Skip to main content

Flow Structures of Gaseous Jet in Supersonic Crossflow

  • Chapter
  • First Online:
Jet in Supersonic Crossflow
  • 801 Accesses

Abstract

Transverse injection into supersonic flow is one of the most fundamental canonical flows for supersonic propulsion community, which has been studied to enhance the understanding of supersonic turbulent mixing of jet fuel and combustion in scramjet engine combustors. It includes many flow features of interest, such as the three-dimensionality, the shock structures, the flow separation and recirculation, the wall-bounded free shear layer phenomenon, and the jet wakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babinsky H, Li Y, Pitt Ford CW (2009) Microramp control of supersonic oblique shock-wave/boundary-layer interactions. AIAA J 47(3):668–675. https://doi.org/10.2514/1.38022

    Article  Google Scholar 

  • Ben-Yakar A, Mungal MG, Hanson RK (2006) Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Phys Fluids 18(2):026101. https://doi.org/10.1063/1.2139684

    Article  Google Scholar 

  • Chai X, Iyer PS, Krishnan M (2015a) Numerical study of high speed jets in crossflow. J Fluid Mech 785:152–188

    Google Scholar 

  • Chai X, Iyer PS, Mahesh K (2015b) Numerical study of high speed jets in crossflow. J Fluid Mech 785:152–188. https://doi.org/10.1017/jfm.2015.612

  • Dickmann DA, Lu FK (2008) Shock/boundary-layer interaction effects on transverse jets in crossflow over a flat plate. J Spacecr Rockets 46(6):1132–1141 Gaitonde DV (2015) Progress in shock wave/boundary layer interactions. Progress Aerosp Sci 72:20

    Article  Google Scholar 

  • Kawai S, Lele SK (2010) Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J 48(9):2063–2083

    Article  Google Scholar 

  • Liang CH, Sun MB, Liu Y, Yang YX (2018) Shock wave structures in the wake of sonic transverse jet into supersonic crossflow. Acta Astronaut

    Google Scholar 

  • Mahesh K (2013) The interaction of jets with crossflow. Annu Rev Fluid Mech 45(1):379–407. https://doi.org/10.1146/annurev-fluid-120710-101115

    Article  MathSciNet  MATH  Google Scholar 

  • Morkovin MV, Pierce CA Jr, Craven CE (1952) Interaction of a side jet with a supersonic main stream

    Google Scholar 

  • Rana ZA, Thornber B, Drikakis D (2011) Transverse jet injection into a supersonic turbulent cross-flow. Phys Fluids 23(4):046103. https://doi.org/10.1063/1.3570692

    Article  Google Scholar 

  • Sun M, Zhang S, Zhao Y, Zhao Y, Liang J (2013). Experimental investigation on transverse jet penetration into a supersonic turbulent crossflow. Sci China Technol Sci 56(8): 1989–1998.

    Google Scholar 

  • Sun MB, Hu ZW (2018a) Generation of upper trailing counter-rotating vortices of a sonic jet in a supersonic crossflow. AIAA J 56(3):1047–1059. https://doi.org/10.2514/1.J056442

    Article  MathSciNet  Google Scholar 

  • Sun M, Hu Z (2018b) Formation of surface trailing counter-rotating vortex pairs downstream of a sonic jet in a supersonic cross-flow. J Fluid Mech 850:551–583. https://doi.org/10.1017/jfm.2018.455

  • Viti V, Neel R, Schetz JA (2009) Detailed flow physics of the supersonic jet interaction flow field. Phys Fluids 21(4):046101. https://doi.org/10.1063/1.3112736

    Article  MATH  Google Scholar 

  • Wang QC, Wang ZG (2016) Structural characteristics of the supersonic turbulent boundary layer subjected to concave curvature. Appl Phys Lett 108(11):97

    Article  Google Scholar 

  • Wang H, Wang Z, Sun M, Qin N (2013) Hybrid Reynolds-averaged Navier-Stokes/large-eddy simulation of jet mixing in a supersonic crossflow. Sci China Technol Sci 56(6):1435–1448. https://doi.org/10.1007/s11431-013-5189-2

    Article  Google Scholar 

  • Wang B, Liu WD, Sun MB, Zhao YX (2015) Fluid redistribution in the turbulent boundary layer under the microramp control. AIAA J 53(12):3777–3787. https://doi.org/10.2514/1.J054074

    Article  Google Scholar 

  • Wang QC, Wang ZG, Zhao YX (2016) On the impact of adverse pressure gradient on the supersonic turbulent boundary layer. Phys Fluids (1994–present) 28(11):116101

    Google Scholar 

  • Won S-H, Jeung I-S, Parent B, Choi J-Y (2010) Numerical investigation of transverse hydrogen jet into supersonic crossflow using detached-eddy simulation. AIAA J 48(6):1047–1058. https://doi.org/10.2514/1.41165

    Article  Google Scholar 

  • Zhang Y, Liu W, Sun M (2016) Effect of microramp on transverse jet in supersonic crossflow. AIAA J 54(12):4043–4045. https://doi.org/10.2514/1.J055338

    Article  Google Scholar 

  • Zhao YX, Yi SH, Tian LF, Cheng ZY (2009) Supersonic flow imaging via nanoparticles. Sci China 52(12):3640–3648

    Article  Google Scholar 

  • Zhao Y, Liang J, Zhao Y (2016) Vortex structure and breakup mechanism of gaseous jet in supersonic crossflow with laminar boundary layer. Acta Astronaut 128:140–146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingbo Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, M., Wang, H., Xiao, F. (2019). Flow Structures of Gaseous Jet in Supersonic Crossflow. In: Jet in Supersonic Crossflow. Springer, Singapore. https://doi.org/10.1007/978-981-13-6025-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6025-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6024-4

  • Online ISBN: 978-981-13-6025-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics