Skip to main content

Significance of Microbial Agents in Augmentation of Plant Health

  • Chapter
  • First Online:
  • 732 Accesses

Abstract

The role of soil microorganisms in establishment of plants is well known. However, it appears that their potential under field conditions is yet to be realized consistently. The main constraint for their ineffectiveness is establishment of introduced microbial populations in soil system, which in native microflora act antagonistically with the introduced ones. Further, use of biofertilizers is limited owing to the factors of reduced shelf life in storage conditions, inconsistent growth responses caused by abiotic stress factors such as higher temperatures during storage, drought, water stagnation in field conditions, etc. An alternative to this could be the development of consortial formulations with beneficial microorganisms having different physiological capabilities to sustain their activity in wide range of field conditions. Entrapment into natural polymers such as alginate and their introduction to soil has been evaluated, and the results have revealed that they protect entrapped organisms from native soil microflora and further enable them to interact synergistically, thus allowing them to finally develop to a stable microbial community in rhizosphere. This could enable them to have higher chances of establishing in soil and cause desirable effect on plant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alagawadi, A. R., & Gaur, A. G. (1988). Interaction between Azospirillum brasilenseand phosphate solubilizing bacteria and their influence on yield and nutrient uptake of sorghum. Zentrablatt fur Mikrobiologie, 143, 637–643.

    Article  Google Scholar 

  • Ananthanaik, T. N., Earanna, & Suresh, C. K. (2007). Influence of Azotobacter chroococcum strains on growth and biomass of Adathodavasica Nees. Karnataka Journal of Agricultural Science, 20, 613–615.

    Google Scholar 

  • Anjum, M. A., Sajjad, M. R., Akhtar, N., Qureshi, M. A., Iqbal, A., Jami, A. R., & Mahmud-Ul-Hasan. (2007). Response of cotton to plant growth promoting rhizobacteria (PGPR) inoculation under different levels of nitrogen. Journal of Agricultural Research, 45, 135–143.

    Google Scholar 

  • Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.

    Google Scholar 

  • Arora, N. K., Kharel, E., Naraian, R., & Maheshwari, D. K. (2008). Sawdust as a superior carrier for production of multipurpose bioinoculant using plant growth promoting rhizobial and pseudomonad strains and their impact on productivity of Trifolium repense. Current Science, 95, 90–94.

    Google Scholar 

  • Artursson, V. (2005). Bacterial-fungal interactions, highlighted using Microbiomics: Potential application for plant growth enhancement. (Doctoral thesis). Swedish University of Agricultural Sciences, Uppsala.

    Google Scholar 

  • Askary, M. R., Mostajeran, A., Amooaghaei, R., & Mostajeran, M. (2009). Influence of the co-inoculation Azospirillumbrasilenseand Rhizobium melilotiplus 2,4-D on grain yield and N, P, K content of Triticumaestivum (Cv. Baccros and Mahdavi). Journal of Agriculture and Environmental Science, 5, 296–307.

    CAS  Google Scholar 

  • Bakulin, M. K., Grudtsyna, A. S., & Pletneva, A. (2007). Biological fixation of nitrogen and growth of bacteria of the genus Azotobacter in liquid media in the presence of perfluorocarbons. Applied Biochemistry and Microbiology, 4, 399–402.

    Article  CAS  Google Scholar 

  • Bandara, W. M. M. S., Seneviratne, G., & Kulasooriya, S. A. (2006). Interactions among endophytic bacteria and fungi: Effects and potentials. Journal of Biosciences, 31, 645–650.

    Article  CAS  PubMed  Google Scholar 

  • Barea, J. M., Azcon, R., & Azcon-Aguilar, C. (2002). Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek, 81(1–4), 343–351.

    Article  CAS  PubMed  Google Scholar 

  • Bashan, Y. (1986). Alginate beads as synthetic inoculant carriers for the slow release of bacteria that affect plant growth. Applied and Environmental Microbiology, 51, 1089–1098.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan, Y., & Holguin, G. (1997). Azospirillum-plant relationships: Environmental and physiological advances (1990–1996). Canadian Journal of Microbiology, 43, 103–121.

    Article  CAS  Google Scholar 

  • Bashan, Y., Hernandez, J. P., Levya, L. A., & Bacilio, M. (2002). Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biology and Fertility of Soils, 35, 359–368.

    Article  Google Scholar 

  • Belimov, A. A., Kojemiakov, A. P., & Churaliyera, C. V. (1995). Interaction between barley and mixed culture of nitrogen fixing and phosphate solubilizing bacteria. Plant and Soil, 173, 29–37.

    Article  CAS  Google Scholar 

  • Bethlenfalvay, G. J. (1992). Mycorrhizae and crop productivity. In G. J. Bethlenfalvay & R. G. Lindermen (Eds.), Mycorrhizae in sustainable agriculture (pp. 1–27). Madison: American Society of Agronomy.

    Google Scholar 

  • Bolan, N. S. (1991). A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil, 134, 189–207.

    Article  CAS  Google Scholar 

  • Bowen, G. P., & Rovira, A. D. (1976). Microbial colonization of plant roots. Annual Review of Phytopathology, 14, 121–144.

    Article  Google Scholar 

  • Brenner, K., You, L., & Arnold, F. H. (2008). Engineering microbial consortia: A new frontier in synthetic biology. Trends Biotechnology, 26(9), 483–489.

    Article  CAS  Google Scholar 

  • Chanway, C. P., Turkington, R., & Hall, F. B. (1991). Ecological implications of specificity between plants and rhizosphere microorganisms. Advances in Ecological Research, 21, 121–169.

    Article  Google Scholar 

  • Curl, E. H., & Truelove, B. (1986). The rhizosphere (p. 288). New York: Springer.

    Book  Google Scholar 

  • Darrah, P. K. (1991). Models of the rhizosphere. Plant Soil, 138, 147–158.

    Article  Google Scholar 

  • De Freitas, J. R. (2000). Yield and N assimilation of winter wheat (T. aestivumL., var. Norstar) inoculated with rhizobacteria. Pedobiol, 44, 97–104.

    Article  Google Scholar 

  • Deaker, R., Roughley, R. J., & Kennedy, I. R. (2004). Legume seed inoculation technology. Soil Biology and Biochemistry, 36, 1275–1288.

    Article  CAS  Google Scholar 

  • Devananda, B. J. (2000). Role of plant growth promoting rhizobacteria on growth and yield of pigeonpea (Cajanus cajan L.) cultivars (M. Sc. (Agri.) thesis). University of Agriculture and Science, Dharwad.

    Google Scholar 

  • Dhruvakumar, J., Sharma, G. D., & Mishra, R. R. (1992). Soil microbiol population numbers and enzymes activities in relation to altitude and forest degradation. Soil Boilogy and Biochemistry, 24, 761–762.

    Article  Google Scholar 

  • Dommergues, Y. R. (1978). The plant microorganism system. In Y. R. Dommergues & S. V. Krupa (Eds.), Interaction between non-pathogenic soil microorganisms and plants (pp. 1–25). Amsterdam: Elsiever scientific publishers.

    Google Scholar 

  • Dube, J. A., Namdeo, S. L., & Johar, M. S. (1975). Coal as a carrier of rhizobia. Current Science, 44, 434.

    Google Scholar 

  • El-Komy, H. M. A. (2005). Co-immobilization of A. lipoferum and B. megaterium for plant nutrition. Food Technol Biotechnology, 43(1), 19–27.

    Google Scholar 

  • El-Yazeid, A. A., Abou-Aly, H. A., Mady, M. A., & Moussa, S. A. M. (2007). Enhancing growth, productivity and quality of squash plants using phosphate dissolving microorganisms (bio phosphor) combined with boron foliar spray. Research Journal of Agriculture and Biological Sciences, 3(4), 274–286.

    Google Scholar 

  • FAGES, J. (1990). An optimized process for manufacturing an Azospirillum inoculant for crops. Applied Microbiology and Biotechnology, 32, 473–478.

    Article  CAS  Google Scholar 

  • Fan, D. D., Ren, Y. X., Zxu, X. L., Ma, P., & Liang, L. H. (2011). Optimization of culture conditions for phosphate solubilization by Acinetobacter calcoaceticusYC-5a using response surface methodology. African Journal of Microbiology Research, 5(20), 3327–3333.

    Article  CAS  Google Scholar 

  • Fenice, M., Selbman, L., Federici, F., & Vassilev, N. (2000). Application of encapsulated Pencillium variable P16 in solubilization of rock phosphate. Bioresource Technology, 73, 157–162.

    Article  CAS  Google Scholar 

  • Franche, K. C., Lindstr, O. M., & Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321(1–2), 35–59.

    Article  CAS  Google Scholar 

  • Galal, Y. G. M. (1997). Dual inoculation with strain of Bradyrhizobium japonicum and Azospirillum brasilense to improve growth and biological nitrogen fixation of soybean (Glycine max (L.)). Biology and Fertility of Soils, 24, 317–322.

    Article  CAS  Google Scholar 

  • Gaskins, M. H., Albrecht, S. L., & Hubble, D. H. (1985). Rhizosphere bacteria and their use to increase productivity. Agriculture Ecosystems and Environment, 12, 99–116.

    Article  Google Scholar 

  • Gerdemann, J. W. (1968). Vesicular arbuscular mycorrhizas and plant growth. Annual Review of Phytopathology, 6, 397–418.

    Article  Google Scholar 

  • Gothwal, R. K., Nigam, V. K., Mohan, M. K., Sasmal, D., & Ghosh, P. (2007). Screening of nitrogen fixers from rhizospheric bacterial isolates associated with important desert plants. Applied Ecology and Environmental Research, 6(2), 101–109.

    Article  Google Scholar 

  • Graham, P. H., Moralas, V. M., & Cavollor, C. (1974). Excipient and adhesive materials for possible use in the inoculation of legumes in Colombia. Tarrialb, 24, 47–50.

    Google Scholar 

  • Guillon, M., (2006). Current world situation on acceptance and marketing of biological control agents (BCAS). Position Paper by the President of IBMA, International Biocontrol Manufacturers Association. http://www.ibma.ch/papers.html

  • Gulati, A., Vyas, P., Rahi, P., & Kasana, R. C. (2009). Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Current Microbiology, 58, 371–377.

    Article  CAS  PubMed  Google Scholar 

  • Gulati, A., Sharma, N., Vyas, P., Sood, S., Rahi, P., Pathania, V., & Prasad, R. (2010). Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizospherae strain BIHB 723 isolated from the cold deserts of the trans-Himalaya. Arch Microbiology, 192(11), 975–983.

    Article  CAS  Google Scholar 

  • Gupta. (1995). Ph.D. Thesis, Indian Agricultural Research Institute, New Delhi, pp. 150.

    Google Scholar 

  • Gupta, A. K. (2004). The complete technology book on biofertilizers and organic farming. New Delhi: National Institute of Industrial Research Press.

    Google Scholar 

  • Habte, M., & Osorio, N. W. (2011). Arbuscularmycorrhizas: Producing and applying arbuscular mycorrhizal inoculum. Manoa: College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii.

    Google Scholar 

  • Haggag, W. M., & Saber, M. S. M. (2000). Use of compost formulations fortified with plant growth promoting rhizobacteria to control root–rot diseases in some vegetables grown in plastic-houses. www.PGPR.com.

  • Higa, T., & Wididana, G. N. (1991). The concept and theories of effective microorganisms. In J. F. Parr, S. B. Hornick, & C. E. Andwhitman (Eds.), Proceedings of the First International Conference on Kyusei Nature Farming (pp. 118–124). Washington DC: U.S. Department of Agriculture.

    Google Scholar 

  • Hilda, R., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–339.

    Article  Google Scholar 

  • Hiltner, L. (1904). Uberneuereerfahrungen und problem auf demgebit der bodenbukteriologic und under besondererberucksichtigung der grundungung und brabe. Arbeiten der Deutschen Landwirtschaftlichen Ger, 98, 59–78.

    Google Scholar 

  • Hynes, R. K., Craig, K. A., Covert, D., Smith, R. S., & Rennie, R. J. (1995). Liquid rhizobial inoculants for lentil and field pea. Journal of Production Agriculture, 8, 547–552.

    Article  Google Scholar 

  • Hynes, R. K., Jans, D. C., Bremer, E., Lupwayi, N. Z., Rice, W. A., Clayton, G. W., & Collins, M. M. (2001). Rhizobium sp. population dynamics in the pea rhizosphere of rhizobial inoculant strain applied in different formulations. Canadian Journal of Microbiology, 47, 595–600.

    Article  CAS  PubMed  Google Scholar 

  • Indiragandhi, P., Anandham, R., Madhaiyan, M., & Sa, T. M. (2008). Characterization of plant growth–promoting traits of bacteria isolated from larval guts of diamondback moth Plutellaxylostella (Lepidoptera: Plutellidae). Current Microbiology, 56, 327–333.

    Article  CAS  PubMed  Google Scholar 

  • Iswaran, V. (1972). Growth and survival of Rhizobium trifolii in coir dust and soybean meal compost. Madras Agricultural Journal, 59, 52–53.

    Google Scholar 

  • Iswaran, V., Sundar Rao, W. V. B., Magu, S. P., & Jauhri, K. (1969). Indian peat as a carrier of Rhizobium. Current Science, 38, 468.

    Google Scholar 

  • Ivanova, E., Teunou, E., & Poncelet, D. (2005). Alginate based macrocapsules as inoculants carriers for production of nitrogen biofertilizers. In: Proceedings of Balkan scientific conference of biology in plovdiv, 90–108.

    Google Scholar 

  • Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., & Barea, J. M. (2003). The contribution of arbuscular mycorrhizal fungii on sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 37, 1–16.

    Google Scholar 

  • Kandasamy, R., & Prasad, N. N. (1971). Lignite as a carrier of rhizobia. Current Science, 40, 496.

    Google Scholar 

  • Kang, S. M., Joo, G. J., Muhammad, H., Na, C. I., Shin, D. H., Kim, H. Y., Hong, J. K., & Lee, I. J. (2009). Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnology Letters, 31, 277–281.

    Article  CAS  PubMed  Google Scholar 

  • Khatri, A. A., Chocksey, M., & D’silva, E. (1973). Rice husk as a medium for legume inoculants. Scientific Cult, 39, 194.

    Google Scholar 

  • Kloepper, J. W., Lifshitz, R., & Zablotowicz, R. M. (1989). Free-living bacterial inoculant for enhancing crop productivity. Trends Biotechnology, 7, 39–44.

    Article  Google Scholar 

  • Konde, B. K., & Shinde, P. A. (1986). Effects of Azotobacterc hroococcumand Azospirillum brasilense inoculation and nitrogenon yield of sorghum, maize, pearl millet and wheat. In S. P. Wani (Ed.), Proceedings of Working group meeting cereal nitrogen fixation (pp. 85–92). Patancheru: ‘ICRISAT.

    Google Scholar 

  • Kucey, R. M. N. (1983). Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Canadian Journal of Soil Science, 63, 671–678.

    Article  CAS  Google Scholar 

  • Kumar Rao, J. V. D. K., Mohan Kumar, K. C., & Patil, R. B. (1982). Alternate carrier material for Rhizobium inoculant production. Mysore Journal of Agricultural Sciences, 16, 252–255.

    Google Scholar 

  • Kumar, V., Behl, R. K., & Narula, N. (2001). Establishment of phosphate solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions. Microbiological Research, 156, 87–93.

    Article  CAS  PubMed  Google Scholar 

  • Linderman, R.G. (1997). Vesicular arbuscularmycorrhizae and soil microbial interactions. In Bethlenfalvay, G. J, & Linderman, R. G. (eds.), Mycorrhizae in sustainable Agriculture (eds). ASA special publication No. 54, pp. 45–70.

    Google Scholar 

  • Madhok, M. R. (1934). The use of soils as a medium for distributing legume organisms materials. Agronomy Journal, 75, 181–184.

    Google Scholar 

  • Minorsky, P. V. (2008). On the inside. Plant Physiology, 146, 323–324.

    Article  CAS  PubMed Central  Google Scholar 

  • Mirza, S. M., Mehnaz, S., Normand, P., Prigent-Combaret, C., Moënne-Loccoz, Y., Bally, R., & Malik, K. A. (2006). Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biology and Fertility of Soils, 43, 163–170.

    Article  CAS  Google Scholar 

  • Moenne-Loccoz, Y., Naughton, M., Higgins, P., Powell, J., Connor, B. O., & O’gara, F. (1999). Effect of inoculum preparation and formulation on survival and biocontrol efficacy of Pseudomonas fluorescens F113. Journal of Applied Microbiology, 86, 108–116.

    Article  Google Scholar 

  • Mohammadi, K., Ghalavand, A., Aghaalikhani, M., Heidari, G. R., & Sohrabi, Y. (2011). Introducing the sustainable soil fertility system for chickpea (Cicer arietinum L.). African Journal of Biotechnology, 10(32), 6011–6020.

    Google Scholar 

  • Mongiardini, E. J., Ausmees, N., Perez-Gimenez, J., Althabegoiti, M. J., QUELAS, J. I., Lopez-Garcia, S. L., & Lodeiro, A. R. (2008). The rhizobial adhesion protein RapA1 is involved in adsorption of rhizobia to plant roots but not in nodulation. FEMS Microbiology Ecology, 65, 279–288.

    Article  CAS  PubMed  Google Scholar 

  • Paau, A. S. (1988). Formulations useful in applying beneficial microorganisms to seeds. Trends in Biotechnology, 6, 276–279.

    Article  Google Scholar 

  • Podile, A. R., & Ki Shore, G. K. (2006). Plant growth-promoting rhizobacteria. In S. S. Gnana-manickam (Ed.), Plant-associated bacteria (pp. 195–230). Amsterdam: Springer.

    Chapter  Google Scholar 

  • Pugashetti, B. K., Gopalgowda, H. S., & Patil, R. B. (1971). Cellulose powder as a legume inoculant base. Current Science, 40, 494–495.

    Google Scholar 

  • Rajeswari, K., Haridas, R., Karthick, A, & Kalaigandhi, V. (2007). Earthern and pot culture method to check the stability of marine Azotobacter in soil. Posted: May 10th, href=“http://www.articlesbase.com

  • Ramazon, C., Kantar, F., & Algus, F. (2004). Effect of dual inoculation of Bacillus polymyxa and Bacillus megaterium on yield of sugarbeet and barely. Journal of Plant Nutrition and Soil Science, 162, 437–442.

    Google Scholar 

  • Rangaswami, G., & Vasantharajan. (1962). Studies on the rhizosphere microflora of citrus trees, quantitative incidence of microorganism in relation to root and shoot growth. Canadian Journal of Microbiology, 8, 473–477.

    Article  Google Scholar 

  • Rodelas, B., González-López, J., Martínez-Toledo, M. V., Pozo, C., & Salmerón, V. (1999). Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of fababean (Viciafaba L.). Biology and Fertility of Soils, 2, 165–169.

    Article  Google Scholar 

  • Rodrıguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17(4–5), 319–339.

    Google Scholar 

  • Rokhzadi, A., Asgharzadeh, A., Darvish, F., Nour-Mohammadi, G., & Majidi, E. (2008). Influence of plant growth-promoting rhizobacteria on dry matter accumulation and yield of chickpea (Cicer arietinum L.) under field condition. Journal of Agriculture and Environmental Sciences, 3(2), 253–257.

    Google Scholar 

  • Sanchez, P. A., & Uehera, G. (1980). In F. E. Khasawneh, E. C. Sample, & E. J. Kampreth (Eds.), Management consideration for acid soils with high phosphorus in agriculture (pp. 471–514). Madison: American Society of Agronomy.

    Google Scholar 

  • Santaella, C., Schue, M., Berge, O., Heulin, T., & Achouak, W. (2008). The exopolysaccharide of Rhizobium sp. YAS 34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environmental Microbiology, 10, 2150–2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarma, M. V. R. K., Saharan, K., Prakash, A., Bisaria, V. S., & Sahai, V. F. (2009). Application of fluorescent pseudomonads inoculant formulations on Vignamungo through field trial. International Journal of Biology Life Science, 1, 1.

    Google Scholar 

  • Seneviratn, G., Zavahir, E., Bandar, J. S., & Weerasekar, A. (2008). Fungal-bacterialbiofilms: their development for novel biotechnological applications. World Journal of Microbiology and Biotechnology, 24(6), 739–743.

    Article  CAS  Google Scholar 

  • Seneviratne, G., & Jayasinghearachchi, H. S. (2005). Arhizobial film with nitrogenase activity alters nutrient availability in a soil. Soil Biology and Biochemistry, 37, 1975–1978.

    Article  CAS  Google Scholar 

  • Seneviratne, G., Thilakaratne, R. M. M. S., Jaysekara, A. P. D. A., Seneviratne, K. A. C. N., Padmathilake, K. R. E., & De Silva, M. S. D. L. (2009). Developing beneficial microbial biofilms on roots of non legumes: A novel biofertilizing technique. In M. S. Khan (Ed.), Microbial strategies for crop improvement (pp. 51–62). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Smith, R. S. (1992). Legume inoculant formulation and application. Canadian Journal of Microbiology, 38, 485–492.

    Article  Google Scholar 

  • Smith, S. R. (1995). Agricultural recycling of sewage sludge and the environment. CAB international.

    Google Scholar 

  • Smith, S. E., & Gianinazzi Pearson, V. (1988). Physiological interactions between symbionts in vesicular-arbuscularmycorrhizal plants. Annual Review of Plant Physiology and Plant Molecular Biology, 3.

    Google Scholar 

  • Sparrow, S. D., & Ham, G. E. (1983). Survival of Rhizobium phaseoliin six carrier culture to cultivators. Agriculture and Livestock of India, 4, 670–682.

    Google Scholar 

  • Strullus, D. G., & Plenchette, C. (1991). The envelopment of Glomus sp in alginate beads and their use as root inoculation. Mycological Research, 93, 1194–1196.

    Article  Google Scholar 

  • Tambekar, D. H., Gulhane, S. R., Somkuwar, D. O., Ingle, K. B., & Kanchalwar, S. P. (2009). Potential rhizobium and phosphate solubilizers as a biofertilizers from saline belt of Akola and Buldhana district. India Research Journal of Agricultural Biological Sciences, 5(4), 578–582.

    CAS  Google Scholar 

  • Ude, S., Arnold, D. L., Moon, C. D., Timms-Wilson, T., & Spiers, A. J. (2006). Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environmental Microbiology, 8(11), 1997–2011.

    Article  CAS  PubMed  Google Scholar 

  • Vassilev, N., Vassilev, A. M., Azcon, R., & Medina, A. (2001). Application of free and ca-alginate entrapped Glomus deserticola and Yarowiali polytica in soil-plant system. Journal of Biotechnology, 91, 237–242.

    Article  CAS  PubMed  Google Scholar 

  • Veena, S. C. (1999) Development of inoculum consortia for enhanced growth and nutrient uptake of sorghum (Sorghum bicolor (L.)Moench).M. Sc. (Agri.) Thesis, University of Agricultural Science, Dharwad. India.

    Google Scholar 

  • Whipps, J. M., & Lynch, J. M. (1985). Energy losses by the plants in rhizodeposition. In K. W. Fuller & J. R. Gallon (Eds.), Plant production and new technology (pp. 59–71). Oxford: Clarendon Press.

    Google Scholar 

  • Yadegari, M., Rahmani, H. A., Noormohammadi, G., & Ayneband, A. (2008). Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoliand plant growth promoting rhizobacteria on yield and yield components. Pakistan Journal of Biological Sciences, 11, 1935–1940.

    Article  CAS  PubMed  Google Scholar 

  • Zehnder, G. W., Yao, C., Murphy, J. F., Sikora, E. R., & Kloepper, J. W. (2000). Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. Biological Control, 45, 127–137.

    Google Scholar 

  • Zohar-Perez, C., Ritte, E., Chernin, L., Chet, I., & Nussinovitch, A. (2002). Preservation of chitinolytic Pantoae agglomerans in a viable form by cellular dried alginate-based carriers. Biotechnology Progress, 18, 1133–1140.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lakshmipathi, R.N., Subramanyam, B., Narotham Prasad, B.D. (2019). Significance of Microbial Agents in Augmentation of Plant Health. In: Ansari, R., Mahmood, I. (eds) Plant Health Under Biotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4_12

Download citation

Publish with us

Policies and ethics