Skip to main content

Biofilmed Biofertilizer for Sustainable Agriculture

  • Chapter
  • First Online:
Plant Health Under Biotic Stress

Abstract

The pressure due to global population increase and rising environmental damage has the unfortunate consequence that world food production may shortly become inadequate to feed all the mouths of the world. It is therefore indispensable that agricultural productivity be significantly improved within next couple of decades. To achieve this, agricultural practices are approached in a more sustainable and eco-friendly manner. Further, the substantial use of chemical fertilizers and pesticides in conventional farming has led to the accumulation of harmful chemical remnants and heavy metals in the environment leading to degradation of agroecosystem and incidence of unpredictable chronic diseases in human. Therefore, biofilmed biofertilizers (BFBFs) have become a viable alternative for chemical fertilizers in agriculture. BFBFs, in addition to their fertilizing task, accomplish a variety of processes such as reinstating agroecosystem, maintaining regulated metabolic and biochemical processes, improving soil quality, suppression of pests and diseases, amelioration of plants from stress and synthesis of plant hormones. The consortia of microbes in BFBFs add an array of benefits together for the soil-plant system to support plant growth and development thereby to enhance the yield. Moreover, BFBF itself is a sustainable system which can ensure the sustainability of agroecosystem. Therefore, the use of BFBFs in agriculture would lead to a more eco-friendly approach in crop production with many health, environmental and economic benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles, F. B., Morgan, P. W., & Saltveit, M. E., Jr. (1992). Ethylene in plant biology (2nd ed.). New York: Academic.

    Google Scholar 

  • Afzal, I., Basra, S. M., & Iqbal, A. (2005). The effects of seed soaking with plant growth regulators on seedling vigor of wheat under salinity stress. Journal of Stress Physiology and Biochemistry, 1, 6–14.

    Google Scholar 

  • Alkorta, I., & Garbisu, C. (2001). Phytoremediation of organic contaminants in soils. Bioresource Technology, 79(3), 273–276.

    Article  CAS  PubMed  Google Scholar 

  • Anonymous. (2016). ISAAA in brief. http://isaaa.org/inbrief/default.asp. Accessed 12 Feb 2016.

  • Anonymous. (2017). The world population prospects: The 2017 revision. UN Department of Economic and Social Affairs. https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html. Accessed 16 Aug 2017.

  • Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.

    Article  CAS  Google Scholar 

  • Appanna, V. (2007). Efficacy of phosphate solubilizing bacteria isolated from vertisols on growth and yield parameters of sorghum. Research Journal of Microbiology, 2, 550–559.

    Article  CAS  Google Scholar 

  • Atzorn, R., Crozier, A., Wheeler, C. T., & Sandberg, G. (1988). Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta, 175(4), 532–538.

    Article  CAS  PubMed  Google Scholar 

  • Badri, D. V., Loyola-Vargas, V. M., Du, J., Stermitz, F. R., Broeckling, C. D., Iglesias-Andreu, L., & Vivanco, J. M. (2008). Transcriptome analysis of Arabidopsis roots treated with signaling compounds: A focus on signal transduction, metabolic regulation and secretion. New Phytologist, 179, 209–223.

    Article  CAS  Google Scholar 

  • Bailey, B. A., Bae, H., Strem, M. D., Crozier, J., Thomas, S. E., Samuels, G. J., & Holmes, K. A. (2008). Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control, 46, 24–35.

    Article  Google Scholar 

  • Bandara, W. M. M. S., Seneviratne, G., & Kulasooriya, S. A. (2006). Interactions among endophytic bacteria and fungi: Effects and potentials. Journal of Biosciences, 31, 645–650.

    Article  CAS  PubMed  Google Scholar 

  • Bandara, J. M. R. S., Senevirathna, D. M. A. N., Dasanayake, D. M. R. S. B., Herath, V., Bandara, J. M. R. P., Abeysekara, T., & Rajapaksha, K. H. (2008). Chronic renal failure among farm families in cascade irrigation systems in Sri Lanka associated with elevated dietary cadmium levels in rice and freshwater fish (Tilapia). Environmental Geochemistry and Health, 30(5), 465–478.

    Article  CAS  PubMed  Google Scholar 

  • Barea, J. M., Navarro, E., & Montoya, E. (1976). Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. Journal of Applied Microbiology, 40, 129–134.

    CAS  Google Scholar 

  • Bashan, Y., & Levanony, H. (1990). Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Canadian Journal of Microbiology, 36(9), 591–608.

    Article  CAS  Google Scholar 

  • Bashan, Y., Holguin, G., & de-Bashan, L. E. (2004). Azospirillum–plant relationships: Physiological, molecular, agricultural and environmental advances. Canadian Journal of Microbiology, 50, 521–577.

    Google Scholar 

  • Bastidia, F., Zsolnay, A., Hernandez, T., & García, C. (2008). Past, present and future of soil quality indices, a biological perspective. Geoderma, 147, 159–171.

    Article  CAS  Google Scholar 

  • Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R., & Kolter, R. (2013). Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 110, 1621–1630.

    Article  Google Scholar 

  • Biofertilizer Manual. (2006) Japan Atomic Industrial Forum (JAIF), Japan.

    Google Scholar 

  • Bnayahu, B. Y. (1991). Root excretions and their environmental effects: Influence on availability of phosphorus. In Y. Waisel, A. Eshel, & U. Kafkafi (Eds.), Plant roots: The hidden half (pp. 529–557). New York: Marcel Dekker.

    Google Scholar 

  • Brookes, P. C. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19, 269–279.

    Article  CAS  Google Scholar 

  • Buddhika, U. V. A., Kulasooriya, S. A., Seneviratne, G., & Abayasekara, C. L. (2012a). Potential of biofilmed microbial communities as biofertilizers for maize (Zea mays L.). In L. Nugaliyadda et al. (Eds.), Proceedings of Sri Lanka–India conference on agrobiotechnology for sustainable development (p. 63). Peradeniya, Sri Lanka: Agriculture Education Unit, Faculty of Agriculture, University of Peradeniya.

    Google Scholar 

  • Buddhika, U. V. A., Seneviratne, G., & Abayasekara, C. L. (2012b, December, 12–13). Biofilmed biofertilizers for sustaining maize cultivation. Paper presented at the World Congress on Biotechnology, Hyderabad, India. http://brightice.org/biotechnology2012. Accessed 22 Dec 2012.

  • Buddhika, U. V. A., Athauda, A. R. W. P. K., Seneviratne, G., Kulasooriya, S. A., & Abayasekara, C. L. (2013). Emergence of diverse microbes on application of biofilmed biofertilizers to a maize growing soil. Ceylon Journal of Science (Biological Sciences), 42, 87–94.

    Article  Google Scholar 

  • Buddhika, U. V. A., Seneviratne, G., & Abayasekara, C. L. (2014). Fungal–bacterial biofilms differ from bacterial monocultures in seed germination and indole acetic acid production. International Journal of Scientific and Research Publications, 4, 1–5.

    Google Scholar 

  • Buddhika, U. V. A., Seneviratne, G., Ekanayake, E. M. H. G. S., Senanayake, D. M. N., Igalavithane, A. D., Weeraratne, N., et al. (2016). Biofilmed biofertilizers: Application in Agroecosystems. In V. K. Gupta et al. (Eds.), The handbook of microbial bioresourses (pp. 96–106). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Cassan, F., Perrig, D., Sgroy, V., Masciarelli, O., Penna, C., & Luna, V. (2009). Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology, 45, 28–35.

    Article  CAS  Google Scholar 

  • Chandrajith, R., Seneviratna, S., Wickramaarachchi, K., Attanayaka, T., Aturaliya, T. N. C., & Disanayake, C. B. (2010). Natural radio nuclides and trace elements in the rice field soils in relation to fertilizer application: Study of a chronic kidney disease area in Sri Lanka. Environment and Earth Science, 60, 193–201.

    Article  CAS  Google Scholar 

  • Cheanieha Queene, A., Safeena, M. I. S., & Zakeel, M. C. M. (2016). Plant pathogenic fungi as potential biocontrol agents for water hyacinth (Eichhornia crassipes Mart. Solms). In Proceedings of the National Symposium on Invasive Alien Species-2017, GEF/UNDP project on Strengthening Capacity to Control the Introduction and Spread of Invasive Alien Species (IAS) in Sri Lanka, Biodiversity Secretariat, Ministry of Mahaweli Development & Environment in collaboration with University of Colombo and United Nations Development Programme (UNDP), Sri Lanka, p. 11.

    Google Scholar 

  • Cheng, Z., Wei, Y. Y. C., Sung, W. W. L., Glick, B. R., & McConkey, B. J. (2009). Proteomic analysis of the response of the plant growth-promoting bacterium Pseudomonas putida UW4 to nickel stress. Proteome Science, 7, article18.

    Google Scholar 

  • Czarnes, S., Hallett, P. D., Bengough, A. G., & Young, I. M. (2000). Root- and microbial-derived mucilages affect soil structure and water transport. European Journal of Soil Science, 51, 435–443.

    Article  Google Scholar 

  • Danhorn, T., & Fuqua, C. (2007). Biofilm formation by plant-associated bacteria. Annual Review of Microbiology, 61, 401–422.

    Article  CAS  PubMed  Google Scholar 

  • Davey, M. E., & O’Toole, G. A. (2000). Microbial biofilms: From ecology to molecular genetics. Microbiology and Molecular Biology Reviews, 64, 847–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Rosa, C. T., Johnson, B. L., Fay, M., Hansen, H., & Mumtaz, M. M. (1996). Public health implications of hazardous waste sites: Findings, assessment and research. Food and Chemical Toxicology, 34, 1131–1138.

    Article  PubMed  Google Scholar 

  • Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8, 881–890.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandes, E. C. M., Motavallic, P. P., Castilla, C., & Mukurimbira, L. (1997). Management control of soil organic matter dynamics in tropical land use systems. Geoderma, 79, 49–67.

    Article  CAS  Google Scholar 

  • Gamalero, E., & Glick, B. R. (2012). Plant growth-promoting bacteria and metal phytoremediation. In N. A. Anjum et al. (Eds.), Phytotechnologies (pp. 359–374). Boca Raton: Taylor & Francis.

    Google Scholar 

  • Garbeva, P., van Veen, J. A., & van Elsas, J. D. (2004). Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42, 243–270.

    Article  CAS  PubMed  Google Scholar 

  • Gillera, K. E., Witter, E., & Mcgrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils. Soil Biology and Biochemistry, 30, 1389–1414.

    Article  Google Scholar 

  • Glick, B. R. (2004). Bacterial ACC deaminase and the alleviation of plant stress. Advances in Applied Microbiology, 56, 291–312.

    Article  CAS  PubMed  Google Scholar 

  • Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28(3), 367–374.

    Article  CAS  PubMed  Google Scholar 

  • Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanism and applications. Scientifica. Hindawi Publishing Corporation.

    Google Scholar 

  • Glick, B. R., & Bashan, Y. (1997). Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnology Advances, 15(2), 353–378.

    Article  CAS  PubMed  Google Scholar 

  • Glick, B. R., & Stearns, J. C. (2011). Making phytoremediation work better: Maximizing a plant’s growth potential in the midst of adversity. International Journal of Phytoremediation, 13(1), 4–16.

    Article  PubMed  Google Scholar 

  • Glick, B. R., Liu, C., Ghosh, S., & Dumbroff, E. B. (1997). Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR122. Soil Biology and Biochemistry, 29(8), 1233–1239.

    Article  CAS  Google Scholar 

  • Glick, B. R., Penrose, D. M., & Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology, 190(1), 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Grichko, V. P., & Glick, B. R. (2001). Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiology and Biochemistry, 39(1), 11–17.

    Article  CAS  Google Scholar 

  • Guerinot, M. L., & Ying, Y. (1994). Iron: Nutritious, noxious and not readily available. Plant Physiology, 104(3), 815–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao, Y., Charles, T. C., & Glick, B. R. (2007). ACC deaminase from plant growth-promoting bacteria affects crown gall development. Canadian Journal of Microbiology, 53(12), 1291–1299.

    Article  CAS  PubMed  Google Scholar 

  • Hao, Y., Charles, T. C., & Glick, B. R. (2011). An ACC deaminase containing A. tumefaciens strain D3 shows biocontrol activity to crown gall disease. Canadian Journal of Microbiology, 57(4), 278–286.

    Article  CAS  PubMed  Google Scholar 

  • He, L. Y., Zhang, Y. F., Ma, H. Y., et al. (2010). Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Applied Soil Ecology, 44, 49–55.

    Article  Google Scholar 

  • Herath, H. M. L. I., Senanayeke, D. M. N., Seneviratne, G., & Bandara, D. C. (2013). Variation of biochemical expressions of developed fungal–bacterial biofilms over their monocultures and its effect on plant growth. Tropical Agricultural Research, 24, 186–192.

    Google Scholar 

  • Hettiarachchi, R. P., Dharmakeerthi, R. S., Seneviratne, G., Jayakody, A. N., & Edirimannaa, V. (2012). Effect of biofilmed biofertilizers on growth and mineral composition of Hevea seedlings under greenhouse conditions. In L. S. K. Hettiarachchi & I. S. B. Abeysinghe (Eds.), Proceedings of the 4th symposium on plantation crop research (pp. 195–203). Sri Lanka: Taj Samudra Hotel.

    Google Scholar 

  • Hider, R. C., & Kong, X. (2010). Chemistry and biology of siderophores. Natural Product Reports, 27(5), 637–657.

    Article  CAS  PubMed  Google Scholar 

  • Holguin, G., & Bashan, Y. (1996). Nitrogen-fixation by Azospirillum brasilense Cd is promoted when co-cultured with a mangrove rhizosphere bacterium (Staphylococcus sp.). Soil Biology and Biochemistry, 28, 1651–1660.

    Article  CAS  Google Scholar 

  • Husen, E., Wahyudi, A. T., Suwanto, A., & Giyanto. (2011). Growth enhancement and disease reduction of soybean by 1-aminocyclopropane-1-carboxylate deaminase-producing Pseudomonas. American Journal of Applied Sciences, 8(11), 1073–1080.

    Article  CAS  Google Scholar 

  • James, E. K., & Olivares, F. L. (1997). Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Critical Reviews in Plant Sciences, 17(1), 77–119.

    Article  Google Scholar 

  • Jayasinghearachchi, H. S., & Seneviratne, G. (2004). A bradyrhizobial–Penicillium spp. biofilm with nitrogenase activity improves N2 fixing symbiosis of soybean. Biology and Fertility of Soils, 40, 432–434.

    Article  CAS  Google Scholar 

  • Jayasinghearachchi, H. S., & Seneviratne, G. (2006). Fungal solubilization of rock phosphate is enhanced by forming fungal–rhizobial biofilms. Soil Biology and Biochemistry, 38, 405–408.

    Article  CAS  Google Scholar 

  • Jayasumana, M. A. C. S., Paranagama, P. A., Amarasinghe, M. D., Wijewardane, K. M. R. C., Dahanayake, K. S., Fonseka, S. I., Rajakaruna, K. D. L. M. P., Mahamithawa, A. M. P., Samarasinghe, U. D., & Senanayake, V. K. (2013). Possible link of chronic arsenic toxicity with chronic kidney disease of unknown etiology in Sri Lanka. Journal of National Sciences Research, 3(1), 64–73.

    Google Scholar 

  • Johri, N., Jacquillet, G., & Unwin, R. (2010). Heavy metal poisoning: The effects of cadmium on the kidney. Biometals, 23(5), 783–792.

    Article  CAS  PubMed  Google Scholar 

  • Jones, L. H. P., & Jarvis, S. C. (1981). The fate of heavy metals. In D. J. Green & M. H. B. Hayes (Eds.), Chemistry of soil processes (p. 593). New York: Wiley.

    Google Scholar 

  • Joo, G. J., Kim, Y. M., Kim, J. T., Rhee, I. K., Kim, J. H., & Lee, I. J. (2005). Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. Journal of Microbiology, 43(6), 510–515.

    CAS  Google Scholar 

  • Kang, S. M., Joo, G. J., Hamayun, M., et al. (2009). Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnology Letters, 31(2), 277–281.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, H., Kaur, J., & Gera, R. (2016). Plant growth promoting Rhizobacteria: A boon to agriculture. International Journal of Cell Science and Biotechnology, 5, 17–22.

    Google Scholar 

  • Khan, M. S., Zaidi, A., & Wani, P. A. (2007). Role of phosphate solubilizing microorganisms in sustainable agriculture – A review. Agronomy for Sustainable Development, 27(1), 29–43.

    Article  Google Scholar 

  • Kim, N. H., Hyun, Y. Y., Lee, K.-B., Chang, Y., Rhu, S., Oh, K.-H., & Ahn, C. (2015). Environmental heavy metal exposure and chronic kidney disease in the general population. Journal of Korean Medical Science, 30, 272–277. https://doi.org/10.3346/jkms.2015.30.3.272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokare, C. R., Chakraborthy, S., Khopade, A. N., & Mahadik, K. R. (2008). Biofilm: Importance and applications. Indian Journal of Biotechnology, 8, 159–168.

    Google Scholar 

  • Loper, J. E., & Buyer, J. S. (1991). Siderophoresin microbial interactions on plant surfaces. Molecular Plant-Microbe Interactions, 4, 5–13.

    Article  CAS  Google Scholar 

  • Lorteau, M. A., Ferguson, B. J., & Guinel, F. C. (2001). Effects of cytokinin on ethylene production and nodulation in pea (Pisum sativum)cv. Sparkle. Physiologia Plantarum, 112(3), 421–428.

    Article  CAS  PubMed  Google Scholar 

  • Lucy, M., Reed, E., & Glick, B. R. (2004). Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek, 86(1), 1–25.

    Article  CAS  PubMed  Google Scholar 

  • Ma, J. F. (2005). Plant root responses to three abundant soil minerals: Silicon, aluminum and iron. Critical Reviews in Plant Sciences, 24(4), 267–281.

    Article  CAS  Google Scholar 

  • Ma, W., Penrose, D. M., & Glick, B. R. (2002). Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Canadian Journal of Microbiology, 48(11), 947–954.

    Article  CAS  PubMed  Google Scholar 

  • Ma, W., Guinel, F. C., & Glick, B. R. (2003). Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Applied and Environmental Microbiology, 69(8), 4396–4402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, W., Charles, T. C., & Glick, B. R. (2004). Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Applied and Environmental Microbiology, 70(10), 5891–5897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdi, S. S., Hassan, G. I., Samoon, S. A., Rather, H. A., Dar, S. A., & Zehra, B. (2010). Biofertilizers in organic agriculture. Journal of Phytology, 2, 42–54.

    Google Scholar 

  • Manawasinghe, I. S., Seneviratne, G., Zakeel, M. C. M., & Singhalage, I. D. (2014, November 13–14). Fungal-bacterial biofilms application improved rice root endophytic microbial community. In Proceedings of the 2nd international symposium on driving research towards economy: Opportunities and challenges, National Institute of Fundamental Studies, Kandy, p 49.

    Google Scholar 

  • Marroquí, S., Zorreguieta, A., Santamaría, C., et al. (2001). Enhanced symbiotic performance by Rhizobium tropici glycogen synthase mutants. Journal of Bacteriology, 183(3), 854–864.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science, 166(2), 525–530.

    Article  CAS  Google Scholar 

  • Mazzola, M. (2007). Manipulation of rhizosphere bacterial communities to induce suppressive soils. Journal of Nematology, 39, 213–220.

    PubMed  PubMed Central  Google Scholar 

  • McLaughlin, M. J., Hamon, R. E., McLaren, R. G., Speir, T. W., & Rogers, S. J. (2000). Review: A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Australian Journal of Soil Research, 38, 1037–1086.

    Article  CAS  Google Scholar 

  • Mendes, R., Kruijt, M., de Bruijn, I., et al. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332, 1097–1100.

    Article  CAS  PubMed  Google Scholar 

  • Mikanová, O., & Nováková, J. (2002). Evaluation of P solubilization activity of soil microorganisms and its sensitivity of soluble phosphate. Rostlinná Výroba, 48, 397–400.

    Google Scholar 

  • Nadell, C. D., Xavier, J. B., & Foster, K. R. (2009). The sociobiology of biofilms. FEMS Microbiology Reviews, 33, 206–224.

    Article  CAS  PubMed  Google Scholar 

  • Neilands, J. B. (1981). Iron absorption and transport in microorganisms. Annual Review of Nutrition, 1, 27–46.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, L. M. (2004). Plant growth promoting rhizobacteria (PGPR): Prospects for new inoculants. Crop Management, 3. https://doi.org/10.1094/CM-2004-0301-05-RV. Accessed 16 Aug 2013.

    Article  Google Scholar 

  • Pal, S. S. (1998). Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant and Soil, 198, 169–177.

    Article  CAS  Google Scholar 

  • Pankhurst, C. E., Hawke, B. G., Mc Donald, H. J., et al. (1995). Evaluation of soil biological properties as potential bioindicators of soil health. Australian Journal of Experimental Agriculture, 35, 1015–1028.

    Article  Google Scholar 

  • Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole3-acetic acid. Canadian Journal of Microbiology, 42(3), 207–220.

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits, E., & Freeman, J. L. (2006). Environmental cleanup using plants: Biotechnological advances and ecological considerations. Frontiers in Ecology and the Environment, 4(4), 203–210.

    Article  Google Scholar 

  • Prasanna, R., Nain, L., Ancha, R., Shrikrishna, J., Joshi, M., & Kaushik, B. D. (2009). Rhizosphere dynamics of inoculated cyanobacteria and their growth-promoting role in rice crop. Egyptian Journal of Biology, 11, 26–36.

    Google Scholar 

  • Prasanna, R., Triveni, S., Bidyarani, N., et al. (2014). Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Archives of Agronomy and Soil Science, 60, 349–366.

    Article  Google Scholar 

  • Ramey, B. E., Koutsoudis, M., von Bodman, S. B., & Fuqua, C. (2004). Biofilm formation in plant–microbe associations. Current Opinion in Microbiology, 7, 602–609.

    Article  CAS  PubMed  Google Scholar 

  • Rana, A., Saharan, B., Nain, L., Prasanna, R., & Shivay, Y. S. (2012a). Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Science and Plant Nutrition, 58, 573–582.

    Article  CAS  Google Scholar 

  • Rana, A., Joshi, M., Prasanna, R., Shivay, Y. S., & Nain, L. (2012b). Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. European Journal of Soil Biology, 50, 118–126.

    Article  CAS  Google Scholar 

  • Reed, M. L. E., & Glick, B. R. (2005). Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Canadian Journal of Microbiology, 51(12), 1061–1069.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, A. E. (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology, 28(9), 897–906.

    Article  Google Scholar 

  • Rodríguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–339.

    Article  PubMed  Google Scholar 

  • Rodriguez, H., Gonzalez, T., Goire, I., & Bashan, Y. (2004). Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften, 91(11), 552–555.

    Article  CAS  PubMed  Google Scholar 

  • Rudrappa, T., Biedrzycki, M. L., & Bais, H. P. (2008). Causes and consequences of plant associated biofilms. FEMS Microbiology Ecology, 64, 153–166.

    Article  CAS  PubMed  Google Scholar 

  • Saharan, B. S., & Nehra, V. (2011). Plant growth promoting rhizobacteria: A critical review. Life Sciences and Medicine Research, 21, 1–30.

    Google Scholar 

  • Salt, D. E., Blaylock, M., & Kumaretal, N. P. B. A. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Nature Biotechnology, 13(5), 468–474.

    Article  CAS  Google Scholar 

  • Seneviratne, G. (2012). Are we wrong in conventional approach of biocontrol? Current Science, 103(12), 1387.

    Google Scholar 

  • Seneviratne, G., & Indrasena, I. K. (2006). Nitrogen fixation in lichens is important for improved rock weathering. Journal of Biosciences, 31, 639–643.

    Article  PubMed  Google Scholar 

  • Seneviratne, G., & Jayasinghearachchi, H. S. (2003). Mycelial colonization by bradyrhizobia and azorhizobia. Journal of Biosciences, 28, 243–247.

    Article  PubMed  Google Scholar 

  • Seneviratne, G., & Kulasooriya, S. A. (2013). Reinstating soil microbial diversity in agroecosystems: The need of the hour for sustainability and health. Agriculture, Ecosystems and Environment, 164, 181–182.

    Article  Google Scholar 

  • Seneviratne, G., Kecskés, M. L., & Kennedy, I. R. (2008). Biofilmed biofertilizers: Novel inoculants for efficient nutrient use in plants. In I. R. Kennedy et al, (Eds.), Efficient nutrient use in rice production in Vietnam achieved using inoculant biofertilizers. Proceedings of a project (SMCN/2002/073) workshop held in Hanoi, Vietnam, 12–13 October 2007 (ACIAR proceedings no. 130, p. 137). Canberra: Australian Centre for International Agricultural Research (ACIAR).

    Google Scholar 

  • Seneviratne, G., Thilakaratne, R. M. M. S., Jayasekara, A. P. D. A., Seneviratne, K. A. C. N., Padmathilake, K. R. E., & De Silva, M. S. D. L. (2009). Developing beneficial microbial biofilms on roots of non-legumes: A novel biofertilizing technique. In M. S. Khan, A. Zaidi, & J. Musarrat (Eds.), Microbial strategies for crop improvement (pp. 51–62). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Seneviratne, G., Jayasekare, A. P. D. A., De Silva, M. S. D. L., & Abeysekera, U. P. (2011). Developed microbial biofilms can restore deteriorated conventional agricultural soils. Soil Biology and Biochemistry, 43, 1059–1062.

    Article  CAS  Google Scholar 

  • Seneviratne, G., Weeraratne, N., & Buddhika, U. V. A. (2013). Diversity of plant root associated microbes: Its regulation by introduced biofilms. In N. K. Arora (Ed.), Plant microbe symbiosis – Fundamentals and advances (pp. 351–372). New Delhi: Springer.

    Chapter  Google Scholar 

  • Sharma, S. K., Ramesh, A., Sharma, M. P., Joshi, O. P., Govaerts, B., Steenwerth, K. L., & Karlen, D. L. (2011). Microbial community structure and diversity as indicators for evaluating soil quality. In E. Lichtfoust (Ed.), Biodiversity, biofuels, agroforestry and conservation agriculture (pp. 317–358). Dordrecht: Springer.

    Google Scholar 

  • Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79, 7–31.

    Article  Google Scholar 

  • Spaepen, S., & Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 3(4).

    Google Scholar 

  • Swarnalakshmi, K., Prasanna, R., Kumar, A., Pattnaik, S., Chakravarty, K., Shivay, Y. S., Singh, R., & Saxena, A. K. (2013). Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. European Journal of Soil Biology, 55, 105–116.

    Article  Google Scholar 

  • Tao, G. C., Tian, S. J., Cai, M. Y., & Xie, G. H. (2008). Phosphate solubilizing and-mineralizing abilities of bacteria isolated from soils 11 project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Ministry of Education of the P.R. China. Pedosphere, 18(4), 515–523.

    Article  CAS  Google Scholar 

  • Tien, T., Gaskin, M., & Hubbel, D. (1979). Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Applied and Environmental Microbiology, 37, 1016–1024.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwary, D. K., Hasan, M. A., & Chattopadhyay, P. K. (1998). Studies on the effect of inoculation with Azotobacter and Azospirillum on growth, yield and quality of banana. Indian Journal of Agriculture, 42, 235–240.

    Google Scholar 

  • Toklikishvili, N., Dandurishvili, N., Tediashvili, M., et al. (2010). Inhibitory effect of ACC deaminase-producing bacteria on crown gall formation in tomato plants infected by Agrobacterium tumefaciens or A. vitis. Plant Pathology, 59(6), 1023–1030.

    Article  Google Scholar 

  • Triveni, S., Prasanna, R., Shukla, L., & Saxena, A. K. (2013). Evaluating the biochemical traits of novel Trichoderma-based biofilms for use as plant growth-promoting inoculants. Annals of Microbiology, 63, 1147–1156.

    Article  CAS  Google Scholar 

  • Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A., & Netrusov, A. I. (2006). Microbial producers of plant growth stimulators and their practical use: A review. Applied Biochemistry and Microbiology, 42(2), 117–126.

    Article  CAS  Google Scholar 

  • Varma, L. N. (1993). Biofertilizer in agriculture. In P. K. Thampan (Ed.), Organics in soil health and crop production (p. 151). Kochi: Tree Crop Development Foundation.

    Google Scholar 

  • Wang, C., Knill, E., Glick, B. R., & Défago, G. (2000). Effect of transferring1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease suppressive capacities. Canadian Journal of Microbiology, 46(10), 898–907.

    Article  CAS  PubMed  Google Scholar 

  • West, S. A., Diggle, S. P., Buckling, A., Gardner, A., & Griffin, A. S. (2007). The social lives of microbes. Annual Review of Ecology, Evolution, and Systematics, 38, 53–77.

    Article  Google Scholar 

  • Wu, S. C., Cao, Z. H., Li, Z. G., Cheong, K. C., & Wong, M. H. (2005). Effects of biofertilizers containing N fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma, 125, 155–166.

    Article  Google Scholar 

  • Yao, H., He, Z., Wilson, M. J., & Campbell, C. D. (2000). Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecology, 40, 223–237.

    CAS  PubMed  Google Scholar 

  • Yu, T., Chen, J., Lu, H., & Zheng, X. (2009). Indole-3-acetic acid improves postharvest biological control of blue mold rot of apple by Cryptococcus laurentii. Phytopathology, 99, 258–264.

    Article  CAS  PubMed  Google Scholar 

  • Yuhashi, K. I., Ichikawa, N., Ezura, H., et al. (2000). Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Applied and Environmental Microbiology, 66(6), 2658–2663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahir, Z. A., Munir, A., Asghar, H. N., Shaharoona, B., & Arshad, M. (2008). Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. Journal of Microbiology and Biotechnology, 18(5), 958–963.

    CAS  PubMed  Google Scholar 

  • Zakeel, M. C. M. (2015). Bio-filmed biofertilizers for sustainable agriculture and environment. SOBA Environment Magazine (pp. 49–51). Ministry of Environment.

    Google Scholar 

  • Ziegler, J. (1993). Health risk assessment research: The OTA report. Environmental Health Perspectives, 101(5), 402–406.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. M. Zakeel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zakeel, M.C.M., Safeena, M.I.S. (2019). Biofilmed Biofertilizer for Sustainable Agriculture. In: Ansari, R., Mahmood, I. (eds) Plant Health Under Biotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4_3

Download citation

Publish with us

Policies and ethics