianum (Th-3) a potential strain to manage the purple blotch of onion (Allium cepa L.) caused by Alternaria porri under north Indian plains. Journal of Agricultural Science, 4(10), 266–272.

    Article  Google Scholar 

  • Rabeendran, N., Moot, D. J., Jones, E. E., & Stewart, A. (2000). Inconsistent growth promotion of cabbage and lettuce from Trichoderma isolates. New Zealand Plant Protection, 53, 143–146.

    Google Scholar 

  • Raguchander, T., Rajappan, K., & Samiappan, R. (1997). Evaluating methods of application of biocontrol agent in the control of mungbean root rot. Indian Phytopathology, 50(2), 229–234.

    Google Scholar 

  • Rahman, M. A., Rahman, M. M., Kamruzzaman, M., Begum, M. F., & Alam, M. F. (2012). Use of culture filtrates of Trichoderma strains as a biological control agent against Colletotrichum capsici causing anthracnose fruit rot disease of chili. Journal of Biodiversity and Environmental Sciences, 2(1), 9–18.

    Google Scholar 

  • Rai, S., Kashyap, P. L., Kumar, S., et al. (2016a). Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. Springerplus, 5, 1939. https://doi.org/10.1186/s40064-016-3657-4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rai, S., Kashyap, P. L., Kumar, S., et al. (2016b). Comparative analysis of microsatellites in five different antagonistic Trichoderma species for diversity assessment. World Journal of Microbiology and Biotechnology, 32, 8.

    Article  PubMed  CAS  Google Scholar 

  • Rakholiya, K. B., & Jadeja, K. B. (2010). Effect of seed treatment of biocontrol agents and chemicals for the management of stem and pod rot of groundnut. International Journal of Plant Protection, 3(2), 276–278.

    Google Scholar 

  • Rawal, P., Sharma, P., Singh, N. D., et al. (2013). Evaluation of fungicides, neem bio-formulations and biocontrol agent for the management of root rot of safed musli caused by Rhizoctonia solani. Journal of Mycology and Plant Pathology, 43(30), 297.

    CAS  Google Scholar 

  • Ray, A., Kumar, P., & Tripathi, H. S. (2007). Evaluation of bioagents against Rhizoctonia solani Kuhn the cause of aerial blight of soybean. Indian Phytopathology, 60(4), 532–534.

    Google Scholar 

  • Reino, J. L., Guerrero, R. F., Hernandez-Galan, R., et al. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7, 89–123.

    Article  CAS  Google Scholar 

  • Reithner, B., Brunner, K., Schuhmacher, R., Peissl, I., Seidl, V., Krska, R., & Zeilinger, S. (2005). The G protein α subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genetics and Biology, 42(9), 749–760.

    Article  CAS  PubMed  Google Scholar 

  • Reithner, B., Schuhmacher, R., Stoppacher, N., et al. (2007). Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protection. Fungal Genetics and Biology, 44, 1123–1133.

    Article  CAS  PubMed  Google Scholar 

  • Rocha-Ramírez, V., Omero, C., Chet, I., et al. (2002). Trichoderma atroviride G-protein α-subunit gene tag1 is involved in mycoparasitic coiling and conidiation. Eukaryotic Cell, 1, 594–605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romao-Dumaresq, A. S., Araújo, W. L., Tabolt, N. J., & Thornton, C. R. (2012). RNA interference of endochitinases in the sugarcane endophyte Trichoderma virens 223 reduces its fitness as a biocontrol agent of pineapple disease. PLoS One, 7(10), e47888. https://doi.org/10.1371/journal.pone.0047888. PMID: 23110120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotblat, B., Enshell-Seijffers, D., Gershoni, J. M., et al. (2002). Identification of an essential component of the elicitation active site of the EIX protein elicitor. The Plant Journal, 32, 1049–1055.

    Article  CAS  PubMed  Google Scholar 

  • Rubio, M. B., Hermosa, R., Reino, J. L., et al. (2009). Thctf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl-2H-pyran-2-one production and antifungal activity. Fungal Genetics and Biology, 46, 17–27.

    Article  CAS  PubMed  Google Scholar 

  • Ruocco, M., Lanzuise, S., Lombardi, N., et al. (2015). Multiple roles and effects of a novel Trichoderma hydrophobin. Molecular Plant-Microbe Interactions, 28, 167–179.

    Article  CAS  PubMed  Google Scholar 

  • Saadia, M., Ahmed, S., & Jamil, A. (2008). Isolation and cloning of cre1 gene from a filamentous fungus Trichoderma harzianum. Pakistan Journal of Botany, 40(1), 421–426.

    CAS  Google Scholar 

  • Saiprasad, G. V. S., Mythili, J. B., Anand, L., et al. (2009). Development of Trichoderma harzianum gene construct conferring antifungal activity in transgenic tobacco. Indian Journal of Biotechnology, 8, 199–206.

    CAS  Google Scholar 

  • Samuels, G. J. (2006). Trichoderma: Systematics, the sexual state, and ecology. Phytopathology, 96, 195–206.

    Article  CAS  PubMed  Google Scholar 

  • Sankar, P., & Jeyarajan, R. (1996a). Seed treatment formulation of Trichoderma and Gliocladium for biological control of Macrophomina phaseolina in sesamum. Indian Phytopathology, 49(2), 148–151.

    Google Scholar 

  • Sankar, P., & Jeyarajan, R. (1996b). Compatibility of antagonists with Azospirillum in Sesamum. Indian Phytopathology., 49(1), 67–71.

    Google Scholar 

  • Saravanakumar, K., Arasu, V. S., & Kathiresan, K. (2013). Effect of Trichoderma on soil phosphate solubilisation and growth improvement of Avicennia marina. Aquatic Botany, 104, 101–105.

    Article  CAS  Google Scholar 

  • Saxena, A., Raghuwanshi, R., & Singh, H. B. (2015). Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L. Journal of Basic Microbiology, 55, 195–206.

    Article  CAS  PubMed  Google Scholar 

  • Segarra, G., Van der Ent, S., Trillas, I., & Pieterse, C. M. J. (2009). MYB72 a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biology, 1190–1196. https://doi.org/10.1111/j.1438-8677.2008.00162.x.

    Article  CAS  PubMed  Google Scholar 

  • Seidl, V., Song, L., Lindquist, E., et al. (2009). Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics, 10, 567.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selim, M. E. (2015). Effectiveness of Trichoderma biotic applications in regulating the related defense genes affecting tomato early blight disease. J Plant Pathol Microb, 6(311), 2.

    Google Scholar 

  • Selvakumar, R. (2008). Bioformulations for management of late light of potato in north eastern India (pp. 3–5). Beijing: Third international late blight conference.

    Google Scholar 

  • Shahnaz, E., Razdan, V. K., Rizvi, S. E. H., Rather, T. R., Gupta, S., & Andrabi, M. (2013). Integrated disease management of foliar blight disease of onion: A case study of application of confounded factorials. J Agri Sci, 5(1), 17–22.

    Google Scholar 

  • Sharma, P., Singh, L., & Adlakha, D. (2001). Antagonistic potential of Trichoderma and Aspergillus species on Sclerotinia sclerotiorum (Lib.) de Barry causing rots in cabbage and cauliflower. Pesticides Information, 2, 41–44.

    Google Scholar 

  • Sharma, P., Sain, S. K., & James, S. (2003). Compatibility study of Trichoderma isolates with fungicides against damping-off of cauliflower and tomato caused by Pythium aphanidermatum. Pesticide Research Journal, 15(2), 133–138.

    Google Scholar 

  • Sharma, S., Rai, P., Rai, S., Srivastava, M., et al. (2017). Genomic revolution in crop disease diagnosis: A review. In S. S. Singh (Ed.), Plants and microbes in an ever changing environment (pp. 257–293). Hauppauge: Nova Science Publishers.

    Google Scholar 

  • Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43.

    Article  CAS  PubMed  Google Scholar 

  • Siameto, E. N., Okoth, S., Amugune, N. O., et al. (2011). Molecular characterization and identification of biocontrol isolates of Trichoderma harzianum from Embu district, Kenya. Tropic Subtropic Agroecosys, 13, 81–90.

    Google Scholar 

  • Siddiquee, S., Cheong, B. E., Taslima, K., et al. (2012). Separation and identification of volatile compounds from liquid cultures of Trichoderma harzianum by GC-MS using three different capillary columns. Journal of Chromatographic Science, 50, 358–367.

    Article  CAS  PubMed  Google Scholar 

  • Singh, O. V., Agarwal, V. K., & Nene, Y. L. (1973). Seed health studies in soybean raised in the Nainital tarai. Indian Phytopathology, 26, 260–267.

    Google Scholar 

  • Sivasithamparam, K., & Ghisalberti, E. L. (1998). Secondary metabolism in Trichoderma and Gliocladium. In C. P. Kubicek & G. E. Harman (Eds.), Trichoderma and Gliocladium basic biology taxonomy and genetics (Vol. 1, pp. 139–191). London: Taylor and Francis.

    Google Scholar 

  • Solanki, M. K., Singh, N., Singh, R. K., et al. (2011). Plant defense activation and management of tomato root rot by a chitin-fortified Trichoderma/Hypocrea formulation. Phytoparasitica, 3, 471–481.

    Article  CAS  Google Scholar 

  • Solanki, M. K., Robert, A. S., Singh, R. K., et al. (2012a). Characterization of mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato. Current Microbiology, 65, 330–336.

    Article  CAS  PubMed  Google Scholar 

  • Solanki, M. K., Kumar, S., Panday, A. K., et al. (2012b). Diversity and antagonistic potential of Bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani. Biocontrol Science and Technology, 22, 203–217.

    Google Scholar 

  • Solanki, M. K., Singh, R. K., Srivastava, S., Kumar, S., Kashyap, P. L., Srivastava, A. K., & Arora, D. K. (2014). Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. Journal of Basic Microbiology, 54(6), 585–597.

    Article  CAS  PubMed  Google Scholar 

  • Solanki, M. K., Singh, R. K., Srivastava, S., et al. (2015). Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato. Journal of Basic Microbiology, 55, 82–90.

    Article  PubMed  CAS  Google Scholar 

  • Solanki, M. K., Malviya, M. K., & Wang, Z. (2016). Actinomycetes bio-inoculants: A modern prospectus for plant disease management. In S. Gopalakrishnan, A. Sathya, & R. Vijayabharathi (Eds.), Plant growth-promoting actinomycetes: A new avenue for enhancing the productivity and soil fertility of grain legumes (pp. 63–81). Singapore: Springer.

    Chapter  Google Scholar 

  • Solanki, M. K., Wang, Z., Wang, F.-Y., et al. (2017). Intercropping in sugarcane cultivation influenced the soil properties and enhanced the diversity of vital diazotrophic bacteria. Sugar Tech, 19, 136–147.

    Article  CAS  Google Scholar 

  • Sreedevi, B., CharithaDevi, M., & Saigopal, D. V. R. (2011). Induction of defense enzymes in Trichoderma harzianum treated groundnut plants against Macrophomina phaseolina. Journal of Biological Control, 25(1), 67–73.

    Google Scholar 

  • Sreedevi, B., CharithaDevi, M., & Saigopal, D. V. R. (2012). Production and optimization of chitinase by Trichoderma harzianum for control of the phytopathogenic fungus M. Phaseolina. Agricultural Science Digest, 32(3), 224–228.

    CAS  Google Scholar 

  • Strieker, M., Tanovic, A., & Marahiel, M. A. (2010). Nonribosomal peptide synthetases: Structures and dynamics. Current Opinion in Structural Biology, 20, 234–240.

    Article  CAS  PubMed  Google Scholar 

  • Suárez, M. B., Vizcaíno, J. A., Llobell, A., et al. (2007). Characterization of genes encoding novel peptidases in the biocontrol fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach. Current Genetics, 51, 331–342.

    Article  PubMed  CAS  Google Scholar 

  • Sundaramoorthy, S., & Balabaskar, P. (2013). Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. Journal of Applied Biology and Biotechnology, 1(03), 36–40.

    Google Scholar 

  • Szekeres, A., Kredics, L., Antal, Z., et al. (2004). Isolation and characterization of protease overproducing mutants of Trichoderma harzianum. FEMS Microbiology Letters, 233, 215–222.

    Article  CAS  PubMed  Google Scholar 

  • Tamimi, K. M., & Hadvan, H. A. (1985). Biological effect of Neurospora sitophlla and Trichoderma harzianum on the growth of a range of Sesamum wilt causing fungi in vitro. Indian Phytopathology, 38(2), 292–296.

    Google Scholar 

  • Trushina, N., Levin, M., Mukherjee, P. K., & Horwitz, B. A. (2013). PacC and pH–dependent transcriptome of the mycotrophic fungus Trichoderma virens. BMC Genomics, 14(1), 1–21.

    Article  CAS  Google Scholar 

  • Verma, M., Brara, S. K., Tyagia, R. D., et al. (2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal, 37(1), 1–20.

    Article  Google Scholar 

  • Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16, 86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vey, A., Hoagland, R. E., & Butt, T. M. (2001). Toxic metabolites of fungal biocontrol agents. In T. M. Butt, C. Jackson, & N. Magan (Eds.), Fungi as biocontrol agents: Progress, problems and potential (pp. 311–346). Bristol: CAB International.

    Chapter  Google Scholar 

  • Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., et al. (2008). Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry, 40, 1–10.

    Article  CAS  Google Scholar 

  • Viterbo, A. D. A., & Chet, I. (2006). TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Molecular Plant Pathology, 7(4), 249–258.

    Article  CAS  PubMed  Google Scholar 

  • Viterbo, A., Ramot, O., Chemin, L., et al. (2002). Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenhoek, 81, 549–556.

    Article  CAS  PubMed  Google Scholar 

  • Viterbo, A., Harel, M., Horwitz, B. A., et al. (2005). Trichoderma mitogen-activated protein kinase signaling is involved in induction of plant systemic resistance. Applied and Environmental Microbiology, 71, 6241–6246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viterbo, A. D. A., Wiest, A. R. I. C., Brotman, Y., Chet, I. L. A. N., & Kenerley, C. (2007). The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Molecular Plant Pathology, 8(6), 737–746.

    Article  CAS  PubMed  Google Scholar 

  • Viterbo, A., Landau, U., Kim, S., et al. (2010). Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiology Letters, 305, 42–48.

    Article  CAS  PubMed  Google Scholar 

  • Wallner, A., Blatzer, M., Schrettl, M., Sarg, B., Lindner, H., & Haas, H. (2009). Ferricrocin, a siderophore involved in intra- and transcellular iron distribution in Aspergillus fumigatus. Applied and Environmental Microbiology, 75, 4194–4196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Solanki, M. K., Pang, F., et al. (2016). Identification and efficiency of a nitrogen-fixing endophytic actinobacterial strain from sugarcane. Sugar Tech. https://doi.org/10.1007/s12355-016-0498-y.

    Article  CAS  Google Scholar 

  • Weindling, R., & Emerson, O. (1936). The isolation of a toxic substance from the culture filtrate of Trichoderma. Phytopathology, 26, 1068–1070.

    CAS  Google Scholar 

  • Wilhite, S. E., & Straney, D. C. (1996). Timing of gliotoxin biosynthesis in the fungal biological control agent Gliocladium virens (Trichoderma virens). Applied Microbiology and Biotechnology, 45, 513–518.

    CAS  Google Scholar 

  • Yadav, M., Rakholiya, K. B., & Pawar, D. M. (2011). Evaluation of bioagents for management of the onion purple blotch and bulb yield loss assessment under field conditions. The Bioscan, 8(4), 1295–1298.

    Google Scholar 

  • Yandigeri, M. S., Meena, K. K., Singh, D., et al. (2012). Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regulation, 68, 411–420.

    Article  CAS  Google Scholar 

  • Yang, H. H., Yang, S. L., Peng, K. C., Lo, C. T., & Liu, S. Y. (2009). Induced proteome of Trichoderma harzianum by Botrytis cinerea. Mycological Research, 113(9), 924–932.

    Article  CAS  PubMed  Google Scholar 

  • Yasuda, M., Ishikawa, A., Jikumaru, Y., et al. (2008). Antagonistic interaction between systemic acquired resistance and the abscisic acid–mediated abiotic stress response in Arabidopsis. The Plant Cell, 20(6), 1678–1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazdani, M., Chee, K. Y., Faridah, A., et al. (2010). An in vitro study on the adsorption, absorption and uptake Capacity of Zn by the bioremediator Trichoderma atroviride. Environmental Asia, 3, 53–59.

    Google Scholar 

  • Yobo, K. S., Laing, M. D., Hunter, C. H., & Morris, M. J. (2004). Biological control of Rhizoctonia solani by two Trichoderma species isolated from south African composted soil. South African Journal of Plant and Soil, 21(3), 139–144.

    Article  Google Scholar 

  • Zeilinger, S., Reithner, B., Scala, V., et al. (2005). Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride. Applied and Environmental Microbiology, 71, 1591–1597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeilinger, S., Gruber, S., Bansalb, R., et al. (2016). Secondary metabolism in Trichoderma-Chemistry meets genomics. Fungal Biology Reviews, 30, 74–90.

    Article  Google Scholar 

  • Zelicourt, A., Colcombet, J., & Hirt, H. (2016). The role of MAPK modules and aba during abiotic stress signaling. Trends in Plant Science, 21, 677–685.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Solanki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, S., Solanki, M.K., Solanki, A.C., Surapathrudu, K. (2019). Biocontrol Potential of Trichoderma spp.: Current Understandings and Future Outlooks on Molecular Techniques. In: Ansari, R., Mahmood, I. (eds) Plant Health Under Biotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4_7

Download citation

Publish with us

Policies and ethics