Skip to main content

Challenges of Single-Molecule DNA Sequencing with Solid-State Nanopores

  • Chapter
  • First Online:
Single Molecule and Single Cell Sequencing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1129))

Abstract

A powerful DNA sequencing tool with high accuracy, long read length and high-throughput would be required more and more for decoding the complicated genetic code. Solid-state nanopore has attracted many researchers for its promising future as a next-generation DNA sequencing platform due to the processability, the robustness and the large-scale integratability. While the diverse materials have been widely explored for a solid-state nanopore, silicon nitride (Si3N4) is especially preferable from the viewpoint of mass production based on semiconductor fabrication process. Here, as a nanopore sensing mechanism, we focused on the ionic blockade current method which is the most developed technique. We also highlight the main challenges of Si3N4 nanopore-based DNA sequencer that should be addressed: the fabrication of ultra-small nanopore and ultra-thin membrane, the modulation of DNA translocation speed and the detection of base-specific signals. In this chapter, we discuss the recent progress relating to solid-state nanopore DNA sequencing, which helps to provide a comprehensive information about the current technical situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akahori R, Haga T, Hatano T, Yanagi I, Ohura T, Hamamura H, Iwasaki T, Yokoi T, Anazawa T. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter. Nanotechnology. 2014;25(27):275501.

    Article  Google Scholar 

  • Akahori R, Yanagi I, Goto Y, Harada K, Yokoi T, Takeda K. Discrimination of three types of homopolymers in single-stranded DNA with solid-state nanopores through external control of the DNA motion. Sci Rep. 2017;7:9073.

    Article  Google Scholar 

  • Branton D, Deamer DW, Marziali A, et al. The potential and challenges of nanopore sequencing. Nat Biotechnol. 2008;26(10):1146–53.

    Article  CAS  Google Scholar 

  • Briggs K, Kwok H, Tabard-Cossa V. Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis. Small. 2014;10(10):2077–86.

    Article  CAS  Google Scholar 

  • Briggs K, Charron M, Kwok H, Le T, Chahal S, Bustamante J, Waugh M, Tabard-Cossa V. Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution. Nanotechnology. 2015;26(8):084004.

    Article  CAS  Google Scholar 

  • Carlsen AT, Zahid OK, Ruzicka J, Taylor EW, Hall AR. Interpreting the conductance blockades of DNA translocations through solid-state nanopores. ACS Nano. 2014;8(5):4754–60.

    Article  CAS  Google Scholar 

  • Carson S, Wanunu M. Challenges in DNA motion control and sequence readout using nanopore devices. Nanotechnology. 2015;26(7):074004.

    Article  Google Scholar 

  • Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4(4):265–70.

    Article  CAS  Google Scholar 

  • Dekker C. Solid-state nanopores. Nat Nanotechnol. 2007;2(4):209–15.

    Article  CAS  Google Scholar 

  • Derrington IM, Butler TZ, Collins MD, Manrao E, Pavlenok M, Niederweis M, Gundlach JH. Nanopore DNA sequencing with MspA. Proc Natl Acad Sci U S A. 2010;107(37):16060–5.

    Article  CAS  Google Scholar 

  • Edel JB, Albrecht T. Engineered nanopores for bioanalytical applications. Amsterdam: Elsevier Science; 2013.

    Google Scholar 

  • Feng J, Liu K, Bulushev RD, Khlybov S, Dumcenco D, Kis A, Radenovic A. Identification of single nucleotides in MoS2 nanopores. Nat Nanotechnol. 2015;10(12):1070–6.

    Article  CAS  Google Scholar 

  • Fologea D, Uplinger J, Thomas B, McNabb DS, Li J. Slowing DNA translocation in a solid-state nanopore. Nano Lett. 2005;5(9):1734–7.

    Article  CAS  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–51.

    Article  CAS  Google Scholar 

  • Goto Y, Haga T, Yanagi I, Yokoi T, Takeda K. Deceleration of single-stranded DNA passing through a nanopore using a nanometre-sized bead structure. Sci Rep. 2015;5:16640.

    Article  CAS  Google Scholar 

  • Goto Y, Yanagi I, Matsui K, Yokoi T, Takeda K. Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction. Sci Rep. 2016;6:31324.

    Article  CAS  Google Scholar 

  • Goto Y, Akahori R, Matsui K, Yanagawa Y, Aoki M, Yanagi I, Nara Y, Yoshida M, Yokoi T, Takeda K. Solid-state nanopore DNA sequencing: single-nucleotide discrimination and bidirectional DNA translocation. In: Advances in genome biology and technology (AGBT) The General Meeting. Hollywood: The Diplomat Beach Resort; 13–16 February, 2017.

    Google Scholar 

  • Goto Y, Yanagi I, Matsui K, Yokoi T, Takeda K. Identification of four single-stranded DNA homopolymers with a solid-state nanopore in alkaline CsCl solution. Nanoscale. 2018;10(44):20844–50.

    Article  CAS  Google Scholar 

  • Heerema SJ, Dekker C. Graphene nanodevices for DNA sequencing. Nat Nanotechnol. 2016;11(2):127–36.

    Article  CAS  Google Scholar 

  • Howorka S, Cheley S, Bayley H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nat Biotechnol. 2001;19(7):636–9.

    Article  CAS  Google Scholar 

  • Iqbal SM, Bashir R. Nanopores: sensing and fundamental biological interactions. Heidelberg: Springer; 2011.

    Book  Google Scholar 

  • Jain M, Koren S, Miga KH, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018;36(4):338–45.

    Article  CAS  Google Scholar 

  • Keyser UF, Koeleman BN, van Dorp S, Krapf D, Smeets RMM, Lemay SG, Dekker NH, Dekker C. Direct force measurements on DNA in a solid-state nanopore. Nat Phys. 2006;2(7):473–7.

    Article  CAS  Google Scholar 

  • Kowalczyk SW, Tuijtel MW, Donkers SP, Dekker C. Unraveling single-stranded DNA in a solid-state nanopore. Nano Lett. 2010;10(4):1414–20.

    Article  CAS  Google Scholar 

  • Kwok H, Briggs K, Tabard-Cossa V. Nanopore fabrication by controlled breakdown. PLoS One. 2014;9(3):e92880.

    Article  Google Scholar 

  • Larkin J, Henley R, Bell DC, Cohen-Karni T, Rosenstein JK, Wanunu M. Slow DNA transport through nanopores in hafnium oxide membranes. ACS Nano. 2013;7(11):10121–8.

    Article  CAS  Google Scholar 

  • Laszlo AH, Derrington IM, Ross BC, et al. Decoding long nanopore sequencing reads of natural DNA. Nat Biotechnol. 2014;32(8):829–33.

    Article  CAS  Google Scholar 

  • Lee M-H, Kumar A, Park K-B, Cho S-Y, Kim H-M, Lim M-C, Kim Y-R, Kim K-B. A low-noise solid-state nanopore platform based on a highly insulating substrate. Sci Rep. 2014;4:7448.

    Article  Google Scholar 

  • Lindsay S. The promises and challenges of solid-state sequencing. Nat Nanotechnol. 2016;11(2):109–11.

    Article  CAS  Google Scholar 

  • Liu S, Lu B, Zhao Q, et al. Boron nitride nanopores: highly sensitive DNA single-molecule detectors. Adv Mater. 2013;25(33):4549–54.

    Article  CAS  Google Scholar 

  • Liu K, Feng J, Kis A, Radenovic A. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano. 2014;8(3):2504–11.

    Article  CAS  Google Scholar 

  • Manrao EA, Derrington IM, Laszlo AH, Langford KW, Hopper MK, Gillgren N, Pavlenok M, Niederweis M, Gundlach JH. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol. 2012;30(4):349–53.

    Article  CAS  Google Scholar 

  • Nelson EM, Li H, Timp G. Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography. ACS Nano. 2014;8(6):5484–93.

    Article  CAS  Google Scholar 

  • Pennisi E. Search for pore-fection. Science. 2012;336(6081):534–7.

    Article  CAS  Google Scholar 

  • Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW, Vandersypen LM, Dekker C. DNA translocation through graphene nanopores. Nano Lett. 2010;10(8):3163–7.

    Article  CAS  Google Scholar 

  • Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, Waterston RH. DNA sequencing at 40: past, present and future. Nature. 2017;550(7676):345–53.

    Article  CAS  Google Scholar 

  • Sigalov G, Comer J, Timp G, Aksimentiev A. Detection of DNA sequences using an alternating electric field in a nanopore capacitor. Nano Lett. 2008;8(1):56–63.

    Article  CAS  Google Scholar 

  • Squires AH, Hersey JS, Grinstaff MW, Meller A. A nanopore-nanofiber mesh biosensor to control DNA translocation. J Am Chem Soc. 2013;135(44):16304–7.

    Article  CAS  Google Scholar 

  • Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C. Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater. 2003;2(8):537–40.

    Article  CAS  Google Scholar 

  • Tsutsui M, Taniguchi M, Yokota K, Kawai T. Identifying single nucleotides by tunnelling current. Nat Nanotechnol. 2010;5(4):286–90.

    Article  CAS  Google Scholar 

  • Venkatesan BM, Bashir R. Nanopore sensors for nucleic acid analysis. Nat Nanotechnol. 2011;6(10):615–24.

    Article  CAS  Google Scholar 

  • Venta K, Shemer G, Puster M, Rodríguez-Manzo JA, Balan A, Rosenstein JK, Shepard K, Drndić M. Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores. ACS Nano. 2013;7(5):4629–36.

    Article  CAS  Google Scholar 

  • Wang D, Harrer S, Luan B, Stolovitzky G, Peng H, Afzali-Ardakani A. Regulating the transport of DNA through biofriendly nanochannels in a thin solid membrane. Sci Rep. 2014;4:3985.

    Article  Google Scholar 

  • Wanunu M. Nanopores: a journey towards DNA sequencing. Phys Life Rev. 2012;9(2):125–58.

    Article  Google Scholar 

  • Wanunu M, Sutin J, McNally B, Chow A, Meller A. DNA translocation governed by interactions with solid-state nanopores. Biophys J. 2008;95(10):4716–25.

    Article  CAS  Google Scholar 

  • Yanagi I, Akahori R, Hatano T, Takeda K. Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection. Sci Rep. 2014;4:5000.

    Article  CAS  Google Scholar 

  • Yanagi I, Ishida T, Fujisaki K, Takeda K. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process. Sci Rep. 2015;5:14656.

    Google Scholar 

  • Yanagi I, Akahori R, Aoki M, Harada K, Takeda K. Multichannel detection of ionic currents through two nanopores fabricated on integrated Si3N4 membranes. Lab Chip. 2016;16(17):3340–50.

    Article  CAS  Google Scholar 

  • Yanagi I, Fujisaki K, Hamamura H, Takeda K. Thickness-dependent dielectric breakdown and nanopore creation on sub-10-nm-thick SiN membranes in solution. J Appl Phys. 2017;121(4):045301.

    Article  Google Scholar 

  • Yoshida H, Goto Y, Akahori R, Tada Y, Terada S, Komura M, Iyoda T. Slowing the translocation of single-stranded DNA by using nano-cylindrical passage self-assembled by amphiphilic block copolymers. Nanoscale. 2016;8(43):18270–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express the utmost thanks to all co-workers for their dedication to Hitachi’s solid-state nanopore DNA sequencer project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Goto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goto, Y., Akahori, R., Yanagi, I. (2019). Challenges of Single-Molecule DNA Sequencing with Solid-State Nanopores. In: Suzuki, Y. (eds) Single Molecule and Single Cell Sequencing. Advances in Experimental Medicine and Biology, vol 1129. Springer, Singapore. https://doi.org/10.1007/978-981-13-6037-4_9

Download citation

Publish with us

Policies and ethics