Skip to main content

Microbe-Assisted Plant Growth Ameliorations

  • Chapter
  • First Online:
Book cover Plant Health Under Biotic Stress

Abstract

Diverse microbes present in soil play a remarkable role in symbiotic action under different plant ecosystems. The use of prominent microbes against the pathogenic microorganisms affecting plant health helps in preventing the potential harmful effect of chemical pesticides on environment and human kind. Plant growth promoting rhizobacteria (PGPR) are one of the beneficial microbial groups under biocontrol agents for the best alternative to avoid the hazardous effect of chemicals and help in maintaining the plant health. PGPR colonize plant roots and help in plant health ameliorations using various bacteria. They play a significant role in enhancing the production of plant growth hormone substances, fixation and availability of plant nutrients and modulate the defence activity for inhibiting the effect of various pathogens through production of antimicrobial metabolites. Integration of PGPR and plant induces the defence mechanisms against the variety of pathogenic group. The exploitation of productive and efficient PGPR community helps in achieving plant growth and protection from plant pathogens significantly to avoid the crop loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University Science, 26(1), 1–20.

    Article  Google Scholar 

  • Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.

    Article  CAS  Google Scholar 

  • Ansari, R. A., Mahmood, I., Rizvi, R., & Sumbul, A. (2017a). Siderophores: Augmentation of soil health and crop productivity. In Probiotics in agroecosystem (pp. 291–312). Singapore: Springer.

    Chapter  Google Scholar 

  • Ansari, R. A., Rizvi, R., Sumbul, A., & Mahmood, I. (2017b). PGPR: Current vogue in sustainable crop production. In Probiotics and plant health (pp. 455–472). Singapore: Springer.

    Chapter  Google Scholar 

  • Arora, N. K., Tewari, S., & Singh, R. (2013). Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In N. K. Arora (Ed.), Plant microbe symbiosis: Fundamentals and advances (pp. 411–449). New Delhi: Springer.

    Chapter  Google Scholar 

  • Bacilio-Jiménez, M., Aguilar-Flores, S., Ventura-Zapata, E., Pérez-Campos, E., Bouquelet, S., & Zenteno, E. (2003). Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant and Soil, 249(2), 271–277.

    Article  Google Scholar 

  • Bais, H. P., Park, S. W., Weir, T. L., Callaway, R. M., & Vivanco, J. M. (2004). How plants communicate using the underground information superhighway. Trends in Plant Science, 9(1), 26–32.

    Article  CAS  Google Scholar 

  • Bashan, Y., & Holguin, G. (1997). Azospirillum-plant relationships: Environmental and physiological advances (1990–1996). Canadian Journal of Microbiology, 43, 103–121.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327–1350.

    Article  CAS  Google Scholar 

  • Böhme, H., & Masepohl, B. (2018). Differentiation of Vegetative Anabaena Cells into Nitrogen-Fixing Heterocysts. InPlant responses to environmental stresses (pp. 91–110). London: Routledge.

    Chapter  Google Scholar 

  • Cornwell, W. K., Cornelissen, J. H., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., et al. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11(10), 1065–1071.

    Article  Google Scholar 

  • Crowley, D. E., & Kraemer, S. M. (2007). Function of siderophores in the plant rhizosphere. In R. Pinton et al. (Eds.), The Rhizosphere, biochemistry and organic substances at the soil-plant interface (pp. 73–109). Boca Raton: CRC Press.

    Google Scholar 

  • Duca, D. R., Rose, D. R., & Glick, B. R. (2018). Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp. UW4. Antonie Van Leeuwenhoek, 1–16.

    Google Scholar 

  • Gamalero, E., Berta, G., & Glick, B. R. (2009). The use of microorganisms to facilitate the growth of plants in saline soils. In M. S. Khan, A. Zaidi, & J. Musarrat (Eds.), Microbial strategies for crop improvement. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Giordano, W., & Hirsch, A. M. (2004). The expression of MaEXP1, a Melilotus alba expansin gene, is upregulated during the sweet clover-Sinorhizobium meliloti interaction. Molecular Plant-Microbe Interactions, 17, 613–622.

    Article  CAS  Google Scholar 

  • Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Waterloo: Hindawi Publishing Corporation, Scientifica.

    Google Scholar 

  • Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3(4), 307.

    Article  CAS  Google Scholar 

  • Han, H. S., & Lee, K. D. (2006). Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant, Soil and Environment, 52, 130–136.

    Article  CAS  Google Scholar 

  • Indiragandhi, P., Anandham, R., Madhaiyan, M., & Sa, T. M. (2008). Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Current Microbiology, 56, 327–333.

    Article  CAS  Google Scholar 

  • Kang, B. G., Kim, W. T., Yun, H. S., & Chang, S. C. (2010). Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnology Reports, 4, 179–183.

    Article  Google Scholar 

  • Khalid, A., Akhtar, M. J., Mahmood, M. H., & Arshad, M. (2006). Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology, 75, 231–236.

    Article  CAS  Google Scholar 

  • Khan, M. S., Zaidi, A., Wani, P. A., & Oves, M. (2009). Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters, 7, 1–19.

    Article  Google Scholar 

  • Kim, J., & Rees, D. C. (1994). Nitrogenase and biological nitrogen fixation. Biochemistry, 33, 389–397.

    Article  CAS  Google Scholar 

  • Kumar, P., & Dubey, R. C. (2012). Plant growth promoting Rhizobacteria for biocontrol of phytopathogens and yield enhancement of phaseolus vulgaris. Journal of Current Perspectives in Applied Microbiology, 1, 6–38.

    Google Scholar 

  • Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.

    Article  CAS  Google Scholar 

  • Marschner, P. (2012). Rhizosphere biology. In Marschner’s mineral nutrition of higher plants (3rd ed., pp. 369–388). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Masson-Boivin, C., Giraud, E., Perret, X., & Batut, J. (2009). Establishing nitrogen-fixing symbiosis with legumes: How many rhizobium recipes? Trends in Microbiology, 17(10), 458–466.

    Article  CAS  Google Scholar 

  • Miransari, M., & Smith, D. L. (2014). Plant hormones and seed germination. Environmental and Experimental Botany, 99, 110–121.

    Article  CAS  Google Scholar 

  • Nadeem, S. M., Zahir, Z. A., Naveed, M., & Arshad, M. (2007). Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Canadian Journal of Microbiology, 53, 1141–1149.

    Article  CAS  Google Scholar 

  • Neilands, J. B. (1995). Siderophores: Structure and function of microbial iron transport compounds. The Journal of Biological Chemistry, 270, 26723–26726.

    Article  CAS  Google Scholar 

  • Pandey, P., & Maheshwari, D. K. (2007). Two sp. microbial consortium for growth promotion of Cajanus Cajan. Current Science, 92, 1137–1142.

    CAS  Google Scholar 

  • Parmar, P., & Sindhu, S. S. (2013). Potassium solubilization by Rhizosphere bacteria: Influence of nutritional and environmental conditions. Journal of Microbiology Research, 3, 25–31.

    Google Scholar 

  • Patni, B., Panwar, A. S., Negi, P., & Joshi, G. K. (2018). Plant growth promoting traits of psychrotolerant bacteria: A boon for agriculture in hilly terrains. Plant Science Today, 5(1), 24–28.

    Article  Google Scholar 

  • Rajkumar, M., Ae, N., Prasad, M. N. V., & Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 28, 142–149.

    Article  CAS  Google Scholar 

  • Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasam, V., & Samiyappan, R. (2001). Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protection, 20(1), 1–11.

    Article  CAS  Google Scholar 

  • Saleem, M., Arshad, M., Hussain, S., & Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology and Biotechnology, 34, 635–648.

    Article  CAS  Google Scholar 

  • Shaharoona, B., Arshad, M., & Khalid, A. (2007a). Differential response of etiolated pea seedlings to inoculation with rhizobacteria capable of utilizing 1-aminocyclopropane-1-carboxylate or L-methionine. Journal of Microbiology, 45, 15–20.

    CAS  Google Scholar 

  • Shaharoona, B., Jamro, G. M., Zahir, Z. A., Arshad, M., & Memon, K. S. (2007b). Effectiveness of various Pseudomonas spp. And Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.). Journal of Microbiology and Biotechnology, 17, 1300–1307.

    CAS  PubMed  Google Scholar 

  • Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 587.

    Google Scholar 

  • Shilev, S. (2013). Soil Rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In N. K. Arora (Ed.), Plant microbe symbiosis: Fundamentals and advances (pp. 147–150). New Delhi: Springer.

    Chapter  Google Scholar 

  • Vansuyt, G., Robin, A., Briat, J. F., Curie, C., & Lemanceau, P. (2007). Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 20, 441–447.

    Article  CAS  Google Scholar 

  • Yang, J., Kloepper, J. W., & Ryu, C. M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14(1), 1–4.

    Article  CAS  Google Scholar 

  • Zahir, Z. A., Munir, A., Asghar, H. N., Shaharoona, B., & Arshad, M. (2008). Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of pea (Pisum sativum) under drought conditions. Journal of Microbiology and Biotechnology, 18, 958–963.

    CAS  PubMed  Google Scholar 

  • Zahir, Z. A., Ghani, U., Naveed, M., Nadeem, S. M., & Asghar, H. N. (2009). Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Archives of Microbiology, 191, 415–424.

    Article  CAS  Google Scholar 

  • Zahran, H. H. (2001). Rhizobia from wild legumes: Diversity, taxonomy, ecology, nitrogen fixation and biotechnology. Journal of Biotechnology, 91, 143–153.

    Article  CAS  Google Scholar 

  • Zaidi, A., Khan, M. S., Ahemad, M., & Oves, M. (2009). Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica et Immunologica Hungarica, 56, 263–284.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saifulla, M., YellaGoud, T., Manjunatha, S.V., Manu, T.G., Rajesh, G. (2019). Microbe-Assisted Plant Growth Ameliorations. In: Ansari, R., Mahmood, I. (eds) Plant Health Under Biotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4_5

Download citation

Publish with us

Policies and ethics