Skip to main content

Primary Breakup of Liquid Jet in Supersonic Crossflow

  • Chapter
  • First Online:
Jet in Supersonic Crossflow
  • 793 Accesses

Abstract

In a liquid hydrocarbon-fuelled supersonic combustion ramjet (scramjet) engine, the atomization and mixing of liquid fuel in the supersonic airflow determine the engine ignition reliability and combustion performance. Since the gas/liquid fuel is typically injected from the wall in the scramjet combustor, gas/liquid jets in supersonic crossflow have been widely studied. As the liquid jet atomization process of transverse liquid jet in supersonic crossflow is very complicated, the physical mechanism and determining factors have not been well understood, requiring further research on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aulisa E, Manservisi S, Scardovelli R, Zaleski S (2007) Interface reconstruction with least-squares fit and split advection in three-dimensional cartesian geometry. J Comp Phys 225:2301–2319

    Article  MathSciNet  Google Scholar 

  • Beloki Perurena J, Asma CO, Theunissen R, Chazot O (2009) Experimental investigation of liquid jet injection into Mach 6 hypersonic crossflow. Exp Fluids 46:403–417

    Article  Google Scholar 

  • Caiden R, Fedkiw RP, Anderson C (2001) A numerical method for two-phase flow consisting of separate compressible and incompressible regions. J Comp Phys 166:1–27

    Article  Google Scholar 

  • Chakraborty P, Balachandar S, Adrian RJ (2005) On the relationships between local vortex identification schemes. J Fluid Mech 535:189–214

    Article  MathSciNet  Google Scholar 

  • Chang CH, Deng XL, Theofanous TG (2013) Direct numerical simulation of interfacial instabilities: a consistent, conservative, all-speed, sharp-interface method. J Comp Phys 242:946–990

    Article  MathSciNet  Google Scholar 

  • Croce R, Griebel M, Schweitzer MA (2004) A parallel level-set approach for two-phase flow problems surface tension in three space dimensions. Universitaet Bonn

    Google Scholar 

  • Desjardins O, McCaslin JO, Owkes M, Brady P (2013) Direct numerical and Large-Eddy simulation of primary atomization in complex geometries. At Sprays 23:1001–1048

    Article  Google Scholar 

  • Fedkiw R, Aslam T, Merriman B, Osher S (1999) A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J Comp Phys 152:457–492

    Article  MathSciNet  Google Scholar 

  • Ghenai C, Sapmaz H, Lin CX (2009) Penetration height correlations for non-aerated and aerated transverse liquid jets in supersonic cross flow. Exp Fluids 46(1):121–129

    Article  Google Scholar 

  • Gopala Y (2012) Breakup characteristics of a liquid jet in subsonic crossflow. Ph.D. thesis, Georgia Institute of Technology

    Google Scholar 

  • Gorokhovski M, Hermann M (2008) Modeling primary atomization. Ann Rev Fluid Mech 40:343–366

    Article  MathSciNet  Google Scholar 

  • Gueyffier D, Li J, Nadim A, Scardovelli R, Zaleski S (1999) Volume-of fluid interface tracking with smoothed surface stress methods for three dimensional flows. J Comp Phys 152:423–456

    Article  Google Scholar 

  • Herrmann M (2008) A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. J Comp Phys 227:2674–2706

    Article  MathSciNet  Google Scholar 

  • Javierre E, Vuik C, Vermolen FJ, Segal A (2007) A level set method for three dimensional vector stefan problems: dissolution of stoichiometric particles in multi-component alloys. J Comp Phys 224:222–240

    Article  MathSciNet  Google Scholar 

  • Jiang GS, Peng D (2000) Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J Sci Comput 21(6):2126–2143

    Article  MathSciNet  Google Scholar 

  • Jiang GS, Shu CW (1996) Efficient implementation of weighted ENO schemes. J Comp Phys 126:202–228

    Article  MathSciNet  Google Scholar 

  • Kang M, Fedkiw R, Liu XD (2000) A boundary condition capturing method for multiphase incompressible flow. J Sci Comput 15:323–360

    Article  MathSciNet  Google Scholar 

  • Liepmann HW, Roshko A (1957) Elements of gasdynamics. Wiley, New York

    Google Scholar 

  • López J, Hernández J, Góez P, Faura F (2004) A volume of fluid method based on multidimensional advection and spline interface reconstruction. J Comp Phys 195:718–742

    Article  Google Scholar 

  • Mahesh K (2013) The interaction of jets with crossflow. Ann Rev Fluid Mech 45:379–407

    Article  MathSciNet  Google Scholar 

  • Ménard T, Tanguy S, Berlemont A (2007) Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of the primary breakup of a liquid jet. Int J Multiph Flow 33:510–524

    Article  Google Scholar 

  • Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer, New York

    Book  Google Scholar 

  • Park SW, Kim S, Lee CS (2006) Breakup and atomization characteristics of mono-dispersed diesel droplets in a cross-flow air stream. Int J Multiph Flow 32:807–822

    Article  Google Scholar 

  • Pilliod JE, Puckett EG (2004) Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J Comp Phys 199:465–502

    Article  MathSciNet  Google Scholar 

  • Press WH (2000) Numerical recipes in Fortran 77

    Google Scholar 

  • Ren YX, Liu ME, Zhang H-X (2003) A characteristic-wise hybrid compact-weno scheme for solving hyperbolic conservation laws. J Comp Phys 192:365–386

    Article  MathSciNet  Google Scholar 

  • Rider WJ, Kothe DB (1998) Reconstructing volume tracking. J Comp Phys 141:112–152

    Article  MathSciNet  Google Scholar 

  • Scardovelli R, Zaleski S (2003) Interface reconstruction with least-squares fit & split Eulerian Lagrangian advection. Int J Numer Method Fluids 41:251–274

    Article  Google Scholar 

  • Sallam KA, Aalburg C, Faeth GM (2004) Breakup of round non-turbulent liquid jets in gaseous crossflow. AIAA J 42:2529–2540

    Article  Google Scholar 

  • Shu CW (1999) High order ENO and WENO schemes for computational fluid dynamics. In: Barth TJ, Deconinck H (eds) High-order methods for computational physics. Springer, Berlin, 439–582

    Google Scholar 

  • Sun MB, Geng H, Liang JH, Wang ZG (2009) Mixing characteristics in a supersonic combustor with gaseous fuel injection upstream of a cavity flameholder. Flow Turbul Combust 82:271–286

    Article  Google Scholar 

  • Sun MB, Wang ZG, Liang JH, Geng H (2008) Flame characteristics in a supersonic combustor with hydrogen injection upstream of a cavity flameholder. J Propul Power 24:688–696

    Article  Google Scholar 

  • Sussman M, Puckett EG (2000) A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J Comp Phys 162:301–337

    Article  MathSciNet  Google Scholar 

  • Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method, 2nd edn. Pearson Ed. Ltd

    Google Scholar 

  • Wang ZG, Wu L, Li Q, Li C (2014) Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow. Appl Phys Lett 105:134102

    Article  Google Scholar 

  • White FM (2003) Fluid mechanics. McGraw-Hill, Boston

    Google Scholar 

  • Xiao F (2012) Large Eddy Simulation of liquid jet primary breakup. Ph.D. thesis, Loughborough University

    Google Scholar 

  • Xiao F, Dianat M, McGuirk JJ (2013) Large Eddy Simulation of liquid-jet primary breakup in air crossflow. AIAA J 51:2878–2893

    Article  Google Scholar 

  • Xiao F, Wang ZG, Sun MB, Liang JH, Liu N (2016) Large eddy simulation of liquid jet primary breakup in supersonic air crossflow. Int J Multiph Flow 87:229–240

    Article  MathSciNet  Google Scholar 

  • Yue W, Lin CL, Patel VC (2003) Numerical simulation of unsteady multidimensional free surface motions by level set method. Int J Numer Methods Fluids 42:853–884

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingbo Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, M., Wang, H., Xiao, F. (2019). Primary Breakup of Liquid Jet in Supersonic Crossflow. In: Jet in Supersonic Crossflow. Springer, Singapore. https://doi.org/10.1007/978-981-13-6025-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6025-1_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6024-4

  • Online ISBN: 978-981-13-6025-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics